
CCA extracted from "A UML Profile for
Enterprise Distributed Object Computing

Joint Final Submission

Part I

Version 1.0

Revised 22 August 2001

Supported by:

Hitachi
SINTEF
NetAccount

Submitted by:

CBOP
Data Access Technologies
DSTC
EDS
Fujitsu
IBM
Iona Technologies
Open-IT
Sun Microsystems
Unisys
OMG Document Number: ad/2001-08-19

ad/2001-08-19 – UML for EDOC Part I

ii A UML Profile for Enterprise Distributed Object Computing September 17, 2001

©Copyright 2001, CBOP, Data Access Technologies, DSTC, EDS, Fujitsu, IBM, Iona Technologies, Open-IT, Sun
Microsystems, Unisys.

CBOP, Data Access Technologies, DSTC, EDS, Fujitsu, IBM, Iona Technologies, Open-IT, Sun Microsystems, Unisys
hereby grant to the Object Management Group, Inc. a nonexclusive, royalty-free, paid up, worldwide license to copy
and distribute this document and to modify this document and distribute copies of the modified version.

Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in
the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

NOTICE

The information contained in this document is subject to change without notice.

The material in this document details an Object Management Group specification in accordance with the license and
notices set forth on this page. This document does not represent a commitment to implement any portion of this
specification in any companies' products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT
MANAGEMENT GROUP, CBOP, DATA ACCESS TECHNOLOGIES, DSTC, EDS, FUJITSU, IBM, IONA
TECHNOLOGIES, OPEN-IT, SUN MICROSYSTEMS AND UNISYS MAKE NO WARRANTY OF ANY KIND
WITH REGARDS TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. The aforementioned copyright holders
shall not be liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.
This document contains information which is protected by copyright. All Rights Reserved. No part of this work covered
by copyright herein may be reproduced or used in any form or by any means—graphic, electronic or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems—without permission of the
copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth
in subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013.

OMG and Object Management are registered trademarks of the Object Management Group, Inc. Object Request
Broker, OMG IDL, ORB CORBA, CORBAfacilities, and CORBAservices are trademarks of the Object Management
Group.

The UML logo is a trademark of Rational Software Corp.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by sending email to issues@omg.org.
Please reference precise page and section numbers, and state the specification name, version number, and revision date
as they appear on the front page, along with a brief description of the problem. You will not receive any reply, but your
report will be referred to the OMG Revision Task Force responsible for the maintenance of the specification. If you
wish to be consulted or informed during the resolution of the submitted issue, indicate this in your email. Please note
that issues appear eventually in the issues database, which is publicly accessible.

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing iii

Contents

Figures ... iv

Tables ... vii

Chapter 1: Formal Response to the RFP... 1
1. Introduction .. 3
2. Proof of Concept .. 9
3. Response to RFP Requirements ... 12
4. Conformance Issues ... 16
5. Changes or extensions required to adopted OMG specifications... 19
6. Proof of Concept mappings.. 19

Chapter 2: EDOC Profile – Rationale and Application.. 21
1. Vision ... 22
2. The EDOC Profile Elements .. 24
3. Application of the EDOC Profile Elements ... 32

Chapter 3 The Enterprise Collaboration Architecture .. 42
1. ECA Design Rationale ... 45
2. The Component Collaboration Architecture .. 52
3. The Entities Profile... 198
4. The Events Profile.. 229
5. The Business Process profile.. 272
6. The Relationships Profile ... 329

Chapter 4 The Patterns Profile.. 355
1. Rationale .. 356
2. Patterns Metamodel.. 364
3. UML Profile ... 369

Chapter 5 Technology Specific Models ... 375
1. The EJB and Java Metamodels .. 377
2. Flow Composition Model... 410

Chapter 6 UML Profile for MOF ... 425
1. Introduction .. 428
2. UML-to-MOF Mapping Table ... 429
3. Mapping Details ... 430
4. Guidelines .. 443

Glossary.. 445

References .. 447

ad/2001-08-19 – UML for EDOC Part I

iv A UML Profile for Enterprise Distributed Object Computing September 17, 2001

Figures

Figure 1: UML for EDOC Submission Structure .. 5
Figure 2: An Example of BFOP Pattern Hierarchy .. 30
Figure 3: EDOC Profile elements related to the ISO RM ODP viewpoints ... 33
Figure 4: ProcessComponent Composition at multiple levels ... 38
Figure 5: EDOC framework vision ... 50
Figure 6: Structure and dependencies of the CCA Metamodel ... 58
Figure 7: CCA Major elements.. 61
Figure 8: Structural Specification Metamodel... 62
Figure 9: Choreography Metamodel.. 80
Figure 10: Composition metamodel .. 92
Figure 11: Document Metamodel .. 103
Figure 12: Model Management Metamodel .. 113
Figure 13: ProcessComponent specification notation ... 117
Figure 14: ProcessComponent specification notation (expanded ProtocolPorts).. 117
Figure 15: Composite Component notation (without internal ComponentUsages)... 118
Figure 16: Composite Component notation... 119
Figure 17: CommunityProcess notation .. 120
Figure 18: UML«metamodel» and CCA «profile»Packages.. 123
Figure 19: Stereotypes in the UML Profile for CCA... 124
Figure 20: Stereotypes for Structural Specification... 125
Figure 21: Stereotypes for Choreography ... 141
Figure 22: Stereotypes for Composition.. 149
Figure 23: Stereotypes for DocumentModel ... 156
Figure 24: Top Level Collaboration Diagram ... 183
Figure 25: Class diagram for protocol structure .. 184
Figure 26: Choreography of a Protocol ... 186
Figure 27: Class Diagram for Component Structure ... 188
Figure 28: Class Diagram for Interface ... 190
Figure 29: Using Interfaces ... 190
Figure 30: Process Components with multiple ports ... 191
Figure 31: Choreography of a Process Component... 192
Figure 32: Process Component Composition .. 193
Figure 33: Model Management ... 196
Figure 34: Community Process and Protocol .. 197
Figure 35 Composition in CCA notation... 197
Figure 36: Entity Model in the Information Viewpoint... 206
Figure 37: Entity Model in the Composition Viewpoint ... 207
Figure 38: Entity Metamodel... 208
Figure 39:, Entity Model Extensions to UML ... 220
Figure 40: Event Based Business Modeling.. 231
Figure 41: Intra Process Event Notification .. 236
Figure 42: Cross Process Event Notification... 237
Figure 43: Delegation .. 238
Figure 44: Business Process View of metamodel.. 241
Figure 45: Entity View of metamodel ... 242
Figure 46: Complete Metamodel for Event Modeling... 243
Figure 47: Metamodel of event notification view ... 244
Figure 48: Diagram of Event Package... 250
Figure 49: Business process/entity/event diagram... 270
Figure 50: Composition of Process ModelElements. .. 273

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing v

Figure 51: Inputs and Outputs of Process ModelElements. .. 274
Figure 52: Diagram of the Roles aspect of the Process Model.. 275
Figure 53: A labeled CompoundTask Diagram... 277
Figure 54: State Machine describing execution of Activities and CompoundTasks. .. 279
Figure 55: Illegal DataFlows crossing Task boundaries.. 287
Figure 56: Example Protocol describing the behavior of ProcessMultiPorts. ... 288
Figure 58: An ExceptionGroup that is handled by and Activity ... 291
Figure 59: An unhandled ExceptionGroup that will be propagated if it is enabled at runtime. 291
Figure 60: BusinessProcess «profile» Package ... 297
Figure 60: Activity with synchronous and asynchronous InputGroups, an OutputGroup and an ExceptionGroup.319
Figure 61: Activity that is involves creation of a Composition of nested Activities, etc. 319
Figure 62: A CompoundTask showing its composed Activities. .. 320
Figure 63: Timeout Pattern.. 321
Figure 64: Timer pattern notation.. 321
Figure 65: Templated activity supporting a terminate message. ... 322
Figure 66: Preconditions on an InputGroup and an OutputGroup. ... 322
Figure 67: An equivalent model to that of Figure 66, using condition tasks... 323
Figure 68: Post-conditions on OutputGroups of Activities. .. 323
Figure 69: An equivalent model to that of Figure 68, using condition tasks... 324
Figure 70: Simple Loop Pattern... 324
Figure 71: Simple Loop Notation.. 325
Figure 72: While Loop Pattern .. 325
Figure 73: Repeat/Until Loop Pattern ... 325
Figure 74: While Loop Notation ... 326
Figure 75: Repeat-Until Notation .. 326
Figure 76: For Loop Pattern .. 326
Figure 77: Pattern for a multi-task... 327
Figure 79: Combined MOF model of Process... 328
Figure 79: UML Extensions Representing Multiple Viewpoints .. 332
Figure 80: Multiple Subtyping Hierarchies for the Same Supertype... 334
Figure 81: Class Diagram of the Virtual Metamodel .. 336
Figure 82: Notation for Shared, Non-Binary Aggregation.. 338
Figure 83: Notation for Composite, Non-Binary Aggregation.. 338
Figure 84: Notation for Reference... 345
Figure 85: Notation for ReferenceForCreate... 346
Figure 86: Association End Names Resulting from Decomposing a Non-Binary Aggregation (General Case) 348
Figure 87: Association End Names Resulting from Decomposing a Non-Binary Aggregation (Special Case) 349
Figure 88: Fragment of Reconciliation Specification.. 351
Figure 89: <<Reference>> Stereotype Used To Show Structure of Specification.. 352
Figure 90: An Example of BFOP Pattern Hierarchy .. 357
Figure 91: Defining the “Composition” Pattern ... 359
Figure 92: Applying the “Composition” Pattern .. 359
Figure 93: Unfolded “Composition” Pattern .. 360
Figure 94: The format of Simple Pattern.. 360
Figure 95: The Format of Pattern Inheritance .. 361
Figure 96: The Format of Pattern Composition.. 362
Figure 97: The Summary of Pattern Formats .. 362
Figure 98: An Example of BFOP Structure and Unfolding ... 363
Figure 99: Metamodel for Business Pattern Package ... 364
Figure 100: Patterns <<profile>> Package.. 369
Figure 101: Notation for Business Pattern Package ... 371
Figure 102: Notation for Business Pattern Binding.. 373
Figure 103: Class Contents.. 378
Figure 104: Polymorphism .. 384
Figure 105: JavaType .. 384
Figure 106: TypeDescriptor .. 386
Figure 107: Data Types ... 387

ad/2001-08-19 – UML for EDOC Part I

vi A UML Profile for Enterprise Distributed Object Computing September 17, 2001

Figure 108: Names... 387
Figure 109: Main ... 388
Figure 110: EJB... 393
Figure 111: Entity Bean... 399
Figure 112: Assembly.. 400
Figure 113: EJB Implementation... 403
Figure 114: References to Resources .. 405
Figure 115: Data Types ... 407
Figure 116: FCMCore Package, Main Diagram... 411
Figure 117: FCMCore Package, FCMComponent Diagram .. 412
Figure 118: FCM Package, FCMConnections Diagram... 416
Figure 119: FCM Package, FCMNodes Diagram .. 417
Figure 120: Transfer/Refund Money FCMComposition .. 420
Figure 121: FCMSource and FCMSink for the Transfer Money FCMFlow.. 421
Figure 122: FCMControlLink and FCMDataLink from TransferSource to CheckAccount 422
Figure 123: FCMCommand with associated FCMConnections and FCMComponent 423

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing vii

Tables

Table 1: Mandatory Compliance Points .. 17
Table 2: Stereotypes for Structural Specification (UML notation: Class Diagram).. 121
Table 3: TaggedValues for Structural Specification ... 121
Table 4: Stereotypes for Choreography (UML notation: Statechart Diagram) ... 122
Table 5: TaggedValues for Choreography .. 122
Table 6: Stereotypes for Composition (UML notation: Collaboration Diagram at specification level).............. 122
Table 7: TaggedValues for Composition... 122
Table 8: Stereotypes for DocumentModel (UML notation: Class Diagram).. 122
Table 9: TaggedValues for DocumentModel .. 123
Table 10: Summary of stereotypes for a Community Process... 184
Table 11: Summary of stereotypes for a Protocol ... 185
Table 12: Summary of tagged values for a Protocol ... 186
Table 13: Stereotypes for an Activity Diagram or Choreography... 187
Table 14: Tagged Values for a Choreography... 187
Table 15: Stereotypes for a Process Component Class Diagram... 189
Table 16: tagged values for a Process Component Class Diagram ... 189
Table 17: Elements of an Interface.. 190
Table 18: Connections... 194
Table 19: Stereotypes for a Process Component Collaboration .. 194
Table 20 Element Mappings.. 219
Table 21 Mapping Events Concepts to Profile Elements .. 258
Table 22 BusinessProcess «profile» Package : Stereotypes .. 296
Table 23 BusinessProcess «profile» Package : TaggedValues.. 297
Table 24 «ProcessFlowPort» Tagged Values .. 303
Table 25«ProcessRole» Tagged Values .. 311
Table 26: CompoundTask own ProcessMultiPort subtypes .. 317
Table 27: ProcessMultiPort Subtypes own ProcessFlowPorts .. 317
Table 28: Activities and ProcessPortConnectors owned by CompoundTasks and BusinessProcesses............... 317
Table 29: CompoundTask owns Activity and DataFlow .. 318
Table 30: Activity uses CompoundTask.. 318
Table 31: Represents in CompoundTask and BusinessProcess... 318
Table 32 Element Mappings.. 369
Table 33: Mapping Java Metamodel concepts to profile elements.. 409
Table 34: Mapping Flow Composition Model concepts to profile elements.. 420
Table 35 Glossary of Terms .. 445

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 1 1

Chapter 1: Formal Response to the RFP

Table of Contents

1. Introduction... 3
1.1 The Joint UML for EDOC Profile Submission .. 3
1.2 Co-submitting Companies.. 3
1.3 Status of this document .. 3
1.4 Guide to the Submission .. 3

1.4.1 Overall structure of the submission .. 3
1.4.2 Structure of Chapter 1... 6

1.5 Missing Items ... 6
1.6 Submission contact points .. 6

1.6.1 CBOP.. 6
1.6.2 Data Access Technologies .. 7
1.6.3 DSTC.. 7
1.6.4 EDS... 7
1.6.5 Fujitsu ... 7
1.6.6 IBM... 7
1.6.7 Iona ... 8
1.6.8 Open-IT .. 8
1.6.9 SINTEF... 8
1.6.10 Sun Microsystems... 8
1.6.11 Unisys ... 8

2. Proof of Concept... 9
2.1 CBOP ... 9
2.2 Data Access Technologies ... 9
2.3 DSTC ... 9
2.4 EDS .. 10
2.5 Fujitsu... 10
2.6 IBM .. 10
2.7 Iona... 10
2.8 Open-IT and SINTEF... 10
2.9 Sun Microsystems .. 11
2.10 Unisys... 11

3. Response to RFP Requirements.. 12
3.1 General Mandatory Requirements.. 12
3.2 Specific Mandatory Requirements ... 12

3.2.1 Component Modeling ... 12
3.2.2 Modeling of Business Process, Entity, Rule, and Event Objects.. 13
3.2.3 Specification of Business Process Objects ... 13
3.2.4 Specification of Relationships .. 13
3.2.5 Meta-Object Facility Alignment ... 14

ad/2001-08-19 – UML for EDOC Part I

2 A UML Profile for Enterprise Distributed Object Computing – Chapter 1 September 17, 2001

3.2.6 Proof of Concept of Profile... 14
3.2.7 Proof of Concept of Mappability .. 14

3.3 Optional Requirements... 15
3.4 Subset Integrity .. 15
3.5 Simplification of and Aid to the Development Process ... 15
3.6 Tool support ... 15
3.7 Alignment with Action Semantics for UML .. 16

4. Conformance Issues .. 16
4.1 Summary of optional versus mandatory interfaces .. 16
4.2 Proposed compliance points..Error! Bookmark not defined.

5. Changes or extensions required to adopted OMG specifications ... 19

6. Proof of Concept mappings .. 19

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 1 3

1. Introduction

1.1 The Joint UML for EDOC Profile Submission
The Joint UML for EDOC Profile Submission is a specification for a UML Profile for
Enterprise Distributed Object Computing (EDOC), prepared by the submitting team listed
below in response to the OA&DTF RFP 6 (UML Profile for EDOC, OMG Document
ad/99-03-10).

1.2 Co-submitting Companies
This submission is prepared by the following companies:

• CBOP
• Data Access Technologies
• DSTC
• EDS
• Fujitsu
• IBM
• Iona Technologies
• Open-IT
• Sun Microsystems
• Unisys

Supporting companies are:

• Hitachi
• Netaccount
• SINTEF

1.3 Status of this document
This document is a final revision to the Final Submission presented at the Danvers meeting
of the OMG TC in July 2001. It contains some minor corrections of technical and editing
errors and of formatting, but no substantial technical changes.

1.4 Guide to the Submission

1.4.1 Overall structure of the submission

This submission is divided into two parts as follows:

• Part I (this Part) is the normative specification of the UML Profile for EDOC;

ad/2001-08-19 – UML for EDOC Part I

4 A UML Profile for Enterprise Distributed Object Computing – Chapter 1 September 17, 2001

• Part II contains a number of annexes which provide a set of non-normative mappings
and a set of worked examples explaining the uses of the various parts of the Profile.

1.4.1.1 Part I

Part I contains six chapters as illustrated in Figure 1 below:

Chapter 1 is the formal response to the submission as required by the RFP.

Chapter 2 explains the overall rationale for the submission approach, and provides a
framework for system specification using the EDOC Profile. It provides a detailed rationale
for the modeling choices made and describes how the various elements in the submission
may be used, within the viewpoint oriented framework of the Reference Model of Open
Distributed Processing (RM-ODP), to model all phases of a software system’s lifecycle,
including, but not limited to:

• the analysis phase when the roles played by the system’s components in the business it
supports are defined and related to the business requirements;

• the design and implementation phases, when detailed specifications for the system’s
components are developed;

• the maintenance phase, when, after implementation, the system’s structure or behavior
is modified and tuned to meet the changing business environment in which it will work.

Chapter 3 is the Enterprise Collaboration Architecture (ECA) and contains the detailed
profile specifications for platform/ technology independent modeling elements of the
profile, specifically:

• the Component Collaboration Architecture (CCA) which details how the UML concepts
of classes, collaborations and activity graphs can be used to model, at varying and
mixed levels of granularity, the structure and behavior of the components that comprise
a system;

• the Entities profile, which describes a set of UML extensions that may be used to model
entity objects that are representations of concepts in the application problem domain and
define them as composable components;

• the Events profile, which describes a set of UML extensions that may be used on their
own, or in combination with the other EDOC elements, to model event driven systems;

• the Business Processes profile, which specializes the CCA, and describes a set of UML
extensions that may be used on their own, or in combination with the other EDOC
elements, to model workflow-style business processes in the context of the components
and entities that model the business;

• the Relationships profile, which describes the extensions to the UML core facilities to
meet the need for rigorous relationship specification in general and in business
modeling and software modeling in particular.

Chapter 4 is the Patterns Profile, which defines how to use UML and relevant parts of the
ECA profile to express object models such as Business Function Object Patterns (BFOP)
using pattern application mechanisms.

Chapter 5 provides a set of technology specific mappings. It contains Java, Enterprise
JavaBeans (EJB) and Flow Composition Model (FCM) metamodels abstracted from their
respective specifications.

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 1 5

• The EJB metamodel is intended to provide sufficient detail to support the creation
assembly and deployment of Enterprise JavaBeans.

• The Java metamodel is intended to provide sufficient detail to support the EJB
metamodel.

• The Flow Composition Model provides a common set of design abstractions across a
variety of flow model types used in message brokering and delivery.

Chapter 6 (UML Profile for MOF) is a normative two way mapping between UML and the
MOF. Although this is not called for in the RFP, it is deemed essential, since, for the
profiles proposed to be understood, it has been necessary to include metamodels that
explain the concepts that the profiles express.

C hapter 1 - Response to RFP

C hapter 2 - EDOC Rationale & Use

C hapter 3 - EC A

C hapter 4 Patterns

C hapter 5 - Technology Specific M odels

C hapter 6 - UM L Profile for M OF

Part II - Examples & Technology M appings

Section 1 - ECA Rationale

Section 2 - CCA

Section 3 - Entities Section 4 - Events

Section 5 - Business Process

Section 6 - Relationships Section 1 - EJB and Java Metamodels

Section 2 - FCM

Figure 1: UML for EDOC Submission Structure

1.4.1.2 Part II

Part II of this submission, (ad/2001/08/20) is non-normative and contains supporting
information in the form of the following Annexes:

• Annex A - Procurement, Buyer/Seller example

• Annex B - Meeting Room example

• Annex C - Hospital example

• Annex D - Examples of Patterns

• Annex E - Technology mappings from EDOC to Distributed Component and Message
Flow Platform Specific Models

In addition, XMI and DTD data files for the metamodels in the EJB/Java/FCM profiles are

ad/2001-08-19 – UML for EDOC Part I

6 A UML Profile for Enterprise Distributed Object Computing – Chapter 1 September 17, 2001

included in the zip file containing this Part II of the submission, in the folder named “XMI
and DTDs”.

1.4.2 Structure of Chapter 1

Section 1 provides contact information and a guide to this submission.

Section 2 is the proof of concept statement.

Section 3 explains how this submission satisfies the mandatory requirements of the RFP.

Section 4 summarizes the rationale for the approach taken in this submission (which is
described in detail in Part II).

Section 5 provides a statement of Conformance Points for this specification.

Section 6 discusses changes to OMG adopted standards.

A Glossary and a List of References are provided at the end of this Part.

1.5 Missing Items
None

1.6 Submission contact points

1.6.1 CBOP

Akira Tanaka
Hitachi, Ltd.,
Software Division, Enterprise Business Planning, Product Planning Dept.,
5030 Totsuka-cho, Totsuka-ku, Yokohama 244-8555, Japan
e-mail: tanakaak@soft.hitachi.co.jp
phone: +81(45)862-8735
fax:+81(45)865-9020

Hajime Horiuchi
Tokyo International University
1-13-1 Matoba-kita, Kawagoe-shi, Saitama 350-1102, Japan
Phone: +81-492-32-1111
Email:hori@tiu.ac.jp

Marika Iizuka
Technologic Arts Inc.
Cosmos Hongo Bld. 9F, 4-1-4 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
Phone: +81-3-5803-2788
Email: marika@tech-arts.co.jp

Masaharu Obayashi
Kanrikogaku Ltd.
Meguro Suda Bldg., 3-9-1 Meguro, Meguro-ku, Tokyo 153-0063, Japan
Phone: +81-3-3716-6300
Email: obayashi@kthree.co.jp

mailto:ogawa_hi@soft.hitachi.co.jp
mailto:yoshi@tech-arts.co.jp

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 1 7

Yoshihide Nagase
Technologic Arts Inc.
Cosmos Hongo Bld. 9F, 4-1-4 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
Phone: +81-3-5803-2788
Email: yoshi@tech-arts.co.jp

1.6.2 Data Access Technologies

Cory B. Casanave and Antonio Carrasco-Valero
14000 SW 119 Av., Miami, FL 33186, USA
Phone: +1 305 234 7077
Email: cory-c@ enterprise-component.com , antonio-c@ enterprise-component.com

1.6.3 DSTC

Mr. Keith Duddy,
CRC for Enterprise Distributed Systems Technology (DSTC)
University of Queensland
Brisbane 4072
Australia
Phone: +61 7 3365 4310
Fax: +61 7 3365 4311
Email:dud@dstc.edu.au, edoc-rfp1@dstc.edu.au
WWW: www.dstc.edu.au

1.6.4 EDS

Fred Cummins
EDS
5555 New King St., MS 402, Troy, MI 48098, USA
Phone: (248) 696-2016
Email: fred.cummins@eds.com

1.6.5 Fujitsu

Mr Hiroshi Miyazaki
Fujitsu Limited
1-9-3, Nakase Mihama-ku, Chiba-shi, Chiba 261-8588, Japan
Phone: +81 43 299 3531 ext 4669
e-mail: <miyazaki@tokyo.se.fujitsu.co.jp>

1.6.6 IBM

Stephen A. Brodsky, Ph.D.
International Business Machines Corporation
555 Bailey Ave., J8RA/F320
San Jose, CA 95141
Phone: +1 408 463 5659
E-mail: SBrodsky@us.ibm.com

ad/2001-08-19 – UML for EDOC Part I

8 A UML Profile for Enterprise Distributed Object Computing – Chapter 1 September 17, 2001

1.6.7 Iona

David Frankel
Iona Technologies
10 North Church Street, West Chester, Pa 19380, USA
Phone: 610 429 1553
Email: david.frankel@iona.com

1.6.8 Open-IT

Mr Sandy Tyndale-Biscoe
Open-IT Ltd
Cedarcroft, Sunny Way, Bosham, CHICHESTER, West Sussex, PO18 8HQ, U.K.
Phone: +44 (0)1243 57 22 23
e-mail: <sandy@open-it.co.uk>

1.6.9 SINTEF

Dr. Arne J. Berre
SINTEF Telecom and Informatics
Forskningsveien 1, Blindern, 0314 Oslo, Norway
Phone: +47 22 06 74 52
e-mail: Arne.J.Berre@informatics.sintef.no

1.6.10 Sun Microsystems

Karsten Riemer,
b2b Architect, XML technology Center,
Sun Microsystems, Inc., Burlington, MA 01803, USA
Phone 781-442-2679
e-mail karsten.riemer@sun.com

1.6.11 Unisys

Sridhar Iyengar
Unisys Corporation
25725 Jeronimo Rd.
Mission Viejo, CA 92691
Phone: +1 949 380 5692
E-mail: sridhar.iyengar2@unisys.com

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 1 9

2. Proof of Concept

This submission is a practical approach to the need for specifying EDOC systems, based on
the following real world experience of the companies concerned:

2.1 CBOP
CBOP is a consortium in Japan, promoting the reuse and the sharing of business domain
models and software components. The submission of the pattern mechanism to the UML
profile for EDOC RFP was based on the CBOP standards that are focused on the
normalization of business object patterns for modeling. Current work of CBOP is, inter
alia, concerned with the development of UML tools that enable the application of patterns
in object modeling with UML. The EDOC standard will be taken in to account in these
tools as well as the CBOP standards.

2.2 Data Access Technologies
The CCA profile (Chapter 3 Section 2) is based on product development done by Data
Access Technologies under a cooperative agreement with the National Institute of
Technologies - Advanced Technology Program. The basis for CCA has been proven in two
related works - one as a distributed user interface toolkit for Enterprise Java Beans and
more recently as the basis for "Component X Studio" which provides drag-and-drop
assembly of server-side application components. Component-X Studio is has been released
as a product. Portions of this same model have also been incorporated into ebXml for its
specification schema, giving CCA an XML based technology mapping. Finally, portions of
CCA and the related entity model derive from standards, development and consulting work
done in relation to the "Business Object Component Architecture" which, while never
standardized has proven to be a solid foundation for modeling and implementing a systems
information viewpoint. In all cases of the above works, model based development has been
used throughout the lifecycle, from design to deployment - proving the sufficiency of the
base models to drive execution.

2.3 DSTC
DSTC has used its dMOF product to develop a MOF respository and Human Usable
Textual Notation I/O tools which support modeling of Business Processes conforming to
the metamodel in Chapter 3, Section 6 (Business Process profile). Significant Business
Process models have been created using these generated tools, and mapped using XSLT
into XML workflow process definitions, which execute on the DSTC's Breeze workflow
engine. dMOF is a commercial product installed at many customer sites world-wide, and
Breeze is in development and is currently being beta-tested by four DSTC partner
organizations.

In addition the dMOF tool has been used to validate the MOF conformance of all the meta-
models in Chapter 3. XMI documents containing these meta-models will be submitted as
separate conveniece documents.

ad/2001-08-19 – UML for EDOC Part I

10 A UML Profile for Enterprise Distributed Object Computing – Chapter 1 September 17, 2001

2.4 EDS
EDS developed the Enterprise Business Object Facility (EBOF) product in conjunction
with work on the Business Object Facility specification. This product serves as a proof of
concept for important aspects of this submission. It incorporated UML models as the basis
for generating executable, distributed, CORBA applications. This involved consideration of
transactions, persistence, management of relationships, operations on extents, performance
optimization and many other factors. This product was sold to a major software vendor.

2.5 Fujitsu
This submission is based in part upon Fujitsu's system analysis and design methodology,
"Application Architecture/Business Rule Modeling". The methodology is built into Fujitsu's
product, "Application Architecture / Business Rule Modeler - AA/BRMODELER", which
has been used for the development of many mission critical business systems. Although
applied mainly to the development of COBOL applications, the methodology includes
object-oriented characteristics. In this submission, the elements of the methodology and its
related product are represented as UML elements and extensions. In the methodology, the
specification of business rules is of special concern. The business rules are separated in
types and attributed to objects corresponding to the types. These rules are represented in a
formal grammar, and they are compiled into executable programs by using
AA/BRMODELER. AA/BRMODELER has sold approximately 5000 sets in Japan since it
was developed in 1994. It has been applied to approximately 300 projects, some of scale
greater than 7,000 person-months.

2.6 IBM
IBM has extensive experience in enterprise architectures, Java, Enterprise Java Beans,
CORBA, UML, MOF, and metadata. The WebSphere, MQ, and VisualAge product lines
provide sophisticated analysis, design, deployment, and execution functionality embodying
all of the key representative technologies.

2.7 Iona
The Relationships Profile is based on many years of modeling experience in industry and in
the development of related products and standards. It uses ISO's General Relationship
Model and the work of Haim Kilov and James Ross in their book "Information Modeling",
which is based on long-term modeling experience in areas such as telecommunications,
finance, insurance, document management, and business process change.

The Process Profile incorporates Iona experience modeling enterprise processes with
customers from use case descriptions, business models, and other IT system requirements
information. It is also based on experience developing process definition and management
products for environments ranging from concurrent engineering to document processing.

2.8 Open-IT and SINTEF
The profile incorporates results and experience from the UML profile and associated lexical
language that was developed in the European Union funded OBOE project. As part of this
project supporting tools were developed and the technology was applied at a user site . A
full description of the project is available at [7].

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 1 11

The ODP concepts have been applied for the development of the OMG Finance domain
General Ledgers specification in the COMPASS project, and a mapping framework for
Microsoft COM has been developed by Netaccount (formerly Economica). More
information on this is available at [6].

The ODP concepts have also been applied in the domain of geographic information
systems. The DISGIS project has demonstrated the usefulness of the separation of concerns
in terms of the 5 viewpoints defined by the RM-ODP, and developed an interoperability
framework based on this (See [5]). The use of the ODP viewpoints have also been found
useful in the context of geographic information system standardization in ISO/TC211 (See
[8]) and the Open Geodata Consortium (See [9]).

The enterprise specification concepts have been derived from work for the UK Ministry of
Defence and Eurocontrol together with participation in the development of the ODP –
Enterprise Language standard [4].

2.9 Sun Microsystems
Sun Microsystems’ internal IT group has successfully implemented large scale Enterprise
Integration using a conceptual meta-model close to that defined in the Events profile
(Chapter 3 Section 4), covering business process, entity, and event architecture. While this
has not been using UML, the work modeled the enterprise and the interaction between
system components based on an enterprise business object/event information model.
Business objects and events have been modeled in a Sun IT internal language, SDDL, a self
describing data language, the syntax of which is equivalent to the modeling framework
proposed here.

This implementation is successful, and by a rough estimate 50% of Sun’s key applications
participate in event driven processes, and in total about a million event notifications are sent
among these applications every day.

2.10 Unisys
Unisys has extensive experience in enterprise architectures, commercial metadata
repositories, metadata interchange, Java, Enterprise Java Beans, CORBA, COM+, UML,
and MOF. Unisys products provide extensive and distributed metadata management
services. Unisys has designed numerous metamodels using UML, and has deployed
numerous metamodels using MOF, including metamodels of Java, CORBA IDL, UML,
and CWM.

2.11 ebXML
The ebXML Business Process Specification Schema (BPSS), which was adopted as a
specification on May 11th 2001, is aligned with and validates the Component Collaboration
Architecture (CCA). This alignment was demonstrated as part of the ebXML “proof of
concept” on the same day. This alignment validates the use of CCA concepts to express
Business-to-Business processes in a precise (executable) manner. The United Nations and
Oasis jointly sponsor EbXML.

ad/2001-08-19 – UML for EDOC Part I

12 A UML Profile for Enterprise Distributed Object Computing – Chapter 1 September 17, 2001

3. Response to RFP Requirements

3.1 General Mandatory Requirements
The proposal addresses those mandatory General Requirements on Proposals (see UML
Profile for EDOC, OMG Document ad/99-03-10, section 5.1) which are relevant to it.
Specifically, the proposal:

• is precise and functionally complete, and has no implied or hidden interfaces,
operations, or functions required to enable an implementation of the proposed
specification (5.1.3);

• clearly distinguishes mandatory and optional specification elements (5.1.4);

• makes use of the existing UML specification and does not specify any changes or
heavyweight extensions to it (5.1.5 and 5.1.6);

• factors out into separate Chapters functions that can be used in different contexts
(5.1.7);

• preserves the implementation flexibility of the UML specification on which it is based
(5.1.11);

• does not impact the interoperability of independent UML implementations (5.1.12);

• has compatibility with the architecture for system distribution defined in ISO/IEC
10746, Reference Model of Open Distributed Processing (ODP) ([1], [2], [3]) as an
important objective: Section 3 of Chapter 2 describes how the concepts and profile
elements defined in Chapters 3, 4 and 5 can be used to develop a full set of
specifications of an EDOC system that takes as a framework the separation of concerns
as defined by RM-ODP viewpoints (see [3]) (5.1.13).

3.2 Specific Mandatory Requirements

3.2.1 Component Modeling

Components are modeled using the CCA profile (Chapter 3 Section 2). The following
characteristics are covered as described:

• Transactional characteristics: requirements for Transactional characteristics are
specified as characteristics of a Port (CCA profile (Chapter 3 Section 2)).

• Security characteristics and details of the security services employed (such as
authentication, authorization, message protection, data protection, security
logging, and non-repudiation): this submission provides no specific modeling
mechanisms for expressing security characteristics and details of the security services
employed.

• Persistence characteristics and details of interaction with persistent stores: CCA
Process Components (CCA profile (Chapter 3 Section 2)) may be specified as persistent
as can Identifiable Entities and Processes (Entities profile (Chapter 3 Section 3).

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 1 13

• Packaging and deployment characteristics: A ComposedComponent (CCA profile
(Chapter 3 Section 2)) can describe a logical package that is independently deployable.

Chapter 5 describes mappings to two widely used industry component model architectures,
EJB and FCM.

3.2.2 Modeling of Business Process, Entity, Rule, and Event
Objects

Business Processes are modeled using respectively, the BusinessProcess, CompoundTask
and Activity stereotypes (Business Process profile, (Chapter 3 Section 5)) for the enterprise
viewpoint and the Process Component stereotype (CCA, Chapter 3 Section 2), for the
computational viewpoint.

Business Entities are modeled in the computational and information viewpoints primarily
using the concepts defined in the Entities profile (Chapter 3 Section 3), particularly the
stereotype Entity. These are bound to instances of the ProcessRole stereotype from the
Business Process Profile in the enterprise viewpoint.

Business Rule objects may be modeled using either the Events profile (BusinessRule) or,
where they apply only to entities, the Entities profile (Rule). Selection and Creation Rules
for the binding of ProcessRoles are modeled in the Business Process Profile.

Events may be modeled using the BusinessEvent, EntityEvent or ProcessEvent stereotypes
from the Events Profile (for the computational viewpoint and, occasionally, for the
enterprise viewpoint).

3.2.3 Specification of Business Process Objects

The definition of Business Processes and associated Business Rules in the enterprise
specification (using the Business Process profile, (Chapter 3 Section 5)) provides a
definition of the constituent activities of those processes enacted by ProcessComponents
identified in the computational specification (using the CCA profile (Chapter 3 Section 2)).
The detailed specification of temporal and data dependencies between activities in a
Business Process is also defined in the Business Process Profile, while the initiation of
business process objects at runtime is provided by the computational specification using the
CCA profile. It is recognized that the specification of Business Process Objects may be
related to the OMG Workflow Management Facility.

The Entities profile provides the linkage between CCA, Entities and Processes (business
process objects). The process component is essentially a process object (containing other
components). The Process Profile describes specializations of Process Components and
their usages consistent with the OMG workflow specification. Business Processes can be
seen either as objects with interfaces to be invoked, or as containers for the context data of
a process and managers of the the activities whose execution ordering they define. The
activities in turn use other Process Components to do their work. The Process Profile can
be considered to be a particular process paradigm; there are others.

3.2.4 Specification of Relationships

This submission provides mechanisms for the specification of additional, specialized
relationship semantics beyond the base UML metamodel as follows:

ad/2001-08-19 – UML for EDOC Part I

14 A UML Profile for Enterprise Distributed Object Computing – Chapter 1 September 17, 2001

• Additional properties of relationships to specify constraints or operational
semantics: these are described in the Relationships profile (Chapter 3 Section 6).

• Classifications of relationships by their properties: these are described in the
Relationships profile (Chapter 3 Section 6).

• Derivation of pre and post conditions for create/read/update/delete (“CRUD”)
operations applied to participants in the relationships, based on the above
properties and classifications: these are described in the Entities profile (Chapter 3
Section 3), and are implemented using the Relationships profile (Chapter 3 Section 6)

3.2.5 Meta-Object Facility Alignment

This submission specifies a UML profile as defined in UML 1.4 and a set of MOF models
that are isomorphic to the profile. In addition, Chapter 6 defines a UML Profile for MOF,
which standardizes the way in which UML is used to represent MOF models. To date the
only standard printable representation of MOF models was defined by XMI. Not only are
all the MOF models which express the relationships between the EDOC modeling concepts
conformant to MOF 1.3, but they are also represented in diagrammatic form in this
submission using the UML Profile for MOF.

Each sub-profile of this submission expresses the relevant set of concepts of EDOC using
both a MOF model which has no dependencies on the UML metamodel, as well as a Profile
of UML which specializes UML modeling concepts to produce the EDOC semantics. In
addition the correspondences between the MOF metamodel elements and the Profile
package model elements is explained.

The provision of MOF models separate from but corresponding to the UML Profile has
many benefits:

• The EDOC concepts are complex and are not easily explained or understood using only
a UML Profile.

• The EDOC concepts, when explained using only MOF classes, attributes and
associations, form a relatively small set of model elements that are directly related to
one another, and may be easily depicted graphically without the need to expose derived
meta-associations and meta-attributes.

• The MOF models form a repository and model interchange basis for EDOC designs
which do not require tool vendors to implement the large part of UML which is being
profiled. In addition, the XMI generated from the MOF models will allow interchange
of EDOC designs which UML tools expressing EDOC designs in terms of stereotypes
and tagged values, will be incapable of exchanging using XMI for UML. (The UML
"Physical Metamodel" defines MOF meta-classes for exchanging Profiles, but not for
exchanging models that are conformant to a particular Profile.)

3.2.6 Proof of Concept of Profile

Examples of the use of the profiles are Provided in Part II of this submission.

3.2.7 Proof of Concept of Mappability

A set of non-normative mappings from the ECA Profile to various technologies, including
CORBA Workflow Management Facility, is provided in the Annexes, Part II of this
submission.

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 1 15

3.3 Optional Requirements
There are none.

3.4 Subset Integrity
There are no dependencies outside the specified subset of UML.

3.5 Simplification of and Aid to the Development Process
The primary sense in which use of the EDOC Profile simplifies and aids the development
process is that it meets the requirements of the RFP. As stated in the RFP, “successful
implementation of an enterprise computing system requires the operation of the system to
be directly related to the business processes it supports. A good object-oriented model for
an enterprise computing system must therefore provide a clear connection back to the
business processes and business domain that are the basis for the requirements of the
system. However, this model must also be carried forward into an effective implementation
architecture for the system. This is not trivial because of the demanding nature of the target
enterprise distributed computing environment.”1.

This submission provides a set of standard ways to use the UML to produce a set of linked
and traceable models of a software system, which are applicable to all phases of that
system’s lifecycle, including, but not limited to:

• the analysis phase when the roles played by the system’s components in the business it
supports are defined and related to the business requirements;

• the design and implementation phases, when detailed specifications for the system’s
components are developed;

• the maintenance phase, when, after implementation, the system’s behavior is modified
and tuned to meet the changing business environment in which it will work.

The use of such a standard set of modeling techniques will considerably aid the software
development process by:

• providing more rigorous linkages between the various development phases (concept,
elaboration, construction and transition);

• reducing variability in modeling techniques that lead to misunderstandings between
team members, and hence re-work;

• allowing more precise specification of software components and hence more
opportunity for re-use;

• allowing more precise specification of a system’s role in the business it supports,
thereby reducing user dissatisfaction and re-work.

3.6 Tool support
The EDOC Profile is entirely conformant with the UML metamodel, in that it makes no
heavyweight extensions to that metamodel. Thus, in theory, any tool that is fully compliant
with UML1.4 can implement the profile. However, not many tools fully implement the
UML1.4 metamodel. Therefore, the profile generally only uses the commonly used UML
constructs, and, provided the tool concerned implements the UML extensions mechanism

1 RFP p19 under the heading of “Enterprise Computing Systems”

ad/2001-08-19 – UML for EDOC Part I

16 A UML Profile for Enterprise Distributed Object Computing – Chapter 1 September 17, 2001

fully, there should be no difficulty in it supporting the metamodels incorporated in this
profile.

In addition the EDOC concepts represented by the Profile are modeled using MOF 1.3
metamodels, and may therefore form the basis for tools that are EDOC-specific, and do not
implement UML. The use of MOF conformant metamodels imply that a MOF IDL
repository, and XMI interchange DTD may be automatically generated from this
specification to assist tool vendors wishing to create EDOC-specific tools.

This profile also makes some recommendations about notation. Use of these
recommendations is optional but it would considerably enhance communication and
comprehension of EDOC models.

3.7 Alignment with Action Semantics for UML
The submitters’ view is that Action Semantics for UML describes what happens inside an
object, whereas the EDOC Profile provides a modeling framework for describing how
objects are used to implement enterprise systems.

4. Conformance Issues

4.1 Summary of optional versus mandatory interfaces
For a modeling tool to claim compliance to the EDOC specification it must implement at
least one of the mandatory compliance points in Section 4.2.1, and state the name of the
compliance point(s). The mandatory compliance points are all variations on the ability to
model or interchange designs using the Enterprise Component Architecture (ECA), which
forms the core of EDOC.

There are a number of other normative profiles and metamodels contained within this
specification, and these are given named optional compliance points in Section 4.2.2.

4.2 Proposed Compliance Points

4.2.1 Mandatory Compliance Points

At least one of the following compliance points must be implemented for a tool or model to
claim compliance with the EDOC specification:

Mandatory
Complianc
e Point
Name

MOF
Repository

MOF XMI
interchange

UML Profile UML Profile
XMI
interchange

ECA MOF
Repository

yes no no no

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 1 17

Mandatory
Complianc
e Point
Name

MOF
Repository

MOF XMI
interchange

UML Profile UML Profile
XMI
interchange

ECA MOF
XMI
Interchange

no yes no no

ECA MOF
Repository
and
Interchange

yes yes no no

ECA UML
Profile

no no yes no

ECA UML
XMI
Interchange

no no no yes

ECA UML
Profile and
Interchange

no no yes yes

Table 1: Mandatory Compliance Points

The columns in Table 1 are defined as follows:

4.2.1.1 MOF Repository

Any implementation of a CORBA server defined by generating and implementing the IDL
and its semantics, as defined in MOF 1.3 (formal/00-04-03), from MOF models defined in
the package "ECA" and all of its sub-packages.

4.2.1.2 MOF XMI interchange

Any implementation of a service that produces XML documents that conform to the XMI
DTD produced by applying the XMI 1.1 specification (formal/00-11-02) to the MOF
package "ECA" and all of its sub-packages.

4.2.1.3 UML Profile

Any tool or model that implements the Profile mechanisms defined in UML 1.4 (ad/01-02-
13), and which is populated with stereotypes, tagged values and constraints defined in the
ECA «profile» Package, and all of its sub-packages, and provides standard UML1.4
notation for such models.

4.2.1.4 UML Profile XMI interchange

Any tool or model which is capable of producing XML documents that comform to the
XMI DTD produced by applying the XMI 1.1 specification (formal/00-11-02) to the MOF
package UML Interchange metamodel, as defined in chapter 5 of UML 1.4 (ad/01-02-13),
and correctly encodes the stereotypes and tagged values defined in the ECA «profile»
Package, and all of its sub-packages.

ad/2001-08-19 – UML for EDOC Part I

18 A UML Profile for Enterprise Distributed Object Computing – Chapter 1 September 17, 2001

4.2.2 Optional Compliance Points

The submission has the following optional compliance points:

4.2.2.1 Patterns Profile

Any tool that implements the Profile mechanisms defined in UML 1.4 (ad/01-02-13), and
which is populated with stereotypes, tagged values and constraints defined in the
EDOC::Pattern «profile» Package, and all of its sub-packages.

4.2.2.2 Patterns Model

Or any tool that implements the semantics of the MOF metamodel EDOC::Pattern package
(Chapter 4), and allows access to patterns generated either by generated MOF 1.3
(formal/00-04-03) IDL interfaces or via XML documents produced via the application of
XMI 1.1 (formal/00-11-02) to the metamodel.

4.2.2.3 Java Model

Use of the normative Java metamodel (Chapter 5, section 1.1) by instantiation, code
generation, invocation, or serialization as defined by the MOF 1.3 (formal/00-04-03) and
XMI 1.1 (formal/00-11-02) specifications.

4.2.2.4 EJB Model

Use of the normative EJB metamodel (Chapter 5, Section 1.2) by instantiation, code
generation, invocation, or serialization as defined by the MOF 1.3 (formal/00-04-03) and
XMI 1.1 (formal/00-11-02) specifications.

4.2.2.5 FCM Model

Use of the normative FCM metamodel (Chapter 5, Section 2) by instantiation, code
generation, invocation, or serialization as defined by the MOF 1.3 (formal/00-04-03) and
XMI 1.1 (formal/00-11-02) specifications.

4.2.2.6 UML Profile for MOF

Any tool that implements the Profile mechanisms defined in UML 1.4 (ad/01-02-13), and
which is populated with stereotypes, tagged values and constraints defined in the uml2mof
«profile» Package (Chapter 6).

4.2.2.7 CCA Notation

Any tool or model which implements the CCA notation as specified in Chapter 2, Section
2.3.

4.2.2.8 Business Process Notation

Any tool or model which implements the business process notation as specified in Chapter
2, Section 5.4.

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 1 19

5. Changes or extensions required to adopted OMG
specifications

No changes of extensions to adopted OMG specifications are required for the adoption of
this submission.

6. Proof of Concept mappings

The proof of concept mappings can be found in Part II of this Submission.

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 2 21

Chapter 2: EDOC Profile – Rationale and Application

Table of Contents

1. Vision.. 22

2. The EDOC Profile Elements... 24
2.1 The Enterprise Collaboration Architecture .. 24

2.1.1 Component Collaboration Architecture.. 24
2.1.2 Entities profile .. 25
2.1.3 Events profile.. 26
2.1.4 Business Process profile ... 26
2.1.4 Relationships profile... 27

2.2 Patterns... 28
2.3 Technology Specific Models and Technology Mappings .. 30

3. Application of the EDOC Profile Elements .. 32
3.1 Separation of Concerns and Viewpoint Specifications .. 32
3.2 Enterprise Specification ... 34

3.2.1 Concepts ... 34
3.2.2 EDOC Enterprise Subprofile .. 35

3.3 Computational Specification .. 35
3.3.1 Concepts ... 35
3.3.2 EDOC Computational Specifications ... 36
3.3.3 Levels of ProcessComponent in a Computational Specification .. 36

3.4 Information Specification... 38
3.4.1 Concepts ... 38
3.4.2 EDOC Information Specifications.. 39

3.5 Engineering Specification .. 39
3.5.1 Concepts ... 39
3.5.2 EDOC Engineering Specifications ... 40

3.6 Technology Specification... 40
3.7 Specification Integrity - Interviewpoint Correspondences... 40

3.7.1 Computational-Enterprise Interrelationships .. 40
3.7.2 Computational-Information Interrelationships ... 40
3.7.3 Computational-Engineering Interrelationships... 41
3.7.4 Engineering-Technology Interrelationships ... 41

ad/2001-08-19 – UML for EDOC Part I

52 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

2. The Component Collaboration Architecture

The Component Collaboration Architecture (CCA) details how the UML concepts of
classes, collaborations and activity graphs can be used to model, at varying and mixed
levels of granularity, the structure and behavior of the components that comprise a
system.

2.1 Rationale

2.1.1 Problems to be solved

The information system has become the backbone of the modern enterprise. Within the
enterprise, business processes are instrumented with applications, workflow systems,
web portals and productivity tools that are necessary for the business to function.

While the enterprise has become more dependent on the information system the rate of
change in business has increased, making it imperative that the information system
keeps pace with and facilitates the changing needs of the enterprise.

Enterprise information systems are, by their very nature, large and complex. Many of
these systems have evolved over years in such a way that they are not well understood,
do not integrate and are fragile. The result is that the business may become dependent
on an information infrastructure that cannot evolve at the pace required to support
business goals.

The way in which to design, build, integrate and maintain information systems that are
flexible, reusable, resilient and scalable is now becoming well understood but not well
supported. The CCA is one of a number of the elements required to address these needs
by supporting a scalable and resilient architecture.

The following subsections detail some of the specific problems addressed by CCA.

2.1.1.1 Recursive decomposition and assembly

Information systems are, by their very nature, complex. The only viable way to manage
and isolate this complexity is to decompose these systems into simpler parts that work
together in well-defined ways and may evolve independently over time. These parts
can than be separately managed and understood. We must also avoid re-inventing parts
that have already been produced, by reusing knowledge and functionality whenever
practical.

The requirements to decompose and reuse are two aspects of the same problem. A
complex system may be decomposed “top down”, revealing the underlying parts.
However, systems will also be assembled from existing or bought-in parts – building up
from parts to larger systems.

Virtually every project involves both top-down decomposition in specification and
“bottom up” assembly of existing parts. Bringing together top-down specification and

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 53

bottom-up assembly is the challenge of information system engineering.

This pattern of combining decomposition in specification and assembly of parts in
implementation is repeated at many levels. The composition of parts at one level is the
part at the next level up. In today’s web-integrated world this pattern repeats up to the
global information system that is the Internet and extends down into the technology
components that make up a system infrastructure – such as operating systems,
communications, DBMS systems and desktop tools.

Having a rigorous and consistent way to understand and deal with this hierarchy of
parts and compositions, how they work and interact at each level and how one level
relates to the next, is absolutely necessary for achieve the business goals of a flexible
and scalable information systems.

2.1.1.2 Traceability

The development process not only extends “up and down” as described above, but also
evolves over time and at different levels of abstraction. The artifacts of the
development process at the beginning of a project may be general and “fuzzy”
requirements that, as the project progresses, become precisely defined either in terms of
formal requirements or the parts of the resulting system. Requirements at various stages
of the project result in designs, implementations and running systems (at least when
everything goes well!). Since parts evolve over time at multiple levels and at differing
rates it can become almost impossible to keep track of what happened and why.

Old approaches to this problem required locking-down each level of the process in a
“waterfall”. Such approaches would work in environments where everything is known,
well understood and stable. Unfortunately such environments seldom, if ever, occur in
reality. In most cases the system becomes understood as it evolves, the technology
changes, and new business requirements are introduced for good and valid reasons.
Change is reality.

Dealing with this dynamic environment while maintaining control requires that the parts
of the system and the artifacts of the development process be traceable both in terms of
cause-effect and of changes over time. Moreover, this traceability must take into
account the fact that changes happen at different rates with different parts of the system,
further complicating the relationships among them. The tools and techniques of the
development process must maintain and support this traceability.

2.1.1.3 Automating the development process

In the early days of any complex and specialized new technology, there are “gurus” able
to cope with it. However, as a technology progresses the ways to use it for common
needs becomes better understood and better supported. Eventually those things that
required the gurus can be done by “normal people” or at least as part of repeatable
“factory” processes. As the technology progresses, the gurus are needed to solve new
and harder problems – but not those already solved.

Software technology is undergoing this evolution. The initial advances in automated
software production came from compilers and languages, leading to DBMS systems,
spreadsheets, word processors, workflow systems and a host of other tools. The end-
user today is able to accomplish some things that would have challenged the gurus of 30
years ago.

ad/2001-08-19 – UML for EDOC Part I

54 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

This evolution in automation has not gone far enough. It is still common to re-invent
infrastructures, techniques and capabilities every time a new application is produced.
This is not only expensive, it makes the resulting solutions very specialized, and hard to
integrate and evolve.

Automation depends on the ability to abstract away from common features, services,
patterns and technology bindings so that application developers can focus on
application problems. In this way the ability to automate is coupled with the ability to
define abstract viewpoints of a system – some of which may be constant across the
entire system.

The challenge today is to take the advances in high-level modeling, design and
specification and use them to produce factory-like automation of enterprise systems.
We can use techniques that have been successful in the past, both in software and other
disciplines to automate the steps of going from design to deployment of enterprise scale
systems. Automating the development process at this level will embrace two central
concepts; reusable parts, and model-based development. It will allow tools to apply pre-
established implementation patterns to known modeling patterns. CCA defines one
such modeling pattern.

2.1.1.4 Loose coupling

Systems that are constructed from parts and must survive over time, and survive reuse
in multiple environments, present some special requirements. The way in which the
parts interact must be precisely understood so that they can work together, yet they must
also be loosely coupled so that each may evolve independently. These seemingly
contradictory goals depend on being able to describe what is important about how parts
interact while specifically not coupling that description to things that will change or
how the parts carry out their responsibility.

Software parts interact within the context of some agreement or contract – there must be
some common basis for communication. The richer the basis of communication the
richer the potential for interaction and collaboration. The technology of interaction is
generally taken care of by communications and middleware while the semantics of
interaction are better described by UML and the CCA.

So while the contract for interaction is required, factors such as implementation,
location and technology should be separately specified. This allows the contract of
interaction to survive the inevitable changes in requirements, technologies and systems.

Loose coupling is necessarily achieved by the capability of the systems to provide “late
binding” of interactions to implementation.

2.1.1.5 Technology Independence

A factor in loose coupling is technology independence i.e. the ability to separate the
high-level design of a part or a composition of parts from the technology choices that
realize it. Since technology is so transient and variations so prevalent it is common for
the same “logical” part to use different technologies over time and interact with
different technologies at the same time. Thus a key ingredient is the separation high-
level design from the technology that implements it. This separation is also key to the
goal of automated development.

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 55

2.1.1.6 Enabling a business component Marketplace

The demand to rapidly deploy and evolve large scale applications on the internet has
made brute force methods of producing applications a threat to the enterprise. Only by
being able to provision solutions quickly and integrate those solutions with existing
legacy applications can the enterprise hope to achieve new business initiatives in the
timeframe required to compete.

Component technologies have already been a success in desktop systems and user
interfaces. But this does not solve the enterprise problem. Recently the methods and
technologies for enterprise scale components have started to become available. These
include the “alphabet soup” of middleware such as XML, CORBA, Soap, Java, ebXml,
EJB & .net., What has not emerged is the way to bring these technologies together into
a coherent enterprise solution and component marketplace.

Our vision is one of a simple drag and drop environment for the assembly of
enterprise components that is integrated with and leverages a component
marketplace. This will make buying and using a software component as natural as
buying a battery for a flashlight.

2.1.1.7 Simplicity

A solution that encompasses all the other requirements but is too complex will not be
used. Thus our final requirement is one of simplicity. A CCA model must make sense
without too much theory or special knowledge, and must be tractable for those who
understand the domain, rather than the technology. It must support the construction of
simple tools and techniques that assist the developer by providing a simple yet powerful
paradigm. Simplicity needs to be defined in terms of the problem – how simply can the
paradigm so0lve my business problems. Simplistic infrastructure and tools that make it
hard to solve real problems are not viable.

2.1.2 Approach

Our approach to these requirements is to utilize the Unified Modeling Language (UML)
as a basis for an architecture of recursive decomposition and assembly of parts. CCA
profiles three UML diagrams and adds one optional diagram.

2.1.2.1 Class Structure (Structure)

The class structure is used to show the structure of ProcessComponents and the
information which flows between them.

2.1.2.2 Statecharts (Choreography)

Statecharts are used to specify the dynamic (or temporal) contract of protocols and
components, when messages should be sent or received on various ports. The
Choreography specifies the intended external behavior of a component, either by
specifying transitions directly on its ports or indirectly via it’a protocols.

ad/2001-08-19 – UML for EDOC Part I

56 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

2.1.2.3 Collaborations (Composition)

Collaborations are used to show the composition of a ProcessComponent (or
community) by using a set of other ProcessComponents, configuring them and
connecting them together.

2.1.2.4 CCA Notation (Structure & Composition)

CCA Also defines a notation which integrates the ProcessComponent structure and
composition.

2.1.3 Concepts

At the outset it should be made clear that we are dealing with a logical concept of
component - “part”, something that can be incorporated in a logical composition. It is
referred to in the CCA as a ProcessComponent. In some cases ProcessComponents will
correspond and have a mapping to physical components and/or deployment units in a
particular technology.

Since CCA, by its very nature, may be applied at many levels, it is intended that CCA
be further specialized, using the same mechanisms, for specific purposes such as
Business-2-Business, e-commerce, enterprise application integration (EAI), distributed
objects, real-time etc.

It is specifically intended that different kinds and granularities of ProcessComponents at
different levels will be joined by the recursive nature of the CCA. Thus
ProcessComponents describing a worldwide B2B business process can decompose into
application level ProcessComponents integrated across the enterprise which can
decompose into program level ProcessComponents within a single system. However,
this capability for recursive decomposition is not always required. Any
ProcessComponent’s part may be implemented directly in the technology of choice
without requiring decomposition into other ProcessComponents.

The CCA describes how ProcessComponents at a given level of specification
collaborate and how they are decomposed at the next lower level of specification.
Since the specification requirements at these various levels are not exactly the same, the
CCA is further specialized with profiles for each level. For example,
ProcessComponents exposed on the Internet will require features of security and
distribution, while more local ProcessComponents will only require a way to
communicate.

The recursive decomposition of ProcessComponents utilizes two constructs in parallel:
composition (using UML Collaboration) to show what ProcessComponents must be
assembled and how they are put together to achieve the goal, and choreography (the
UML Statechart) to show the coordination of activities to achieve a goal. The CCA
integrates these concepts of “what” and “when” at each level.

Concepts from the Object Oriented Role Analysis Method (OORAM) [31] and Real-
time Object Oriented Modeling (ROOM) [32] have been adapted and incorporated into
CCA.

2.1.3.1 What is a Component Anyway?

There are many kinds of components – software and otherwise. A component is simply

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 57

something capable of composing into a composition – or part of an assembly. There are
very different kinds of compositions and very different kinds of components. For every
kind of component there must be a corresponding kind of composition for it to assemble
into. Therefore any kind of component should be qualified as to the type of
composition. CCA does not claim to be “the” component model, it is “a” component
model with a corresponding composition model.

CCA ProcessComponents are processing components, ones that collaborate with other
CCA ProcessComponents within a CCA composition. CCA ProcessComponents can
be used to build other CCA ProcessComponents or to implement roles in a process –
such as a vendor in a buy-sell process. The CCA concepts of component and
composition are interdependent.

There are other forms of software and design components, including UML components,
EJBs, COM components, CORBA components, etc. CCA ProcessComponents and
composition are orthogonal to these concepts. A technology component, such as an
EJB may be the implementation platform for a CCA ProcessComponent.

Some forms of components and compositions allow components to be built from other
components, this is a recursive component architecture. CCA is such a recursive
component architecture.

2.1.3.2 ProcessComponent Libraries

While the CCA describes the mechanisms of composition it does not provide a
complete ProcessComponent library. ProcessComponent libraries may be defined and
extended for various domains. A ProcessComponent library is essential for CCA to
become useful without having to re-invent basic concepts.

2.1.3.3 Execution & Technology profiles

The CCA does not, in itself, specify sufficient detail to provide an executable system.
However, it is a specific goal of CCA that when a CCA specification is combined with
a specific infrastructure, executable primitive ProcessComponents and a technology
profile, it will be executable.

A technology profile describes how the CCA or a specialization of CCA can be realized
by a given technology set. For example, a technology profile for Java may enable Java
components to be composed and execute using dynamic execution and/or code
generation. A technology profile for CORBA may describe how CORBA components
can be composed to create new CORBA components and systems. In RM-ODP terms,
the technology profile represents the engineering and technology specifications.

Some technology profiles may require additional information in the specification to
execute as desired; this is generally done using tagged values in the specification and
options in the mapping. The way in which technology specific choices are combined
with a CCA specification is outside of the scope of the CCA, but within the scope of the
technology profile. For example, a Java mapping may provide a way to specify the
signatures of methods required for Java to implement a component.

The combination of the CCA with a technology profile provides for the automated
development of executable systems from high-level specifications.

For details of possible (non-normative)mappings from the CCA Profile to various
engineering and technology options, see Part II of this submission.

ad/2001-08-19 – UML for EDOC Part I

58 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

2.1.3.4 Specification Vs. Methodology

The CCA provides a way to specify a system in terms of a hierarchical structure of
Communities of ProcessComponents and Entities that, when combined with
specifications prepared using technology profiles, is sufficiently complete to execute.
Thus the CCA specification is the end-result of the analysis and design process. The
CCA does not specify the method by which this specification is achieved. Different
situations may require different methods. For example; a project involving the
integration of existing legacy systems will require a different method than one
involving the creation of a new real-time system – but both may share certain kinds of
specification.

2.1.3.5 Notation

The CCA defines some new notations to simplify the presentation of designs for the
user. These new notations are optional in that standard UML notation may be used
when such is preferred or CCA specific tooling is not available. The CCA notation can
be used to achieve greater simplicity and economy of expression.

2.1.4 Conceptual Framework

Document Model
(from CcaProfile)

Component Specification
(from CcaProfile)

Composition
(from CcaProfile)

Model
Management

(from CcaProfile)

Choreography
(from CcaProfile)

Figure 6: Structure and dependencies of the CCA Metamodel

2.1.4.1 ProcessComponent Specification

In keeping with the concept of encapsulation, the external “contract” of a CCA
component is separate from how that component is realized. The contract specifies the
“outside” of the component. Inside of a component is its realization – how it satisfies
its contract. The outside of the component is the component specification. A
component with only a specification is abstract, it is just the “outside” with no “inside”.

2.1.4.2 Protocols and Choreography

Part of a component’s specification is the set of protocols it implements. A protocol
specifies what messages the component sends and receives when it collaborates with
another component and the choreography of those messages – when they can be sent

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 59

and received. Each protocol the component supports is provided via a “port”, the
connection point between components.

Protocols, ports and choreography comprise the contract on the outside of the
component. Protocols are also used for large-grain interactions, such as for B2B
components.

The protocol specifies the conversation between two components (via their ports).
Each component that is using that protocol must use it from the perspective of the
“initiating role” or the “responding role”. Each of these components will use every port
in the protocol, but in complementary directions.

For example, a protocol “X” has a flow port “A” that initiates a message and a flow port
“B” that responds to a message. Component “Y” which responds to protocol “X” will
also receive “A” and initiate “B”. But, Component “Z” which initiates protocol “X” will
also initiate message “A” and respond to message “B” – thus initiating a protocol will
“invert” the directions of all ports in the protocol.

2.1.4.3 Primitive and Composed Components

Components may be abstract (having only an outside) or concrete (having an inside and
outside). Frequently a concrete component inherits its external contract from an
abstract component – implementing that component.

There may be any number of implementations for an ProcessComponent and various
ways to “bind” the correct implementation when a component is used.

The two basic kinds of concrete components are:

• primitive components – those that are built with programming languages or by
wrapping legacy systems.

• Composed Components – Components that are built from other components; these
use other components to implement the new components functionality. Composed
components are defined using a composition.

2.1.4.4 Composition

Compositions define how components are used. Inside of a composition components
are used, configured and connected. This connected set of component usages
implements the behavior of the composition in terms of these other components – which
may be primitive, composed or abstract components.

Compositions are used to build composed components out of other components and to
describe community processes – how a set of large grain components works together for
some purpose. Components used in a community process represent the roles of that
process.

Central to compositions are the connections between components, values for
configuration properties and the ability to bind concrete components to a component
usage.

ad/2001-08-19 – UML for EDOC Part I

60 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

2.1.4.5 Document & Information Model

The information that flows between components is described in a Document Model,
the structure of information exchanged. The document model also forms the basis for
information entities and a generic information model. The information model is acted
on by CCA ProcessComponents (see the Entities profile, Section 3, below).

2.1.4.6 Model Management

To help organize the elements of a CCA model a “package” structure is used exactly as
it is used in UML. Packages provide a hierarchical name space in which to define
components and component artifacts. Model elements that are specific to a process,
protocol or component may also be nested within these, since they also act as packages.

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 61

2.2 CCA Metamodel

DirectionType
- initiates
- responds

<<Enumeration>>

MultiPort
ProtocolPort

<<boundary>>

RespondingRole
- name : String

InitiatingRole
- name : String

Protocol

1
+uses

1

0..1

1

+responder
0..1

1

0..1

1+initiator

0..1

1

Transition
- preCondit ion : Status

PortActivityPortConnector

DataElement
(from DocumentModel)

FlowPort
<<boundary>>

0..1

n

+type 0..1

n

ProcessComponent
- granularity : GranularityKind
- isPersistent : Boolean = false
- primitiveKind : String = ""
- primitiveSpec : String

Composition

ContextualBinding

1

n

+owner1

+bindings
n

n
1

n
+bindsTo1

PropertyDefinition
- name : String
- initial : Expression
- isLocked : Boolean

1

n

+type1

n

0..1

0..n +typeProperty

0..1+constrains

0..n

1

n

+component 1

+properties n

ComponentUsage
name : String

n

1

n

+uses
1

Uses

n

1

+uses
n

+owner1

n

1

n

+fills
1

PropertyValue
- value : Expression

n

1

n

+fills
1

1

n

+owner

1

n

OperationPort
<<boundary>>

Connection PseudoState
- kind : PseudostateKind

Node
- name : StringAbstractTransition

n 1

+outgoing
n

+source

1

n 1

+incoming

n

+target

1

Choreography
nn

n

+connections

n

n

0..1

+subtypes

n

+supertype

0..1

CommunityProcess

Status
success
timeoutFailure
technicalFailure
businessFailure
anyFailure
anyStatus

<<Enumeration>>

PseudostateKind
choice
fork
initial
join
success
failure

<<Enumeration>>

Interface

PortOwner

Port
- name : String
- isSynchronous : Boolean
- isTransactional : Boolean
- direction : DirectionType
- postCondition : Status

<<boundary>>
n

1

+ports n

+owner1

UsageContext

PortUsage

1

n

+represents

1

n

1

n

+extent 1

+portsUsed

n

IsComposition

IsChoreography

GranularityKind
- program
- owned
- shared

<<Enumeration>>

Figure 7: CCA Major elements

Figure 7 above is a combined model of the major elements of the CCA component
specification defined below.

2.2.1 Structural Specification

The structural specification represents the physical structure of the component contract,
defining the component and its ports.

ad/2001-08-19 – UML for EDOC Part I

62 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

DirectionType
- initiates
- responds

<<Enumeration>>

Port
- name : String
- isSynchronous : Boolean
- isTransactional : Boolean
- direction : DirectionType
- postCondit ion : Status

<<boundary>>

PortOwner

n

1

+portsn

+owner 1

Ports

ProtocolPort
<<boundary>>

RespondingRole
- name : String

InitiatingRole
- name : String

Protocol

1

+uses

1

ProtocolType
0..1

1

+responder 0..1

1

0..1
1+initiator

0..1
1

DataElement
(from DocumentModel)

FlowPort
<<boundary>>

0..1

n

+type 0..1

n
FlowType

ProcessComponent
- granularity : GranularityKind
- isPersistent : Boolean = false
- primitiveKind : String = ""
- primitiveSpec : String

PropertyDefinition
- name : String
- initial : Expression
- isLocked : Boolean

1

n

+type1

n
PropertyType

0..1

0..n +typeProperty

0..1+constrains

0..n
DynType

1

n

+component 1

+properties n

Properties

MultiPort

Composition

Choreography

n
0..1

+subtypes
n

Generalization

+supertype
0..1

IsChoreography

OperationPort
<<boundary>>

Interface

UsageContext

IsComposition

GranularityKind
- program
- owned
- shared

<<Enumeration>>

Figure 8: Structural Specification Metamodel

A ProcessComponent represents the contract for a component that performs actions –
it “does something”. A ProcessComponent may define a set of Ports for interaction
with other ProcessComponents. The ProcessComponent defines the external contract of
the component in terms of ports and a Choreography of port activities (sending or
receiving messages or initiating sub-protocols). At a high level of abstraction a
ProcessComponent can represent a business partner, other ProcessComponents
represent business activities or finer-grain capabilities.

The contract of the ProcessComponent is realized via ports. A port defines a point of
interaction between ProcessComponents. The simpler form of port is the FlowPort,
which may produce or consume a single data type. More complex interactions
between components use a ProtocolPort, which refers to a Protocol, a complete
“conversation” between components. Protocols may also use other protocols as sub-
protocols. Protocols, like ProcessComponents, are defined in terms of the set of ports

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 63

they realize and the choreography of interactions across those ports. A protocol may
optionally define names for the initiating and responding roles.

ProcessComponents may have Property Definitions. A property definition defines a
configuration parameter of the component, which can be set, when the component is
used.

The behavior of a ProcessComponent may be further specified by its composition, the
composition shows how other components are used to define and implement the
composite component. The specification of the ProcessComponent and protocol may
include Choreography to sequence the actions of multiple ports and their associated
actions. The actions of each port may be Choreographed. Composition and
Choreography are defined in their own sections.

A ProcessComponent may have a supertype (derived from Choreography). One
common use of supertype is to place abstract ProcessComponents within compositions
and then produce separate realizations of those components as subtype composite or
primitive components, which can then be substituted for the abstract components when
the composition is used, or even at runtime.

An Interface represents a standard object interface. It may contain OperationPorts,
representing call-return semantics, and FlowPorts – representing one-way operations.

A MultiPort is a grouping of ports whose actions are tied together. Information must
be available on all sub-ports of the MultiPort for any action to occur within an attached
component.

An OperationPort defines a port which realizes a typical request/response operation
and allows ProcessComponents to represent both document oriented (FlowPort) and
method oriented (OperationPort) subsystems.

2.2.1.1 ProcessComponent

Semantics

A ProcessComponent represents an active processing unit – it does something. A
ProcessComponent may realize a set of Ports for interaction with other
ProcessComponents and it may be configured with properties.

Each ProcessComponent defines a set of ports for interaction with other
ProcessComponents and has a set of properties that are used to configure the
ProcessComponent when it is used.

The order in which actions of the Process Component’s ports do something may be
specified using Choreography. The choreography of a ProcessComponent specifies the
external temporal contact of the ProcessComponent (when it will do what) based on the
actions of its ports and the ports in protocols of its ports.

UML base element(s) in the Profile and Stereotype

Classifier Stereotyped as <<ProcessComponent>>

ad/2001-08-19 – UML for EDOC Part I

64 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

Fully Scoped name

ECA::CCA::ProcessComponent

Owned by

Package

Extends

Composition (indicating that the ProcessComponent may be composed of other
ProcessComponents and that its ports may be choreographed.)

Package (Indicating that a ProcessComponent may own the specification of other
elements)

UsageContext (Indicating that the ProcessComponent may be the context for
PortUsages representing the activities of its ports.).

Properties

Granularity

A GranularityKind which defines the scope in which the component operates. The
values may be:

• Program – the component is local to a program instance (default)

• Owned – the component is visible outside of the scope of a particular
program but dedicated to a particular task or session which controls its life
cycle.

• Shared – the component is generally visible to external entities via some
kind of distributed infrastructure.

Specializations of CCA may define additional granularity values.

UML Representation

Tagged value

isPersistent

Indicates that the component stores session specific state across interactions. The
mechanisms for management of sessions are defined outside of the scope of CCA.

UML Representation

Tagged value

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 65

primitiveKind

Components implementation includes additional implementation semantics defined
elsewhere, perhaps in an action language or programming language. If the
component has an implementation specification primitiveKind specifies the
implementation specific type, normally the name of a programming language. If
primitive kind is blank, the composition is the full specification of the components
implantation – the component is not primitive.

UML Representation

Tagged value

primitiveSpec

If primitiveKind has a value, primitiveSpec identifies the location of the
implementation. The syntax of primitiveKind is implementation specific.

UML Representation

Tagged value

Related elements

Ports (via “PortOwner”)

“Ports” is the set of Ports on the ProcessComponent. Each port provides a
connection point for interaction with other components or services and realizes a
specific protocol. The protocol may be simple and use a “FlowPort” or the protocol
may be complex and use a “ProtocolPort” or an “OperationPort”. If allowed by its
protocol, a port may send and receive information.

UML Representation

Required Aggregation Association from Port (Ports)

Supertype (zero or one) , Subtypes (any number)

A ProcessComponent may inherit specification elements (ports, properties & states
(from Choreography) from a supertype. That supertype must also be a
ProcessComponent. A subtype component is bound by the contract of its supertypes
but it may add elements, override property values and restrict referenced types.

A component may be substituted by a subtype of that component.

UML Representation

Generalization

ad/2001-08-19 – UML for EDOC Part I

66 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

Properties (Any number)

To make a component capable of being reused in a variety of conditions it is
necessary to be able to define and set properties of that component. Properties
represents the list of properties defined for this component.

UML Representation

Classifier.feature referencing an attribute.

Constraints

A process component may only inherit from another process component.

2.2.1.2 Port

Semantics

A port realizes a simple or complex conversation for a ProcessComponent or protocol.
All interactions with a ProcessComponent are done via one of its ports.

When a component is instantiated, each of its ports is instantiated as well, providing a
well-defined connection point for other components.

Each port is connected with collaborative components that speak the same protocol.
Multi-party conversions are defined by components using multiple ports, one for each
kind of party.

Business Example: Flight reservation Port

UML base element(s) in the Profile and Stereotype

Class (abstract)

Fully Scoped name

ECA::CCA::Port

Owned by

ProcessComponent or Protocol via PortOwner

Extends

None

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 67

Properties

isTransactional

Indicates that interactions with the component are transactional & atomic (in most
implementations this will require that a transaction be started on receipt of a
message). Non-transactional components either maintain no state or must execute
within a transactional component. The mechanisms for management of transactions
are defined outside of the scope of CCA.

UML Representation

Tagged Value

isSynchronous

A port may interact synchronously or asynchronously. A port that is marked as
synchronous is required to interact using synchronous messages and return values.

UML Representation

Tagged Value

name

The name of the port. The name will, by default, be the same as the name of the
protocol role or document type it realises.

UML Representation

ModelElement::name

Direction

Indicates that the port will either initiate or respond to the related type. An initiating
port will send the first message. Note that by using ProtocolPorts a port may be the
initiator of some protocols and the responder to others. The values of DirectionKind
may be:

Initiates – this port will initiate the conversation by sending the first message.

Responds – this port will respond to the initial message and (potentially) continue
the conversation.

UML Representation

Tagged Value and stereotype of “Owner” relation.

ad/2001-08-19 – UML for EDOC Part I

68 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

PostCondition

The status of the conversation indicated by the use of this port. This status may be
queried in the postCondition of a transition.

UML Representation

Tagged Value

Related elements

“Owner” ProcessComponent or Protocol (Exactly One via PortOwner)

A Port specifies the realization of protocol by a ProcessComponent. This relation
specifies the ProcessComponent that realizes the protocol.

UML Representation

Required aggregate association (Ports). This association will have a stereotype
of “initiates” or “responds” to indicate “direction”.

Constraints

None

2.2.1.3 FlowPort

Semantics

A Flow Port is a port which defines a data flow in or out of the port on behalf of the
owning component or protocol.

UML base element(s) in the Profile and Stereotype

Class stereotyped as <<FlowPort>>

Fully Scoped name

ECA::CCA::FlowPort

Owned by

PortOwner

Extends

Port

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 69

Properties

None

Related elements

type

The type of data element that may flow into our out of the port.

UML Representation

Required relation

TypeProperty

The type of information sent or received by this port as determined by a
configurable property. The expression must return a valid type name. This is used
to build generic components that may have the type of their ports configured. If
type and typeProperty are both set then the property expression must return the
name of a subtype of type.

UML Representation

Tagged value containing the name of the property attribute.

Constraints

None

2.2.1.4 ProtocolPort

Semantics

A protocol port is a port which defines the use of a protocol A protocol port is used for
potentially complex two-way interactions between components, such as is common in
B2B protocols. Since a protocol has two “roles” (the initiator and responder), the
direction is used to determine which role the protocol port is taking on.

UML base element(s) in the Profile and Stereotype

Class stereotyped as <<ProtocolPort>>

Fully Scoped name

ECA::CCA::ProtocolPort

ad/2001-08-19 – UML for EDOC Part I

70 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

Owned by

PortOwner

Extends

Port

Properties

None

Related elements

uses

The protocol to use, which becomes the specification of this port’s behavior.

UML Representation

Generalization – the ProtocolPort inherits the Protocol.

Constraints

None

2.2.1.5 OperationPort

Semantics

An operation port represents the typical call/return pattern of an operation. The
OperationPort is a PortOwner which is constrained to contain only flow ports, exactly
one of which must have its direction set to “initiates”. The other “responds” ports will
be the return values of the operation.

UML base element(s) in the Profile and Stereotype

Operation (no stereotype)

Note1: The type of the “initiates” flow port will be the signature of the operation. Each
attribute of the type will be one parameter of the operation.

Note2: Owned flow ports of postCondition==Success and direction==”responds” will
be a return value for the operation. All other flow ports where direction==”responds”
will correspond to an exception.

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 71

Fully Scoped name

ECA::CCA::OperationPort

Owned by

PortOwner (Protocol or ProcessComponent)

Extends

Port and PortOwner

Properties

None

Related elements

Ports (Via PortOwner)

The flow ports representing the call and returns.

UML Representation

Initiates ports – signature of the operation

Responds ports – return values of the operation.

Constraints

As a PortOwner, the OperationPort:

• May only contain FlowPorts

• Must contain exactly one flow port with direction set to "responds" (the call)

2.2.1.6 MultiPort

Semantics

A MultiPort combines a set of ports which are behaviourally related. Each port owned
by the MultiPort will “buffer” information sent to that port until all the ports within the
MultiPort have received data, at this time all the ports will send their data.

UML base element(s) in the Profile and Stereotype

Class stereotyped as <<MultiPort>>

ad/2001-08-19 – UML for EDOC Part I

72 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

Fully Scoped name

ECA::CCA::MultiPort

Owned by

PortOwner

Extends

Port & PortOwner

Properties

None

Related elements

Ports (Via PortOwner)

The flow ports owned by the MultiPort.

UML Representation

Required aggregation association

Constraints

Owned ports will not forward data until all sub-ports have received data.

2.2.1.7 Protocol

Semantics

A protocol defines a type of conversation between two parties, the initiator and
responder. One protocol role is the initiator of the conversation and the other the
responder. However, after the conversation has been initiated, individual messages and
sub-protocols may by initiated by either party. The ports of a protocol are specified with
respect to the responder.

Within the protocol are sub-ports . Each port contained by a protocol defines a sub-
action of that protocol until, ultimately, everything is defined in terms of FlowPorts.

A Protocol is also a choreography, indicating that activities of its ports (and, potentially
their sub-ports) may be sequenced using an activity graph.

A protocol must be used by two ProtocolPorts to become active.

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 73

The protocol specifies the conversation between two ProcessComponents (via their
ports). Each component that is using that protocol must use it from the perspective of
the “initiating role” or the “responding role”. Each of these components will use every
port in the protocol, but in complementary directions.

For example, a protocol “X” has a flow port “A” that initiates a message and a flow port
“B” that responds to a message. Component “Y” which responds to protocol “X” will
also receive “A” and initiate “B”. But, Component “Z” which initiates protocol “X” will
initiate message “A” and respond to message “B” – thus initiating a protocol will
“invert” the directions of all ports in the protocol.

UML base element(s) in the Profile and Stereotype

Class stereotyped as <<Protocol>>

Fully Scoped name

ECA::CCA::Protocol

Owned by

Package

Extends

Choreography – Indicating that the contract of the protocol includes a sequencing of the
port activities.

Package – Indicating that the protocol may contain the specification of other model
elements (Most probably other protocols or documents).

Properties

None

Related elements

Ports (Via PortOwner)

The ports which define the sub-actions of the protocol. For example, a “callReturn”
protocol may have a “call” FlowPort and a “return” FlowPort.

UML Representation

Required aggregate association

Initiator

The role which sends the first message in the protocol. Note that this is optional, in
which case the initiating role name will be “Initiator”.

ad/2001-08-19 – UML for EDOC Part I

74 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

UML Representation

Required relation

Responder

The role which receives the first message in the protocol. Note that this is optional,
in which case the responding role name will be “Responder”.

UML Representation

Required relation

Constraints

None

2.2.1.8 Interface

Semantics

An interface is a protocol constrained to match the capabilities of the typical object
interface. It is constrained to only contain OperationPorts and FlowPorts and all of its
ports must respond to the interaction (making interfaces one-way).

Each OperationPort or FlowPort in the Interface will map to a method. A ProtocolPort
which initiates the Interface will call the interface. A ProtocolPort which Responds will
implement the interface.

UML base element(s) in the Profile and Stereotype

Classifier (Usually Interface, but any classifier will do)

Fully Scoped name

ECA::CCA::Interface

Owned by

Package

Extends

Protocol

Properties

None

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 75

Related elements

Ports (Via Protocol & PortOwner)

The ports which define the sub-actions of the protocol. For example, a “callReturn”
protocol may have a “call” flowport and a “return” port.

Initiator (Via Protocol)

The role which calls the interface. Note that this is optional, in which case the
initiating role name will be “Initiator”. roles.

Responder (Via Protocol)

The role which implements the interface. Note that this is optional, in which case
the responding role name will be “Responder”.

Constraints

• The Ports related by the “Ports” association must;

• be of type OperationPort or FlowPort.

• have direction == ”responds”.

2.2.1.9 InitiatingRole

Semantics

The role of the protocol which will send the first message.

UML base element(s) in the Profile and Stereotype

Class stereotyped as <InitiatingRole>

Fully Scoped name

ECA::CCA::InitiatingRole

Owned by

Protocol

Extends

None

ad/2001-08-19 – UML for EDOC Part I

76 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

Properties

name

Role name

UML Representation

ModelElement::name

Related elements

Protocol

The protocol for which the role is being defined.

UML Representation

Required relation

Constraints

None

2.2.1.10 RespondingRole

Semantics

The role in the protocol which will receive the first message.

UML base element(s) in the Profile and Stereotype

Class stereotyped as <RespondingRole>

Fully Scoped name

ECA::CCA::RespondingRole

Owned by

Protocol

Extends

None

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 77

Properties

Name

UML Representation

ModelElement::name

Related elements

Protocol

The protocol for which the role is being defined.

UML Representation

Required relation

Constraints

None

2.2.1.11 PropertyDefinition

Semantics

To allow for greater flexibility and reuse, ProcessComponents may have properties
which may be set when the ProcessComponent is used. A PropertyDefinition defines
that such a property exists, its name and type.

UML base element(s) in the Profile and Stereotype

Attribute (No stereotype)

Fully Scoped name

ECA::CCA::PropertyDefinition

Owned by

ProcessComponent

Extends

None

ad/2001-08-19 – UML for EDOC Part I

78 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

Properties

name

Name of the property being modelled

UML Representation

ModelElement:name

initial

An expression indicating the initial & default value.

UML Representation

Attribute::initialValue

isLocked

The property may not be changed.

UML Representation

StructuralFeature::changeability

Related elements

component

The owning component

UML Representation

Classifier.feature referencing an attribute.

type

The type of the property

UML Representation

StructuralFeature::type

Constraints

If the “constrains” relation contains any links;

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 79

• The PropertyValue must contain the fully qualified name of a DataElement.

PortOwner

Semantics

An abstract meta-class used to group the meta-classes that may own ports: Process
component, Protocol, OperationPort and MultiPort.

UML base element(s) in the Profile and Stereotype

None (Abstract)

Fully Scoped name

ECA::CCA::PortOwner

Owned by

None

Extends

None

Related elements

ports

The owned ports

UML Representation

Required relation

Constraints

None

ad/2001-08-19 – UML for EDOC Part I

80 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

2.2.2 Choreography

A Choreography uses
transitions to order
usages of ports.

Status
- success
- timeoutFailure
- technicalFailure
- businessFailure
- anyFailure
- anyStatus

<<Enumeration>>

PseudoState
- kind : PseudostateKind

Transition
- preCondit ion : Status

PortActivity

Connection

PseudostateKind
- choice
- fork
- initial
- join
- success
- failure

<<Enumeration>>

UsageContext

Port
- name : String
- isSynchronous : Boolean
- isTransactional : Boolean
- direction : Direct ionType
- postCondition : Status

<<boundary>>

PortUsage

1

n

+extent
1

+portsUsed
n

PortUsages

1

n

+represents

1

n
Represents

Node
- name : String

AbstractTransition

n
1

+outgoing
n

+source

1

Source
n1

+incoming
n

+target

1

Target

Choreography

n
+nodes

n

Nodes

n +connectionsn

Connections

n

0..1

+subtypes
n Generalization

+supertype

0..1

Figure 9: Choreography Metamodel

A Choreography specifies how messages will flow between PortUsages. The
choreography may be externally oriented, specifying the contract a component will
have with other components or, it may be internally oriented, specifying the flow of
messages within a composition. External chirographies are shown as an activity

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 81

graph while internal choreography is shown as part of a collaboration. An external
choreography may be defined for a protocol or a ProcessComponent.

A Choreography uses Connections and transitions to order port messages as a
state machine. Each “node” in the choreography must refer to a state or a port
usage.

Choreography is an abstract capability that is inherited by ProcessComponents and
protocols.

Initial, interim and terminating states are known as a “PseudoState” as defined in
UML. CCA adds the pseudo states for success and failure end-states.

Ordering is controlled by connections between nodes (state and port usage being a
kind of node). Transitions specify flow of control that will occur if the conditions
(Precondition) are met. Transitions between port activities specify what should
happen (contractually), while Connections between PortConnections specify what
will happen at runtime.

2.2.2.1 Choreography

Semantics

An abstract class inherited by protocol and ProcessComponent which owns nodes and
AbstractTransitions. A choreography specifies the ordering of port activities.

UML base element(s) in the Profile and Stereotype

Choreography - State Machine stereotyped as <<choreography>>: (context references
classifier)

Fully Scoped name

ECA::CCA::Choreography

Owned by

None

Extends

None

Properties

None

ad/2001-08-19 – UML for EDOC Part I

82 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

Related elements

Nodes

The states and port usages to be choreographed.

UML Representation

PseudoState - StateMachine.top

PortActivity ::SubmachineState

AbstractTransitions

The connections and transitions between nodes.

UML Representation

Transition: StateMachine:transition

Connection: Collaboration::AssociationRole

Supertype (zero or one) , Subtypes (any number)

A ProcessComponent, protocol or CommunityProcess may inherit specification
elements (ports, properties & states (from Choreography) from a supertype. That
supertype must also be a ProcessComponent. A subtype component is bound by the
contract of its supertypes but it may add elements, override property values and
restrict referenced types.

A component may be substituted by a subtype.

Constraints: The subtype-supertype relation may only exist between elements of the
same meta-type. A ProcessComponent may only inherit from another
ProcessComponent. A Protocol may only inherit from another Protocol and a
CommunityProcess may only inherit from another CommunityProcess.

UML Representation

Generalization of classifier related by context.

2.2.2.2 Node

Semantics

Node is an abstract element that specifies something that can be the source and/or target
of a connection or transition and thus ordered within the choreographed process. The
nodes that do “real work” are PortUsages.

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 83

UML base element(s) in the Profile and Stereotype

None (abstract)

Fully Scoped name

ECA::CCA::Node

Owned by

Choreography

Extends

None

Properties

name

UML Representation

ModelElement:name

Related elements

Choreography

The owning protocol or ProcessComponent.

UML Representation

See Choreogrphy

Incoming

Transitions that cause this node to become active.

UML Representation

Transition: State:incoming

Connection: AssociationEndRole

outgoing

Nodes that may become active after this node completes.

ad/2001-08-19 – UML for EDOC Part I

84 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

UML Representation

State: outgoing

Connection: AssociationEndRole

Constraints

None

2.2.2.3 AbstractTransition

Semantics

The flow of data and/or control between two nodes.

UML base element(s) in the Profile and Stereotype

None - abstract

Fully Scoped name

ECA::CCA::AbstractTransition

Owned by

Choreography

Extends

None

Properties

None

Related elements

Choreography

The owning choreography.

UML Representation

See Choreography

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 85

Source

The node which is transferring control and/or data.

UML Representation

Connection: AssociationEndRole

Transition: Transition:source

Target

The node to which data and/or control will be transferred.

UML Representation

Connection: AssociationEndRole

Transition: Transition:target

Constraints

The source and target nodes associated with the AbstractTransition must be owned by
the same choreography as the AbstractTransition.

2.2.2.4 Transition

Semantics

The contractual specification that the related nodes will activate based on the ordering
imposed by the set of transitions between nodes. Transitions, which declare a contract
may be differentiated from Connections which realise a contract.

UML base element(s) in the Profile and Stereotype

Transition (No Stereotype)

Fully Scoped name

ECA::CCA::Transition

Owned by

Choreography

Extends

AbstractTransition

ad/2001-08-19 – UML for EDOC Part I

86 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

Properties

preCondition

A constraint on the transition such that it may only fire if the prior PortUsage
terminated with the referenced condition.

UML Representation

Transition:guard

Related elements

Choreography (Via AbstractTransition)

The owning choreography.

UML Representation

See Choreography

Source

The node which is transferring control and/or data.

UML Representation

Transition: Transition:source

Target

The node to which data and/or control will be transferred.

UML Representation

Transition: Transition:target

Constraints

A transition may not connect PortConnectors.

2.2.2.5 PortUsage

Semantics

The usage of a port as part of a choreography.

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 87

UML base element(s) in the Profile and Stereotype

None (Abstract)

Fully Scoped name

ECA::CCA::PortUsage

Owned by

Choreography

Extends

Node & Usage Context

Properties

None

Related elements

extent

The component, component usage or PortUsage to which the PortUsage is attached.

If the extent is a ComponentUsage the PortUsage must be a PortConnector for a port
of the underlying ProcessComponent. This allows Connections between
components being used within a composition.

If the extent is a PortUsage the PortUsage must represent a ProtocolPort which owns
the represented usage. This allows the choreography of nested ports.

If the extent is a ProcessComponent the usage represents a port on the
ProcessComponent and that ProcessComponent must be the composition owning
both the port and the port usage. This allows Connections and transitions to be
connected to the external ports of a component.

UML Representation

State machine: Owner of state machine

Collaboration: Association Role

Represents

The port which the PortUsage uses.

ad/2001-08-19 – UML for EDOC Part I

88 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

UML Representation

State machine: tagged value

Collaboration: ClassifierRole::base

Constraints

None

2.2.2.6 UsageContext

Semantics

When a port is used within a choreography it must be used within some context.
UsageContext represents an abstract supertype of all elements that may be the context
of a port. These are;

• ProcessComponent – as the owner of port activities and port connectors.

• ComponentUsage – as the owner of port connectors, representing the use of
each of the component’s ports.

• PortUsages – representing ports nested via protocols.

UML base element(s) in the Profile and Stereotype

None (abstract)

Fully Scoped name

ECA::CCA::UsageContext

Owned by

None

Extends

None

Properties

None

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 89

Related elements

PortsUsed

Provides context for port usage

UML Representation

State machine: owned states

Collaboration: AssociationRole

Constraints

None

2.2.2.7 PortActivity

Semantics

Port activity is state, part of the “contract” of a ProcessComponent or protocol,
specifying the activation of a port such the ordering of port activities can be
choreographed with transitions. A PortActivity (used with transitions) defines the
contract of the component while a PortConnector (used with Connections) specifies the
realisation of a component’s actions in terms of other components.

UML base element(s) in the Profile and Stereotype

CompositeState Stereotyped as <<PortActivity>>

Fully Scoped name

ECA::CCA::PortActivity

Owned by

Protocol or ProcessComponent via Choreography

Extends

PortUsage

Properties

None

ad/2001-08-19 – UML for EDOC Part I

90 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

Related elements

None

Constraints

Port Activities may only be connected using transitions.

2.2.2.8 PseudoState

Semantics

PseudoState specifies starting, ending or intermediate states in the choreography of the
contract of a protocol or ProcessComponent.

UML base element(s) in the Profile and Stereotype

Depending on value of kind:

• Success – FinalState Stereotyped as <<success>>

• Failure – FinalState Stereotyped as <<failure>>

• All Others - PseudoState (no stereotype) with kind set to same value.

Fully Scoped name

ECA::CCA::PseudoState

Owned by

Choreography

Extends

Node

Properties

Kind ; PseudostateKind

choice Splits an incoming transition into several disjoint outgoing transition. Each
outgoing transition has a guard condition that is evaluated after prior actions on the
incoming path have been completed. At least one outgoing transition must be
enabled or the model is ill-formed.

fork Splits an incoming transition into several concurrent outgoing transitions. All
the transitions fire together.

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 91

initial The default target of a transition to the enclosing composite state.

join Merges transitions from concurrent regions into a single outgoing transition.
Join PseudoState will proceed after all its incoming Transition have triggered.

success The end-state indicating that the choreography ended in success.

failure The end-state indicating that the choreography ended in failure.

Related elements

None

Constraints

PseudoStates may only be connected using transitions.

2.2.3 Composition

Composition is an abstract capability that is used for ProcessComponents and for
community processes. Compositions shows how a set of components can be used to
define and perhaps to implement a process.

ad/2001-08-19 – UML for EDOC Part I

92 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

PortConnector

Connection

Dependencies
are informative,
not normative.

UsageContext

Port
- name : String
- isSynchronous : Boolean
- isTransactional : Boolean
- direction : DirectionType
- postCondit ion : Status

PortUsage

1

n

+extent1

+portsUsedn

PortUsages

1

n

+represents
1

n

Represents

ContextualBinding

Composit ion owns

1

n

+owner 1

+bindings n

Bindings

ProcessComponent

1

n

+bindsTo
1

n BindsTo

creates

ComponentUsage
name : String

1

n

+fills 1

n

Fills

1

n

+owner

1

+uses
n

ComponentUsages

creates

1

n +uses

1

n

Uses

PropertyValue
- value : Expression

n

1

+configurationn

+owner1

PropertyDefinition
- name : String
- initial : Expression
- isLocked : Boolean

n

1

n

+fills 1

ValueFor

CommunityProcess

AbstractTransitionChoreography
n

+connect ions

n

Connections

IsChoreography

n
0..1

+subtypes
n

Generalization

+supertype
0..1

connects

IsComposition

Figure 10: Composition metamodel

A composition contains ComponentUsages to show how other ProcessComponents
may be used to define the composite. Note that the same ProcessComponent may be
used multiple times for different purposes. Each time a ProcessComponent is used,
each of its ports will also be used with a “PortConnector”. A port connector shows the
connection point for each use of that component within the composition, including the
ports on the component being defined.

Attached to a ProcessComponent usage are PropertyValues, configuring the
ProcessComponent with properties that have been defined in property definitions.

A composition also contains a set of “Connections”. A connectionjoins compatible
ports on ProcessComponents together to define a flow of data. The other side will

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 93

receive anything sent out of one side. So a Connection is a form of logical event
registration (one-way registration for a flow port or Operation port, two-way
registration for a ProtocolPort).

A Contextual Binding allows realized ProcessComponents to be substituted for
abstract ProcessComponents when a composition is used.

Compositions may be ProcessComponents or CommunityProcesses.
CommunityProcess define a top-level process in terms of the roles played by process
components representing actors in the process.

2.2.3.1 Composition

Semantics

Composition is an abstract class for CommunityProcesses or ProcessComponents.
Compositions describe how instances of ProcessComponents (called
ComponentUsages) are configured (with PropertyValues and ContextualBindings) and
connected (with Connections) to implement the composed ProcessComponent or
CommunityProcess.

UML base element(s) in the Profile and Stereotype

Collaboration (with represented classifier being the ProcessComponent or
CommnityProcess being defined) – stereotyped as <<Composition>>

Fully Scoped name

ECA::CCA::Compsition

Owned by

None

Extends

Choreography

Properties

None

Related elements

bindings

ContextualBindings defined within the context of the composition.

ad/2001-08-19 – UML for EDOC Part I

94 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

UML Representation

ModelElement::clientDependency

uses

ComponentUsages defined within the context of the composition.

UML Representation

Collaboration:: (Owned ClassifierRoles)

Connection (via choreography and AbstractTransition)

The flow of data and control between port connectors.

UML Representation

Collaboration:: ownedElement (Owned AssociationRoles)

PortConnector (via Choreography and nodes)

The port instances to be connected by Connections.

UML Representation

Collaboration:: (Owned ClassifierRoles)

Constraints

None

2.2.3.2 ComponentUsage

Semantics

A composition uses other ProcessComponents to define the process of the composition
(a community process or ProcessComponent), “ComponentUsage” represents such a
use of a component. The “uses” relation references the kind of component being used.
Component Usage is part of the “inside” of a composed component.

The composition can be thought of as a template of ProcessComponent instances. Each
component instance will have a “ComponentUsage” to say what kind of
ProcessComponent it is, what its property values are and how it is connected to other
ProcessComponents. A ComponentUsage will cause a ProcessComponent instance to
be created at runtime (this instantiation may be real or virtual).

Each use of a ProcessComponent will carry with it a set of “portConnectors” which will
be the connection points to other ProcessComponents.

ad/2001-08-19

ECA::CCA::ComponentUsage

– UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 95

UML base element(s) in the Profile and Stereotype

ClassifierRole Stereotyped as “ComponentUsage”

Fully Scoped name

Owned by

Composition

Extends

UsageContext

Properties

Name

The name of the activity for which the component is being used.

UML Representation

ModelElement::name

Related elements

owner

The owning composition

UML Representation

ClassifierRole::(owning collaboration)

Uses

The type of ProcessComponent to use.

UML Representation

ClassifierRole::base

PortsUsed (Via UsageContext)

PortConnectors for each port on the used component.

ad/2001-08-19 – UML for EDOC Part I

96 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

UML Representation

AssociationRole

Constraints

None

2.2.3.3 PortConnector

Semantics

The PortConnector provides a “connection point” for ComponentUsages within a
composition and exposes the defined ports within the composition. The connections
between PortConnectors are made with Connections.

PortConnections are “implied” by other model elements and will normally be created by
design tools. PortConnections should be created as follows:

• For each ComponentUsage there will be exactly one PortUsage for each port
defined for the ProcessComponent being used.

• For each port on the ProcessComponent being defined there will be exactly one
PortUsage to support Connections to and from “outside” ports.

• For each port within a protocol, OperationPort or MultiPort created for one of the
above two reasons, a PortConnector may be created for each contained port. This
allows Connections to be connected to finer grain elements, such as Connections
within a protocol.

In summary, the “ProcessComponent” / “Port” pattern which defines the components
external interface is essentially replicated in the “ComponentUsage” / “portConnector”
part of the composition. Each time a component is used, each of its ports is used as
well. Sub-ports of protocols also become PortConnectors.

UML base element(s) in the Profile and Stereotype

ClassifierRole stereotyped as PortConnector

Fully Scoped name

ECA::CCA::PortConnector

Owned by

Composition

Extends

PortUsage

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 97

Properties

None

Related elements

Represents (via PortUsage)

The port of which this is a port.

Contexts (via PortUsage)

The associated owner of the port.

Incoming and Outgoing Connections (Via PortUsage and Node)

The Connections.

Constraints

PortConnectors are intended to be connected with Connections, Transitions may not be
connected to a PortConnector

2.2.3.4 Connection

Semantics

A Connection connects two PortConnectors within a composition. Each port can
produce and/or consume message events. The connection logically registers each port
connector as a listener to the other, effectively making them collaborators.

A component only declares that given ports will produce or consume given messages, it
doesn’t not know “who” will be on the other side. The composition shows how a
ProcessComponent will be used within a context and thus how it will be connected to
other components within that context. A Connection connects exactly two
PortConnectors.

Connections may be distinguished from transitions in that Connections specify what
events will flow between ProcessComponents while transitions specify the contract of
port ordering.

UML base element(s) in the Profile and Stereotype

AssociationRole optionally stereotyped as <<Connection>>

Note: A Connection to a port contained by an interface will be represented by an
operation, not a classifier. In this case the association role is directed to the
ProtocolPort realising the interface and a message attached with a call action
referencing the operation in question.

ad/2001-08-19 – UML for EDOC Part I

98 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

Fully Scoped name

ECA::CCA::Connection

Owned by

Composition

Extends

AbstractTransition

Properties

None

Related elements

Source and Target PortConnectors (Via PortUsage, Node &
AbstractTransition)

The PortConnectors between which the Connection is being defined.

Constraints

• The source and target nodes of a Connection must be PortConnectors.

• The source and target nodes must be port connectors owned by the same
composition as the Connection.

2.2.3.5 PropertyValue

Semantics

To be useful in a variety of conditions, a ProcessComponent may have configuration
properties –which are defined by a PropertyDefinition. When the component is used in
a ComponentUsage those properties values may be set using a PropertyValue. These
values will be used to construct or configure a component instance.

A PropertyValue should be included whenever the default property value is not correct
in the given context.

UML base element(s) in the Profile and Stereotype

Constraint stereotyped as <PropertyValue>

Fully Scoped name

ECA::CCA::PropertyValue

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 99

Owned by

ComponentUsage

Extends

None

Properties

value

An expression for the value of the property.

UML Representation

Constraint::body

Related elements

Owner

The component usage being configured with a value.

UML Representation

ModelElement::namespace

Fills

The property being modified.

UML Representation

Constraint:constrainedElement referencing an attribute of <Owner>.

Constraints

• “fills” must relate to a property definition of the ProcessComponent that the owner
uses.

• The type returned by the PropertyValue expression must be compatible with the
type defined by the PropertyDefinition.

ad/2001-08-19 – UML for EDOC Part I

100 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

2.2.3.6 ContextualBinding

Semantics

A composition is able to use abstract ProcessComponents in compositions – we call
these abstract compositions. The use of an abstract composition implies that at some
point a concrete component will be bound to that composition. That binding may be
done at runtime or when the composition is used as a component in another
composition.

For example, a composed “Pricing” component may use an abstract component
“PriceFormula”. In our “InternationalSales” composition we may want to say that
“PriceFormula” uses “InternationalPricing”.

Contextual Binding allows the substitution of a more concrete ProcessComponent for a
compatible abstract ProcessComponent when an abstract composed ProcessComponent
is used. So within the composition that uses the abstract component (International
Sales) we say the use of a particular Component (use of PriceFormula) will be bound to
a concrete component (InternationalPricing). These semantics correspond with the
three relations out of ContextualBinding.

Note that other forms of binding may be used, including runtime binding. But these are
out of scope for CCA. Some specializations of CCA may subtype ContextualBinding
and apply selection formula to the binding, as is common in workflow systems.

An abstract composition may also be thought of as a pattern, with contextual binding
being the parameter substitution.

UML base element(s) in the Profile and Stereotype

Binding stereotyped as <ContextualBinding>

Fully Scoped name

ECA::CCA::ContextualBinding

Owned by

Composition

Extends

None

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 101

Properties

None

Related elements

owner

The composition which is using the abstract composed component and wants to bind
a more specific ProcessComponent for an abstract one. The owner of the
ContextualBinding.

UML Representation

ModelElement::namespace

fills

The ComponentUsage which should have the ProcessComponent it uses replaced.
This component usage does not have to be within the same composition as the
contextual binding, it may be anywhere the component usage occurs visible from
the scope of the composition owning the binding.

UML Representation

Binding::client

bindsTo

The concrete component which will be bound to the component usage.

UML Representation

Binding::supplier

Constraints

The ProcessComponent related to by “bindsTo” must be a subtype of the component
used by the component usage related to by “fills”.

2.2.3.7 CommunityProcess

Semantics

Community processes may be thought of as the “top level composition” in a CCA
specification, it is a specification of a composition of ProcessComponents that work
together for some purpose other than specifying another ProcessComponent.

ad/2001-08-19 – UML for EDOC Part I

102 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

One kind of CommunityProcess would be a business process, in which case the nested
components represent business partner roles in that process. For example, a community
process could define the usage of a buyer, a seller, a freight forwarder and two banks
for a sale and delivery process.

Note that designs can be done “top down” or as an assembly of existing
ProcessComponents (bottom up). When design is being done top down, it is usually the
CommunityProcess which comes first and then ProcessComponents specified to fill the
roles of that process.

CommunityProcesses are also useful for standards bodies to specify the roles and
interactions of a B2B process.

UML base element(s) in the Profile and Stereotype

Subsystem stereotyped as <<CommunityProcess>> with a Composition

Fully Scoped name

ECA::CCA::CommunityProcess

Owned by

Package

Extends

Composition and Package

Properties

None

Related elements

None

Constraints

None

2.2.4 Document Model

The document model defines the information that can be transferred between and
manipulated by ProcessComponents. It also forms the base for information in entities.

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 103

DataType

Enumeration
Value

name : String

Emumeration

n
+values
n

+enumeration

1+ini tial 1

DataInvariant
expression : String
onCommit : Boolean

DataE lement1

n +constrainedElement

1+constraints
n

Attribute
byValue : B oolean
required : Boolean
many : Boolean
ini tialValue : E xpression

1

n

+type1

n

CompositeData

n

1
+feature

n+owner

1

n

0..1

+subtypesn

+supertype

0..1

ExternalDocument
mimeType : String
specURL : String
externalName : String

Figure 11: Document Metamodel

A data element represents a type of data which may either be primitive DataTypes
or composite. CompositeData has named attributes which reference other types.
Any type may have a DataInvariant expression.

Attributes may be isByValue, which are strongly contained or may simply reference
other data elements provided by some external service. Attributes may also be
marked as required and/or many to indicate cardinality. DataTypes define local
data – these types are defined outside of CCA. ExternalDocument defines a
document defined in an external type system. An enumeration defines a type with
a fixed set of values

2.2.4.1 DataElement

Semantics

DataElement is the abstract supertype of all data types. It defines some kind of
information.

UML base element(s) in the Profile and Stereotype

Classifier (no stereotype)

Fully Scoped name

ECA::DocumentModel::DataElement

ad/2001-08-19 – UML for EDOC Part I

104 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

Owned by

Package

Extends

PackageContent

Properties

None

Related elements

constraints

Constraints applied to the values of this data type.

Constraints

None

2.2.4.2 DataType

Semantics

A primitive data type, such as an integer, string, picture, movie…

Primitive data types may have their structure and semantics defined outside of CCA.
The following data types are defined for all specializations of CCA: String, Integer,
Float, Decimal, Boolean.

UML base element(s) in the Profile and Stereotype

DataType (no stereotype)

Fully Scoped name

ECA::DocumentModel::DataType

Owned by

Package

Extends

DataElement

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 105

Properties

None

Related elements

None

Constraints

None

2.2.4.3 Enumeration

Semantics

An enumeration defines a type that may have a fixed set of values.

UML base element(s) in the Profile and Stereotype

Corresponds to User defined enumeration stereotypes of UML DataType.

Fully Scoped name

ECA::Documentmodel::Enumeration

Owned by

Package

Extends

DataElement

Properties

None

Related elements

Values

The set of values the enumeration may have.

ad/2001-08-19 – UML for EDOC Part I

106 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

UML Representation

ModelElement::namespace

Initial

The initial, or default, value of the enumeration.

UML Representation

Tagged value

Constraints

None

2.2.4.4 EnumerationValue

Semantics

A possible value of an enumeration.

UML base element(s) in the Profile and Stereotype

The values of User defined enumeration stereotypes of UML DataType.

Fully Scoped name

ECA::DOCUMENTMODEL::EnumerationValue

Owned by

Enumeration

Extends

None

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 107

Properties

name

Related elements

Enumeration

The owning enumeration.

UML Representation

ModelElement:namespace

Constraints

None

2.2.4.5 CompositeData

Semantics

A datatype composed of other types in the form of attributes.

UML base element(s) in the Profile and Stereotype

Class Stereotyped as <<CompositeData>>

Fully Scoped name

ECA::DocumentModel::CompositreData

Owned by

Package

ad/2001-08-19 – UML for EDOC Part I

108 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

Extend

DataElements

Properties

None

Related elements

Feature

The attributes which form the composite.

UML Representation

Classifier.feature

Supertype

A type from which this type is specialized. The composite will include all
attributes of all supertypes as attributes of itself.

Subtypes

The types derived from this type.Constraints

UML Representation

Generalization

2.2.4.6 Attribute

Semantics

Defines one “slot” of a composite type that may be filled by a data element of
“type”.

UML base element(s) in the Profile and Stereotype

Attribute (No stereotype)

Fully Scoped name

ECA::DOCUMENTMODEL::Attribute

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 109

Owned by

CompositeData

Extends

None

Properties

isByValue

Indicates that the composite data is stored within the composite as opposed to
referenced by the composite.

UML Representation

Stand-alone Tagged Value to apply to UML Attribute (a Stereotype of Attrbute
is not created to hold this TaggedValue :

required

Indicates that the attribute slot must have a value for the composite to be valid.

UML Representation

StructuralFeature::multiplicity

many

Indicates that there may be multiple occurrences of values. These values are
always ordered.

UML Representation

StructuralFeature::multiplicity

initialValue

An expression returning the initial value of the attribute.

UML Representation

Attribute::initialValue

ad/2001-08-19 – UML for EDOC Part I

110 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

Related elements

type

The type of information which the attribute may hold. Type instances may also
be filled by a subtype.

UML Representation

StructuralFeature::type

owner

The composite of which this is an attribute.

UML Representation

ModelElement::namespace

Constraints

None

2.2.4.7 DataInvariant

Semantics

A constraint on the legal values of a data element.

UML base element(s) in the Profile and Stereotype

Constraint

Fully Scoped name

ECA::DOCUMENTMODEL::DataInvarient

Owned by

DataElement

Extends

None

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 111

Properties

Expression

The expression which must return true for the data element to be valid.

UML Representation

Constraint::body

isOnCommit (Default: False)

True indicates that the constraint only applies to a fully formed data element, not
to one under construction.

UML Representation

Tagged Value

Related elements

ConstrainedElement

The data element that will be constrained.

UML Representation

Constraint::constrainedElement

2.2.4.8 ExternalDocument

Semantics

A large, self contained document defined in an external type systems such as XML,
Cobol or Java that may or may not map to the ECA document model.

UML base element(s) in the Profile and Stereotype

DataType Stereotyped as <<ExternalDocument>>

Fully Scoped name

ECA::DOCUMENTMODEL::ExternalDocument

Owned by

Package

ad/2001-08-19 – UML for EDOC Part I

112 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

Extends

DataElement

Properties

All properties are tagged values

MimeType

The type of the document specified as a string compatible with the “mime”
declarations.

SpecURL

A reference to an external document definition compatible with the mimiType, such
as a DTD or Schema. If the MimeType does not define a specification form (E.G.
GIF) then this attribute will be blank.

ExternalName

The name of the document within the SpecURL. For example, an element name
within a DTD. If the MimeType does not define a specification form (E.G. GIF) or
the specification form only specifies one document then this attribute will be blank.

Related elements

None

Constraints

None

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 113

2.2.5 Model Management

Model management defines how CCA models are structured and organized. It directly
maps to its UML counterparts and is only included as an ownership anchor for the other
elements.

ProcessComponent

granularity : String = "Program"
isPersistent : Boolean = false
primitiveKind : String = ""
primitiveSpec : String

(from CCA)

DataElement
(from Docum entModel)

Package

Pack ageContent
name : String

n

1

+ownedElements

n

+namespace
1

ElementImport

1

n

+modelElement

1

+elem ent Im port
n

CommunityProcess
(from CCA)

Composition
(from CCA)

Protocol
(from CCA)

Figure 12: Model Management Metamodel

A package defines a logical hierarchy of reusable model elements. Elements that
may be defined in a package are PackageContent and may be ProcessComponents,
Protocols, DataElements, CommunityProcesses and other packages. A
ImportedElement defines a “shortcut” visibility of a package content in a package
that is not its owner. Shortcuts are useful to organize reusable elements from
different perspectives.

Note that ProcessComponents are also packages, allowing elements which are
specific to that component to be defined within the scope of that component.

ad/2001-08-19 – UML for EDOC Part I

114 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

2.2.5.1 Package

Semantics

Defines a structural container for “top level” model elements that may be referenced by
name for other model elements.

UML base element(s) in the Profile and Stereotype

Package

Fully Scoped name

ECA::ModelManagement::Package

Owned by

Package or model (global scope)

Extends

PackageContent

Properties

None

Related elements

OwnedElements

The model elements within the package and visible from outside of the package.

UML Representation

Namespace::OwnedElement

Constraints

None

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 115

2.2.5.2 PackageContent

Semantics

An abstract capability that represents an element that may be placed in a package and
thus referenced by name from any other element.

UML base element(s) in the Profile and Stereotype

ModelElement

Fully Scoped name

ECA::ModelManagement::

Owned by

Package

Extends

None

Properties

name

UML Representation

ModelElement::name

Related elements

namespace

UML Representation

ModelElement::namespace

Constraints

ad/2001-08-19 – UML for EDOC Part I

116 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

2.2.5.3 ElementImport

Semantics

Defines an “Alias” for one element within another package.

UML base element(s) in the Profile and Stereotype

ElementImport (No Stereotype)

Fully Scoped name

ECA::ModelManagement::ElementImport

Owned by

Package

Extends

PackageContent

Properties

None

Related elements

ModelElement

The element to be imported.

Constraints

None

2.3 CCA Notation
CCA uses UML notation with a few extensions and conventions to make diagrams
more readable and compact for CCA aware tools. The UML mapping shown how CCA
is expressed in the UML Metamodel which has standard notation. Unless stated
otherwise, all other UML elements use the base UML 1.4 notation. The following are
additions this base UML 1.4 notation.

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 117

2.3.1 CCA Specification Notation

A ProcessComponent is based on the notation for a subsystem with extensions for ports
and properties. Consider the following diagram template for ProcessComponent
notation.

Component

Property Type

Responder Initiator

Value

t

Receives Sends

Figure 13: ProcessComponent specification notation

Component t

Property Type Value

SendsReceives

 Initiator

SendsX
ReceivesY

ReceivesZ

 Responder

ReceivesA
SendsB

SendsC

Figure 14: ProcessComponent specification notation (expanded ProtocolPorts)

• A ProcessComponent represents its external contract as a subsystems with the
following addition:

• The ProcessComponent type may be represented as an icon in the component name
compartment. “t” above.

• Ports are represented as going through the boundary of the box. The port is itself a
smaller rectangle with the name of the port inside the rectangle.. In the above,
“Receives”, “Sends”, “Responder” and “Initiator” are all ports. The type of the port
is not represented in the diagram.

• Flow ports are represented as an arrow going through a box. Flow ports that send
have the arrow pointing out of the box while flow ports that receive (Receives) have
an arrow pointing into the box. A sender has the background and text color
inverted.

• Protocol ports and Operation ports are boxes extending out of the component.
Protocol ports representing an initiator have the colors of their background and text

ad/2001-08-19 – UML for EDOC Part I

118 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

reversed. In the above, “Initiator” is a protocol port of an initiator and “Responder”
is a protocol port that is not an initiator. ProtocolPorts may show nested, the Ports of
the used Protocol.

• Multiports are shown as a shaded box grouping the set of ports it contains.

• Property Definitions are in a separate compartment listing the property name, type
and default value (if any). The name, type and value are separated by lines. Each
property is on a separate line.

2.3.2 Composite Component Notation

A composite is shown as a ProcessComponent with the composition in the center. The
composition is a new notation but may also be rendered with a UML collaboration.

Component

Responder Initiator

t

Receives

Property Type Value

Sends

 Figure 15: Composite Component notation (without internal ComponentUsages)

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 119

Component t

Initiator

Sends

Responder

Receives

Usage 1 t

Property Type Value

SendsReceives

Usage 2 t

Property Type Value

Responder Initiator

Property Type Value

 Figure 16: Composite Component notation

• The ports on the composite component being defined are shown in the same way as
they are on a ProcessComponent, but in this case represent the port connector.

• A component usage is shown as a smaller version of a ProcessComponent inside
the composite component. Note Usage (1..2) are component usages.

• Port connectos are shown in the same fashion as ports, on component usages. The
ports on Usage 1..2 are all port usages.

• Connectors are shown as lines between port usages or port proxies. All the lines in
the above are connectors.

• Property values may be shown on component usages (in the same way as the
property definition), or may be suppressed.

2.3.3 Community Process Notation

A community process is shown in the same way as a composite component with the
exception that a community process has no external ports.

ad/2001-08-19 – UML for EDOC Part I

120 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

BuySellProcess

Buyer t

Buy

Seller t

Sell

Figure 17: CommunityProcess notation

In the above example “BuySellProcess” is a community process with component usage
for “Buyer” and “Seller” which are connected via their “buy” and “sell” ports,
respectively.

2.4 UML Profile
The CCA profile specifies how CCA concepts relate to and are represented in standard
UML using stereotypes, tagged values and constraints. This allows off-the-shelf UML
tools to represent CCA and interchange CCA models.

The CCA profile is organized as a single package which corresponds to the ECA::CCA
package in the logical model and the CCA <<profile>> package. In addition there is a
package for the document model which is used by CCA.

2.4.1 Tables mapping concepts to profile elements

The following tables provide a summary of the CCA elements as stereotypes and tagged
values. These stereotypes and tagged values may be used in standard UML models, and
represented in standard UML diagrams (See 2.5“Diagramming CCA” for an example).

Metamodel
element name

Stereotype name UML
base Class

Parent Tags Constraints

ProcessComponent ProcessComponent Classifier N/A granularity
isPersistent
primitiveKind
primitiveSpec

Port Port Class N/A isSynchronous
isTransactional
direction
postCondition

FlowPort FlowPort Class Port typeProperty

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 121

Metamodel
element name

Stereotype name UML
base Class

Parent Tags Constraints

ProtocolPort ProtocolPort Class Port uses
MultiPort MultiPort Class Port
OperationPort N/A Operation Port
Protocol Protocol Class N/A
Interface N/A Classifier N/A
InitiatingRole InitiatingRole Class N/A
RespondingRole InitiatingRole Class N/A
PropertyDefinition PropertyDefinition Attribute N/A
«enumeration»
DirectionKind

DirectionKind Enumeration

«enumeration»
GranularityKind

GranularityKind Enumeration N/A

Direction (value) initiates Association N/A
Direction (value) responds Association N/A

Table 2: Stereotypes for Structural Specification (UML notation: Class Diagram)

primitiveKind primitiveKind String 0..1
primitiveSpec primitiveSpec String 0..1
isPersistent isPersistent Boolean 1 default=false
isSynchronous isSynchronous

Port
 and
specializations:
 ProtocolPort or
 FlowPort or
 MultiPort or
 OperationPort

Boolean 1 default=false

isTransactional isTransactional Boolean 1 default=false
direction direction «enumeration»

DirectionKind
1

postCondition postCondition «enumeration»
Status

0..1

typeProperty typeProperty FlowPort Attribute 0..1 Reference a
PropertyDefinition of
the owner
ProcessComponent.

Metamodel Tag Stereotype Type Mul Dgranularity granularity ProcessComponent «enumeration»
GranularityKind

0..1
attribute name

tiplicity escription

Table 3: TaggedValues for Structural Specification

Pseudostate Success FinalState N/A
Pseudostate Failure FinalState N/A
«enumeration»
Status

Status Enumeration

Metamodel Stereotype nam UML Base Class Pare T CChoreography Choreography StateMachine or

N/A

PortActivity PortActivity CompositeState N/A represents
Transition N/A (UML element) Transition N/A
Pseudostate N/A (UML element) or

Success or Failure
Pseudostate N/A

element name
e nt ags onstraints

ad/2001-08-19 – UML for EDOC Part I

122 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

Table 4: Stereotypes for Choreography (UML notation: Statechart Diagram)

Metamodel
attribute
name

Tag Stereotype Type Multi
plicity

Description

represents represents PortActivity Class,
constrained to
«ProtocolPort» or
«FlowPort» or
«MultiPort» or
«OperationPort»

1

Table 5: TaggedValues for Choreography

Metamodel element
name

Stereotype name UML Base Class Parent Tags Constr
aints

Composition Composition Collaboration N/A
ComponentUsage ComponentUsage ClassifierRole N/A
PortConnector PortConnector ClassifierRole N/A
Connection Connection AssociationRole N/A
PropertyValue PropertyValue Constraint N/A
ContextualBinding ContextualBinding Binding N/A
CommunityProcess CommunityProcess Subsystem N/A

Table 6: Stereotypes for Composition (UML notation: Collaboration Diagram at specification level)

Metamodel
attribute
name

Tag Stereotype Type Multi
plicity

Description

represents represents PortConnector Class,
constrained to
«ProtocolPort» or
«FlowPort» or
«MultiPort»

1

Table 7: TaggedValues for Composition

Metamodel
element name

Stereotype name UML Base Class Parent Tags Constraints

CompositeData CompositeData Class N/A
ExternalDocument ExternalDocument DataType N/A
DataInvariant DataInvariant Constraint N/A
DataType N/A (UML) DataType N/A
Enumeration N/A (UML) Enumeration N/A
Attribute N/A (UML) Attribute N/A

Table 8: Stereotypes for DocumentModel (UML notation: Class Diagram)

Metamodel
attribute
name

Tag Stereotype Type Multi
plicit
y

Description

isOnCommit isOnCommit DataInvariant Boolean 1
isByValue isByValue N/A 1 Apply to Attribute of

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 123

Metamodel
attribute
name

Tag Stereotype Type Multi
plicit
y

Description

«CompositeData»
mimeType mimeType ExternalDocument String 0..1
specURL specURL String 0..1
externalName externalName String 0..1

Table 9: TaggedValues for DocumentModel

2.4.2 Introduction

The UML Profile for CCA accesses a number of UML Packages. The CCA
<<profile>> extends these packages with CCA stereotypes & semantics.

Core
(from Foundation)

<<metamodel>>

CCA
(from ECA)

<<profile>>

State_Machines
(from Behavioral_Elements)

<<metamodel>>
Collaborations

(from Behavioral_Elements)

<<metamodel>>

Data_Types
(from Foundation)

<<metamodel>>

Model_Management
(from Logical View)

<<metamodel>>

<<access>> <<access>> <<access>>
<<access>> <<access>>

Figure 18: UML«metamodel» and CCA «profile»Packages

Each CCA stereotype extends a specific UML model element as shown below.

ad/2001-08-19 – UML for EDOC Part I

124 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

Subsystem
(from Model_Management)
+ isInstantiable : Boolean

ProcessComponent
<<taggedValue>> + granularity : String [0..1]
<<taggedValue>> + isPersistent : Boolean = false
<<taggedValue>> + primitiveKind : String
<<taggedValue>> + primitiveSpec : String

<<stereotype>>
PropertyDefinition

<<taggedValue>> + isLocked : Boolean

<<stereotype>>

Attribute
(from Core)

<<metaclass>>

DirectionKind
+ Initiates
+ Responds

<<Enumeration>>

MultiPort
<<stereotype>>

Port
<<taggedValue>> + isSynchronous : Boolean = false
<<taggedValue>> + isTransactional : Boolean = false
<<taggedValue>> + direction : DirectionKind = Initiates
<<taggedValue>> + postCondition [0..1] : Status

<<stereotype>>

FlowPort
<<stereotype>>

Class
(from Core)

<<metaclass>>

ProtocolPort
<<stereotype>>

Protocol
<<taggedValue>> + initiatingRoleName : String
<<taggedValue>> + respondingRoleName : String
+ /port [0..n] : Class

<<stereotype>>

Operation
(from Core)

<<metaclass>>

InitiatingRole
<<stereotype>>

RespondingRole
<<stereotype>>

Signal
(from Common_Behavior)

<<metaclass>>

<<stereotype>>

<<stereotype>>

Classifier
(from Core)

<<metaclass>>

<<stereotype>>

Parameter
(from Core)

<<metaclass>>

1

n

+type1

+typedParameter
n

typeProperty [0..1]
<<taggedValue>>

<<stereotype>><<stereotype>><<stereotype>>

uses [1]
<<taggedValue>>

<<stereotype>>

PortActivity
<<taggedValue>> + represents [1] : Port

<<stereotype>>
Choreography

<<stereotype>>
Pseudostate

(from State_Machines)

<<metaclass>>
FinalState

(from State_Machines)

<<metaclass>>

Status
+ Success
+ BusinessFailure
+ TimeoutFailure
+ TechnicalFailure
+ AnyFailure
+ AnyStatus

<<enumeration>>
CompositeState

(from State_Machines)

<<metaclass>>
Transition

(from State_Machines)

<<metaclass>>
StateMachine

(from State_Machines)

<<metaclass>>
n0..1

+transitions

n

+stateMachine

0..1

<<stereotype>> <<stereotype>>

ClassifierRole
(from Collaborations)

<<metaclass>>

ComponentUsage
<<stereotype>>

PortConnector
<<stereotype>>

Connection
<<stereotype>>

ContextualBinding
<<stereotype>>

AssociationRole
(from Collaborations)

<<metaclass>>
Binding

(from Core)

<<metaclass>>

PropertyValue
<<stereotype>>

Constraint
(from Core)

<<metaclass>>
Collaboration

(from Collaborations)

<<metaclass>>

Composition
<<stereotype>>

CommunityProcess
<<stereotype>>

Class
(from Core)

<<metaclass>>

<<stereotype>> <<stereotype>> <<stereotype>>
<<stereotype>>

<<stereotype>>
<<stereotype>> represents [1..1]

<<taggedValue>>

CompositeData
<<stereotype>>

Class
(from Core)

<<metaclass>>

DataInvariant
+ isOnCommit : Boolean = false

<<stereotype>>

Constraint
(from Core)

<<metaclass>>

ExternalDocument
<<taggedValue>> + mimeType : String
<<taggedValue>> + specURL : String
<<taggedValue>> + externalName : String

<<stereotype>>

<<stereotype>>

<<stereotype>><<stereotype>>

Figure 19: Stereotypes in the UML Profile for CCA

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 125

2.4.3 Stereotypes for Structural Specification

ProcessComponent
<<stereotype>>

<<taggedValue>> + granularity : String [0..1]
<<taggedValue>> + isPersistent : Boolean = false
<<taggedValue>> + primitiveKind : String
<<taggedValue>> + primitiveSpec : String

PropertyDefinition
<<stereotype>>

<<taggedValue>> + isLocked : Boolean

Attribute
(from Core)

<<metaclass>>

DirectionKind
<<Enumeration>>

+ Initiates
+ Responds

MultiPort
<<stereotype>>

Port
<<stereotype>>

<<taggedValue>> + isSynchronous : Boolean = false
<<taggedValue>> + isTransactional : Boolean = false
<<taggedValue>> + direction : DirectionKind = Initiates
<<taggedValue>> + postCondition [0..1] : Status

FlowPort
<<stereotype>>

Class
(from Core)

<<metaclass>>

<<stereotype>> <<stereotype>>

ProtocolPort
<<stereotype>>

<<stereotype>>

Protocol
<<stereotype>>

<<taggedValue>> + initiatingRoleName : String
<<taggedValue>> + respondingRoleName : String
+ /port [0..n] : Class

uses [1]
<<taggedValue>>

<<stereotype>>

Operation
(from Core)

<<metaclass>>

InitiatingRole
<<stereotype>>

RespondingRole
<<stereotype>>

<<stereotype>>

typeProperty [0..1]
<<taggedValue>>

<<stereotype>>

Signal
(from Common_Behavior)

<<metaclass>>
Classifier

(from Core)

<<metaclass>>
Parameter
(from Core)

<<metaclass>>

1

n

+type1

+typedParameter
n

<<stereotype>>

Figure 20: Stereotypes for Structural Specification

Applicable Subset

Classifier, Class, Attribute

2.4.3.1 «ProcessComponent»

Inheritance
Foundation::Core::Classifier
 «ProcessComponent»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

ad/2001-08-19 – UML for EDOC Part I

126 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

Relationships3

Relationship Role(s)

Ports owner

Generalization supertype subtypes {only with
«ProcessComponent»}

Properties component

Uses owner

ComponentUsages owner

Bindings owner

Bindings bindsTo

Connections _connections

Nodes _nodes

PortUsages extent

Is_A_Choreography is_specialization

Is_A_Composition is_ specialization

PackageElements owner ownerElements

ImportElement modelElement elementImport

Correspondence of metamodel attributes with UML attributes

Metamode
l attribute
name

UML attribute
name

UML attribute
owner

Description

name name ModelElement

Tagged Values

Tagged Value name Type Multiplicity Description

granularity String 0..1

primitiveKind String 0..1

primitiveSpec String 0..1

isPersistent Boolean 1 default=false

3 The “Relationships” header references the relationships in which the Model Element participates, and the name of
the role in the relationship. The section "Relationships", see 2.4.8 below, includes the specifications for these
relationships, and their mapping between metamodel and UML representation.

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 127

Constraints expressed generically

The set of all the «Port» of a «ProcessComponent» is the set of «Port» or its
specializations, that are aggregated in the «ProcessComponent».

The supertype of a «ProcessComponent» must be a «ProcessComponent».

Formal Constraints Expressed in Terms of the UML Metamodel
context ProcessComponent

inv:
 supertype->isEmpty() or

supertype.isStereoKinded("ProcessComponent")

def:
 -- the Ports in the ProcessComponent :
 -- composed in the ProcessComponent

 let ports : Set(Class) =
 (association->select(anAssociationEnd : AssociationEnd |
 anAssociationEnd.aggregationKind = ak_composite)
 ->association->connection – association)
 ->participant
 ->select(aClassifier : Classifier|
 anElement.isStereoKinded(«Port»))

Diagram Notation

N/A

2.4.3.2 «Port»

Inheritance
Foundation::Core::Class
 «Port»

Instantiation in a model

Abstract

Semantics

Corresponds to the element of same name in the metamodel.

The «Port» stereotype has been introduced for clarity and brevity, defining in a
common ancestor, the taggedValues corresponding to attributes of Port in the
metamodel, and reused along the stereotypes specialization of «Port» : «FlowPort»,
«ProtocolPort», «MultiPort» and «OperationPort».

ad/2001-08-19 – UML for EDOC Part I

128 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

Relationships

Relationship Role(s)

Ports ports
Represents represents

Correspondence of metamodel attributes with UML attributes

Metamodel attribute
name

UML attribute
name

UML attribute
owner

Descriptio
n

name name ModelElement

Tagged Values

Tagged Value
name

Type Multiplicity Description

isSynchronous Boolean 1 default=false

isTransactional Boolean 1 default=false

direction DirectionKind 1

postCondition «enumeration» Status 0..1

Constraints expressed generically

A «Port» must be aggregated into a «Protocol» or a «ProcessComponent», or a
«MultiPort».

Note that the metamodel Interface corresponds in the UML Profile to a UML Classifier
which may or may not by a UML Interface, and that the metamodel OperationPort
corresponds to a UML Operation. However, UML Interface is the recommended model
element to use. Although in the metamodel both Interface and OperationPort may
contain other Port, in the UML Profile these, and their relationships are directly
supported by UML. Neither Interface or OperationPort appear in the constraint below,
as candidate owners for «Port». This allows arbitrary UML classifiers (of any kind) to
be used with CCA. Only the operations of these classifiers will correspond to CCA
elements.

The relationship between the Port and the PortOwner shall have the stereotype
<<initiates>> or the stereotype <<responds>> which shall have the same value as
“direction”.

Formal Constraints Expressed in Terms of the UML Metamodel
context Port

inv:
 aggregatedOwner->notEmpty()

inv:
 ownerAggregation.isStereoKinded("initiates") implies
 direction = "Initiates"

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 129

inv:
 ownerAggregation.isStereoKinded("responds") implies
 direction = "Responds"

def:
 -- the owner of the Port
 let aggregatedOwner : Class = ownerAggregation.participant

def:
 let ownerAggregation : Class =
 (association->association->connection – association)->
 select(anAssociationEnd : AssociationEnd |
 anAssociationEnd.aggregationKind = ak_composite)
 ->select(anAssocRole : AssociationRole|
 anAssocRole->participant.isStereoKinded(«Protocol») or
 anAssocRole->participant.isStereoKinded(

«ProcessComponent») or
 anAssocRole->participant..isStereoKinded(

«MultiPort»))
 ->any(true)

 Diagram Notation

N/A

2.4.3.3 «FlowPort»

Inheritance
Foundation::Core::Class
 ECA::CCA::ComponentSpecification::«Port»
 «FlowPort»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

Relationship Role(s)

FlowType _type

TypeProperty constrains

ad/2001-08-19 – UML for EDOC Part I

130 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

Tagged Values

Tagged
Value name

Type Multiplicit
y

Description

typeProperty Attribute 0..1 Refer to a «PropertyDefinition» of the owner
«ProcessComponent». When the
«ProcessComponent» is used as a
«ComponentUsage», the value held by the
«PropertyValue» in the «ComponentUsage»
will be interpreted as the actual type of the
«FlowPort», for its specific «PortUsage» in
the «ComponentUsage».

Constraints expressed generically

The «FlowPort» must reference as its type a DataType, Enumeration, «CompositeData»
or «ExternalDocument» or their specializations.

The typeProperty of «FlowPort», if is specified, it must reference an Attribute
stereotyped as «PropertyDefinition», owned by the same «ProcessComponent» that
owns the «FlowPort». If the initialValue of the «ProperyDefinition» is set, then the
value must be the name of a DataElement, Enumeration, «CompositeData» or
«ExternalDocument».

Formal Constraints Expressed in Terms of the UML Metamodel
context FlowPort

inv:
 type->notEmpty()

inv:
 typeProperty->isEmpty() or (
 typeProperty.owner = this.aggregatedOwner)

def:
 let type : Classifier =
 (association->association->connection - association)-

>participant
 ->select(aClassifier : Classifier|
 anElement.isOclKindOf(DataElement) or
 anElement.isOclKindOf(Enumeration) or
 anElement.isStereoKinded(«CompositeData») or
 anElement.isStereoKinded(«ExternalDocument»))

Diagram Notation

N/A

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 131

2.4.3.4 «ProtocolPort»

Inheritance
Foundation::Core::Class
 ECA::CCA::ComponentSpecification::«Port»
 «ProtocolPort»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

Relationship Role(s)

ProtocolType _uses

Tagged Values

N/A

Constraints expressed generically

A «ProtocolPort» must reference a «Protocol», or its specializations, through a
Generalization Relationship, with the «Protocol» as the parent.

Formal Constraints Expressed in Terms of the UML Metamodel
context ProtocolPort
inv:
 generalization->notEmpty() and
 generalization.parent->select(aGeneralizable :

GeneralizableElement |
 aGeneralizable.isStereoKinded("Protocol"))
 ->notEmpty()

Diagram Notation

N/A

ad/2001-08-19 – UML for EDOC Part I

132 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

2.4.3.5 «MultiPort»

Inheritance
Foundation::Core::Class
 ECA::CCA::ComponentSpecification::«Port»
 «MultiPort»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

Relationship Role(s)

Ports owner

Tagged Values

N/A

Constraints expressed generically

All the «Port» aggregated by the «MultiPort», must be «FlowPort» or its
specializations.

Formal Constraints Expressed in Terms of the UML Metamodel

context MultiPort

inv:
 ports->forAll(aClass : Class |

aClass.isStereoKinded("FlowPort"))

def:
 let ports : Set(Class) =
 (association->select(anAssociationEnd : AssociationEnd |
 anAssociationEnd.aggregationKind = ak_composite)
 ->association->connection – association)
 ->participant
 ->select(aClassifier : Classifier|
 anElement.isStereoKinded(«Port»))

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 133

Diagram Notation

N/A

2.4.3.6 UML Operation represents OperationPort

Semantics

The concept of OperationPort in the metamodel, is represented by a standard UML
operation.

The OperationPort is constrained to contain only FlowPorts.

The signature, of the UML Operation representing an OperationPort, is derived from
the type of the one and only FlowPort of the OperationPort, with direction="initiates".
For each Attribute of the FlowPort, the UML Operation will have an input Parameter
with type equal to the type of the Attribute in the FlowPort.

For each ownedFlowPort with direction="responds" and postCondition="Success",
then the UML Operation will have return Parameters with same type as the type of the
FlowPort.

All other FlowPort in the OperationPort with direction="responds", correspond to
raisedException Signal of the UML Operation. The structure of the Signal is derived
from the FlowPort type : the Signal will have Attribute with same name and type of the
Attribute of the type of the FlowPort.

Relationships

 N/A

Tagged Values

N/A

Constraints expressed generically

.N/A

Formal Constraints Expressed in Terms of the UML Metamodel

N/A

Diagram Notation

N/A

ad/2001-08-19 – UML for EDOC Part I

134 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

2.4.3.7 «Protocol»

Inheritance
Foundation::Core::Class
 «Protocol»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

Relationship Role(s)
Ports owner
ProtocolType _uses
Generalization supertype subtypes (only with

«Protocol»)
Node nodes
Connection connections
PackageElements owner ownedElements
Is_a_Choreography is_specialization
ImportElement modelElement elementImport
Initiator _initiator
Responder _responder

Correspondence of metamodel attributes with UML attributes

Metamodel attribute
name

UML attribute
name

UML attribute
owner

Descriptio
n

name name ModelElement

Tagged Values

N/A

Constraints expressed generically

The supertype of a «Protocol» must be a «Protocol».

The set of all the «Port»s of a «Protocol» is the set of «Port»s or its specializations, that
are aggregated in the «Protocol».

A «Protocol» may have an Aggregation with at most one «InitiatingRole».

A «Protocol» may have an Aggregation with at most one «RespondingRole».

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 135

Formal Constraints Expressed in Terms of the UML Metamodel
context Protocol

inv: initiatingRole->size() < 2

inv: repondingRole->size() < 2

inv:
 supertype->isEmpty() or

supertype.isStereoKinded("Protocol")

def:
 -- the Ports in the Protocol : Association composed in

the Protocol

 let ports : Set(Class) =
 (association->select(anAssociationEnd : AssociationEnd |
 anAssociationEnd.aggregationKind = ak_composite)
 ->association->connection – association)
 ->participant
 ->select(aClassifier : Classifier|
 anElement.isStereoKinded(«Port»))

def:
 let initiatingRole : Class = (association->select(

anAssociationEnd : AssociationEnd |
 anAssociationEnd.aggregationKind = ak_composite)
 ->association->connection – association)
 ->participant
 ->select(aClassifier : Classifier|
 anElement.isStereoKinded(«InitiatingRole»))

def:
 let repondingRole: Class = (association->select(

anAssociationEnd : AssociationEnd |
 anAssociationEnd.aggregationKind = ak_composite)
 ->association->connection – association)
 ->participant
 ->select(aClassifier : Classifier|
 anElement.isStereoKinded(«RespondingRole»))

Diagram Notation

N/A

2.4.3.8 «InitiatingRole»

Inheritance

Foundation::Core::Class

Instantiation in a model

Concrete

ad/2001-08-19 – UML for EDOC Part I

136 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

Relationship Role(s)

Initiator _initiator

Correspondence of metamodel attributes with UML attributes

Metamodel attribute
name

UML attribute
name

UML attribute
owner

Descriptio
n

name name ModelElement

Tagged Values

N/A

Constraints expressed generically

N/A

Formal Constraints Expressed in Terms of the UML Metamodel

context InitiatingRole

Diagram Notation

N/A

2.4.3.9 «RespondingRole»

Inheritance
Foundation::Core::Class
 «RespondingRole»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 137

Relationships

Relationship Role(s)

Responder _responder

Correspondence of metamodel attributes with UML attributes

Metamodel attribute
name

UML attribute
name

UML attribute
owner

Descriptio
n

name name ModelElement

Tagged Values

N/A

Constraints expressed generically

N/A

Formal Constraints Expressed in Terms of the UML Metamodel

context RespondingRole

Diagram Notation

N/A

2.4.3.10 UML Classifier represents Interface

Inheritance

N/A

Instantiation in a model

Concrete subtypes of classifier.

Semantics

The metamodel element Interface corresponds to the UML Classifier.

Foundation::Core::Classifier

A metamodel Interface can only contain metamodel OperationPort, and OperationPort
can only contain constrained FlowPort.

ad/2001-08-19 – UML for EDOC Part I

138 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

An Classifier Classifier contains UML Operation features, corresponding to the
OperationPort of the metamodel Interface.

The metamodel FlowPort, owned by OperationPort, are mapped into the UML
Parameter of the UML Operation. Parameter include the return type, and alternate
exceptional result types.

The metamodel FlowPort of the OperationPort must comply with constraints, ensuring
that the OperationPort FlowPort can be mapped to the Parameter of the UML
Operation.

The metamodel Interface can only have OperationPort and FlowPort, because only
these can be mapped to UML Operation. The OperationPort and FlowPort of Interface,
can only have direction="responds".

The «InitiatingRole», initiator of the Classifier, is the role that invokes operations in the
Classifier. The «RespondingRole», responder of the Classifier, is the role that
implements the operations in the Classifier.

Relationships

Relationship Role(s)
ProtocolType _uses
Generalization supertype subtypes (only with

Classifier)
Node nodes
Connection connections
PackageElements owner ownedElements
Is_a_Choreography is_specialization
Initiator _initiator
Responder _responder

Correspondence of metamodel attributes with UML attributes

Metamodel attribute
name

UML attribute
name

UML attribute
owner

Descriptio
n

name name ModelElement

Tagged Values

N/A

Constraints expressed generically

N/A

Formal Constraints Expressed in Terms of the UML Metamodel

N/A

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 139

Diagram Notation

N/A

2.4.3.11 «PropertyDefinition»

Inheritance
Foundation::Core::Attribute
 «PropertyDefinition»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

Relationship Role(s)
Properties properties
PropertyType type
TypeProperty typeProperty
ValueFor fills

Correspondence of metamodel attributes with UML attributes

Metamodel attribute
name

UML attribute
name

UML attribute
owner

Descriptio
n

name name ModelElement
initial initialValue Attribute
isLocked changeability StructuralFeature

Tagged Values

N/A

Constraints expressed generically

The owner of an Attribute stereotyped «PropertyDefinition» must be stereotyped as
«ProcessComponent» or its specializations.

The type of an Attribute stereotyped «PropertyDefinition» must be set, and be a
DataType, or an Enumeration, or a Class stereotyped as «CompositeData» or its
specializations.

ad/2001-08-19 – UML for EDOC Part I

140 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

If the «PropertyDefinition» is the typeProperty of a «FlowPort», owned by the same
«ProcessComponent» that owns the «PropertyDefinition», then if the initialValue of the
«ProperyDefinition» is set, then the value must be the name of a DataElement,
Enumeration, «CompositeData» or «ExternalDocument».

Formal Constraints Expressed in Terms of the UML Metamodel
context PropertyDefinition

inv:
 owner->notEmpty() and
 owner.isStereoKinded("ProcessComponent")

inv:
 type->notEmpty() and (
 type.oclIsTypeOf(DataType) or
 type.oclIsTypeOf(Enumeration) or
 type.isStereoKinded("CompositeData"))

-- ojo constrain initialValue when typeProperty of a

FlowPort

Diagram Notation

N/A

2.4.3.12 «enumeration» DirectionKind

Instantiation in a model

Concrete

Semantics

Corresponds to the enumeration named "DirectionType" in the metamodel.

The DirectionKind enumeration in the metamodel is a UML Enumeration.

Enumeration Literals

Corresponding to the enumeration literals of same name in the metamodel.

• Initiates

• Responds

2.4.3.13 «enumeration» GranularityKind

Instantiation in a model

Concrete

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 141

Semantics

Corresponds to the enumeration named “GranularityKind” in the Meta-model, used by
the metaatribute named "granularity", of ProcessComponent.

The set of candidate values for "granularity" in the metamodel, has been formalized in
the UML Profile as an Enumeration named "GranularityKind".

Specializations of CCA may define specializations of GranularityKind with additional
EnumerationLiterals..

Enumeration Literals

Corresponding to the enumeration literals of same name and semantics, in the
metamodel.

• Program

• Owned

• Shared

2.4.4 Stereotypes for Choreography

Figure 21: Stereotypes for Choreography

PortActivity
<<stereotype>>

<<taggedValue>> + represents [1] : Port

Choreography
<<stereotype>>

Pseudostate
(from State_Machines)

<<metaclass>>

FinalState
(from State_Machines)

<<metaclass>>

Transition
(from State_Machines)

<<metaclass>>
StateMachine

(from State_Machines)

<<metaclass>> n0..1

+transitions
n

+stateMachine

0..1

<<stereotype>>

Status
<<enumeration>>

+ Success
+ BusinessFailure
+ TimeoutFailure
+ TechnicalFailure
+ AnyFailure
+ AnyStatus

CompositeState
(from State_Machines)

<<metaclass>>

<<stereotype>>

Applicable Subset

StateMachine, CompositeState, Transition, Pseudostate, FinalState

ad/2001-08-19 – UML for EDOC Part I

142 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

2.4.4.1 «Choreography»

Inheritance
Behavioral_Elements::State_Machines::StateMachine
 «Choreography»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

Relationship Role(s)
Is_a_Choreography is_generalization
Nodes _node
Connections _connections

Tagged Values

N/A

Constraints expressed generically

The context of a StateMachine stereotyped as «Choreography» will be a Classifier
stereotyped as «ProcessComponent» or a Class stereotyped as «Protocol» or a
Subsystem stereotyped as <<CommunityProcess>>, or their specializations.

Formal Constraints Expressed in Terms of the UML Metamodel
context Choreography

inv:
 context->notEmpty() and (
 context->isStereoKinded(«ProcessComponent») or
 context->isStereoKinded(«Protocol») or
 context->isStereoKinded(«CommunityProcess»))

Diagram Notation

N/A

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 143

2.4.4.2 «PortActivity»

Inheritance
Behavioral_Elements::State_Machines::CompositeState
 «PortActivity»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

When a PortActivity in the metamodel references as "represents" a FlowPort, then it
corresponds to a «PortActivity» stereotype of CompositeState with no subvertex.

When the PortActivity in the metamodel references as "represents" a MultiPort, then it
corresponds to a «PortActivity» stereotype of CompositeState with subvertexes
«PortActivity» corresponding to the «FlowPort» of the «MultiPort».

When the PortActivity in the metamodel references as "represents" a «ProtocolPort»,
then it corresponds to a «PortActivity» stereotype of CompositeState.

To choreograph the «Port» in the "represents" «ProtocolPort», in the context of the
«PortActivity», then «PortActivity» subvertexes can be nested, corresponding to the
«Port» of the «Protocol» of the "represents" «ProtocolPort».

Relationships

Relationship Role(s)
Nodes nodes
Target target
Source source
PortUsages portsUsed
Represents _represents

Correspondence of metamodel attributes with UML attributes

Metamodel
attribute name

UML
attribute
name

UML attribute
owner

Description

name name ModelElement Initialize equal to the name
of the "“represents”" «Port»

Tagged Values

Tagged Value
name

Type Multiplicit
y

Descriptio
n

represents Class, 1

ad/2001-08-19 – UML for EDOC Part I

144 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

Tagged Value
name

Type Multiplicit
y

Descriptio
n

constrained to
«Port» or its
specializations

Constraints expressed generically

N/A

Formal Constraints Expressed in Terms of the UML Metamodel
context PortActivity

Diagram Notation

N/A

2.4.4.3 UML Transition

Inheritance

N/A

Instantiation in a model

Concrete

Semantics

The metamodel element Transition corresponds to the UML model element of the same
name.

Behavioral_Elements::State_Machines::Transition

The "preCondition" metaattribute corresponds to a UML Guard whose expression body
will evaluate true under the same conditions as it would the "preCondition"
metaattribute.

Relationships

Relationship Role(s)
Target incoming
Source outgoing
Connections connections

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 145

Tagged Values

N/A

Constraints expressed generically

 N/A

Formal Constraints Expressed in Terms of the UML Metamodel

N/A

Diagram Notation

N/A

2.4.4.4 UML Pseudostate

Inheritance

N/A

Instantiation in a model

Concrete

Semantics

The metamodel element Pseudostate corresponds to the UML model element of the
same name.

Behavioral_Elements::State_Machines:: Pseudostate

CCA Pseudostate mapps to UML Pseudostate except when the CCA-metamodel
attribute "kind" of the Pseudostate has value "Success" or "Failure", that map to
stereotypes of UML FinalState. Please see stereotypes «Success» and «Failure», below.

The semantics of the metamodel element Pseudostate are equivalent to the semantics of
UML Pseudostate with corresponding "kind" values.

Metamodel kind UML kind : Foundation::Data_Types::PseudostateKind

choice pk_choice

fork pk_fork

initial pk_initial

join pk_join

ad/2001-08-19 – UML for EDOC Part I

146 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

Relationships

Relationship Role(s)
Nodes nodes
Target target
Source source
PortUsages portsUsed

Tagged Values

N/A

Constraints expressed generically

N/A

Formal Constraints Expressed in Terms of the UML Metamodel

N/A

Diagram Notation

N/A

2.4.4.5 «Success»

Inheritance
Behavioral_Elements::State_Machines::FinalState
 «Success»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

Relationship Role(s)
Nodes nodes
Target target
Source source
PortUsages portsUsed

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 147

Tagged Values

N/A

Constraints expressed generically

N/A

Formal Constraints Expressed in Terms of the UML Metamodel

N/A

Diagram Notation

N/A

2.4.4.6 «Failure»

Inheritance
Behavioral_Elements::State_Machines::FinalState
 «Failure»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

Relationship Role(s)
Nodes nodes
Target target
Source source
PortUsages portsUsed

Tagged Values

N/A

Constraints expressed generically

N/A

ad/2001-08-19 – UML for EDOC Part I

148 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

Formal Constraints Expressed in Terms of the UML Metamodel

N/A

Diagram Notation

N/A

2.4.4.7 «enumeration» Status

Instantiation in a model

Concrete

Semantics

Corresponds to the enumeration of same name in the metamodel.

Enumeration Literals

Corresponding to the enumeration literals of the enumeration of same name in the
metamodel,

• Success

• BusinessFailure

• TimeoutFailure

• TechnicalFailure

• AnyFailure

• AnyStatus

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 149

2.4.5 Stereotypes for Composition

ClassifierRole
(from Collaborations)

<<metaclass>>

ComponentUsage
<<stereotype>>

<<stereotype>>

PortConnector
<<stereotype>>

<<stereotype>>

Connection
<<stereotype>>

ContextualBinding
<<stereotype>>

AssociationRole
(from Collaborations)

<<metaclass>>

<<stereotype>>

Binding
(from Core)

<<metaclass>>

<<stereotype>>

PropertyValue
<<stereotype>>

Constraint
(from Core)

<<metaclass>>

<<stereotype>>

Collaboration
(from Collaborations)

<<metaclass>>

Composition
<<stereotype>>

<<stereotype>>

CommunityProcess
<<stereotype>>

Class
(from Core)

<<metaclass>>

represents [1..1]
<<taggedValue>>

Subsystem
(from Model_Management)

<<stereotype>>

Figure 22: Stereotypes for Composition

Applicable Subset

Collaboration, ClassifierRole, AssociationRole, Constraint, Binding.

2.4.5.1 «Composition»

Inheritance
Behavioral_Elements::Collaborations::Collaboration
 «Composition»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

Relationship Role(s)
Is_a_Composition is_generalization
Generalization parent child {only with

ad/2001-08-19 – UML for EDOC Part I

150 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

«Composition»}
ComponentIUsages owner
Nodes _nodes
Connections _connections
Bindings owner
PackageElements owner ownerElements
UML Namespace owner of
«PortConnector»

ClassifierRoles

Tagged Values

N/A

Constraints expressed generically

The supertype of a «Composition» must be a «Composition».

Formal Constraints Expressed in Terms of the UML Metamodel
context Composition

inv:
 supertype->isEmpty() or

supertype.isStereoKinded("Composition")

Diagram Notation

N/A

2.4.5.2 «ComponentUsage»

Inheritance

Behavioral_Elements::Collaborations::ClassifierRole

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

Relationship Role(s)
Nodes nodes
ComponentUsages uses
Fills fills

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 151

PortUsages extent
Configuration owner

Correspondence of metamodel attributes with UML attributes

Metamodel attribute
name

UML attribute
name

UML attribute
owner

Descriptio
n

name name ModelElement

Tagged Values

N/A

Constraints expressed generically

 N/A

Formal Constraints Expressed in Terms of the UML Metamodel
context ComponentUsage

Diagram Notation

N/A

2.4.5.3 «PortConnector»

Inheritance
Behavioral_Elements::Collaborations::ClassifierRole
 «PortConnector»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

Relationship Role(s)
PortUsages PortsUsed, extent
Represents _represents
Target target
Source source
Nodes nodes

ad/2001-08-19 – UML for EDOC Part I

152 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

Correspondence of metamodel attributes with UML attributes

Metamodel attribute
name

UML attribute
name

UML attribute
owner

Descriptio
n

name name ModelElement

Tagged Values

N/A

Constraints expressed generically

If the «Port» used by the «PortConnector» is a «FlowPort», and the «FlowPort»
specifies a "typeProperty" (a «PropertyDefinition» in the owner «ProcessComponent»),
then the actual type of the «PortConnector» will be a DataType, Enumeration,
«CompositeData» or «ExternalDocument», with the name equal to the value of the
«PropertyValue» of the «ComponentUsage» corresponding to the «PropertyDefinition»
in the used «ProcessComponent».

Formal Constraints Expressed in Terms of the UML Metamodel
context PortConnector

Diagram Notation

N/A

2.4.5.4 «Connection»

Inheritance
Behavioral_Elements::Collaborations::AssociationRole
 «Connection»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of named "Connection" in the metamodel.

If one of the «Connection»s link participants is a «PortConnector» that "uses" a UML
Classifier (corresponding to a metamodel Interface), then the UML Operation that will
be invoked on the Classifier, is identified by a UML Message of a UML Interaction in
the «Composition». The UML Message will have an action attribute initialized with a
CallAction on the UML Operation.

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 153

Relationships

Relationship Role(s)
Connections connections
Source outgoing
Target incoming

Tagged Values

N/A

Constraints expressed generically

N/A

Formal Constraints Expressed in Terms of the UML Metamodel
context Connection

Diagram Notation

N/A

2.4.5.5 «PropertyValue»

Inheritance

Foundation::Core::Constraint

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

Relationship Role(s)
Configuration configuration
ValueFor _fills

Tagged Values

N/A

ad/2001-08-19 – UML for EDOC Part I

154 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

Constraints expressed generically

If the «PropertyValue» configures the value of a «PropertyDefinition» that is the
"typeProperty" of a «FlowPort», then the value configured by the «PropertyValue»
must be the name of a DataType, Enumeration, «CompositeData» or
«ExternalDocument».

A «PropertyValue» is an ownedElement of a «Composition» as Namespace.

Formal Constraints Expressed in Terms of the UML Metamodel
context PropertyValue

 inv:
 namespace->notEmpty() and

namespace.isStereoKinded("Composition")

Diagram Notation

N/A

2.4.5.6 «ContextualBinding»

Inheritance
Foundation::Core::Binding
 «ContextualBinding»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

A «ContextualBinding» is an ownedElement of a «Composition».

The "client" of a ContextualBinding is a «ComponentUsage» in the «Composition».

The "supplier" of a ContextualBinding is a «ProcessComponent».

In the «Composition», the «ProcessComponent» will be used as the "uses" for the
«ComponenUsage».

Relationships

N/A

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 155

Tagged Values

N/A

Constraints expressed generically

Formal Constraints Expressed in Terms of the UML Metamodel
context ContextualBinding

Diagram Notation

N/A

2.4.5.7 «CommunityProcess»

Inheritance
ModelManagement::Subsystem
 «CommunityProcess»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

N/A

Tagged Values

N/A

Constraints expressed generically

Formal Constraints Expressed in Terms of the UML Metamodel
context CommunityProcess

Diagram Notation

N/A

ad/2001-08-19 – UML for EDOC Part I

156 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

2.4.6 DocumentModel «profile» Package

The metamodel elements named Attribute, DataType and Enumeration correspond to
the UML model elements of the same name and are not stereotyped.

The metaattribute named "initialValue" of the metamodel Attribute, corresponds to the
attribute of same name of UML Attribute.

The metaattribute named "required" and "many" of the metamodel Attribute, are
combined as a UML Multiplicity. The MultiplicityRange, will have the "lower"
attribute value equal to 0, if the corresponding metamodel Attribute has the "required"
meta-attribute equal to false, and greater than 0, if "required" is true. The
MultiplicityRange will have the "upper" attribute value equal to 1, if the corresponding
metamodel Attribute has the "many" meta-attribute equal to false, and and greater than
1, if "many" is true.

The metamodel element named Enumeration has a metaattribute named "initial" and
type EnumerationValue. In the UML Profile, the responsibility of specifying an initial
value, is delegated to the UML Attribute with type equal to the Enumeration. The
initialValue attribute, of type Expression, in UML Attribute will be used to specify the
default initial value of Enumeration.

The metamodel element named Enumeration Value corresponds to the UML model
element named EnumerationLiteral.

The metamodel Attribute and UML Attribute correspond to each other completely, with
the exception of the meta-attribute named "isByValue".

To represent "isByValue", a TaggedDefinition of same name and type Boolean is
defined, to be applied on UML Attribute.

The TaggedDefinition is defined without creating a Stereotype of Attribute.

CompositeData
<<stereotype>>

Class
(from Core)

<<metaclass>>

<<stereotype>>

DataInvariant
<<stereotype>>

+ isOnCommit : Boolean = false

Constraint
(from Core)

<<metaclass>>

<<stereotype>>

ExternalDocument
<<stereotype>>

<<taggedValue>> + mimeType : String
<<taggedValue>> + specURL : String
<<taggedValue>> + externalName : String

<<stereotype>>

Figure 23: Stereotypes for DocumentModel

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 157

2.4.6.1 «CompositeData»

Inheritance
Foundation::Core::Class
 «CompositeData»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

The «isByValue» TaggedDefinition can be applied to UML Attribute feature of
«CompositeData».

Relationships

Relationship Role(s)
Generalization supertype subtypes {only with

«CompositeData»}
PropertyType type
AttributeType type
DataAttribute owner

DataConstraint constrainedElement

FlowType type
PackageContent ownedElements
ImportElement importedElement

Tagged Values

N/A

Constraints expressed generically

The supertype of an «CompositeData» must be a «CompositeData».

The type of Attributes of «CompositeData» will be a DataType, an Enumeration, or a
Class stereotyped as «CompositeData», or a DataType stereotyped
«ExternalDocument».

Formal Constraints Expressed in Terms of the UML Metamodel
context CompositeData

inv:
 supertype->isEmpty() or

supertype.isStereoKinded("CompositeData")

inv:

ad/2001-08-19 – UML for EDOC Part I

158 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

 feature->select(aFeature : Feature |
aFeature.isOCLTypeOf(Attribute))

 ->collect(aFeature : Feature | aFeature.oclAsType(
Attribute).type)

 ->forAll(aClassifier : Classifier |
 aClassifier.isOclKindOf(DataType) or
 aClassifier.isOclKindOf(Enumeration) or
 aClassifier.isStereoKinded("CompositeData") or
 aClassifier.isStereoKinded("ExternalDocument"))

Diagram Notation

N/A

2.4.6.2 "isByValue" Tagged Definition

The metamodel Attributes and UML Attributes correspond to each other completely,
with the exception of the meta-attribute named "isByValue".

To represent the metamodel attribute named "isByValue", a Tagged Definition of
named "isByValue" and type Boolean is defined, to be applied on UML Attribute.

The Tagged Definition is defined without creating a Stereotype of Attribute.

Tagged Value
name

Type Multiplicit
y

Description

isByValue Boolea
n

0..1 default =
true

2.4.6.3 «DataInvariant»

Inheritance
Foundation::Core::Constraint
 «DataInvariant»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 159

Relationships

Relationship Role(s)

DataConstraint constrains

Correspondence of metamodel attributes with UML attributes

Metamodel attribute
name

UML attribute
name

UML attribute
owner

Descriptio
n

expression body Constraint

Tagged Values

Tagged
Value name

Type Multiplicity Description

isOnCommit Boolea
n

1 default=false

Constraints expressed generically

N/A

Formal Constraints Expressed in Terms of the UML Metamodel
context DataInvariant

Diagram Notation

N/A

2.4.6.4 «ExternalDocument»

Inheritance
Foundation::Core::DataType
 «ExternalDocument»

Instantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

ad/2001-08-19 – UML for EDOC Part I

160 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

Relationships

Relationship Role(s)
Generalization supertype subtypes {only with

«ExternalDocument»}
PropertyType type
AttributeType type
DataAttribute owner
DataConstraint constrainedElement
FlowType type
PackageContent ownedElements
ImportElement importedElement

Tagged Values

Tagged
Value name

Type Multiplicity Description

mimeType String 0..1
specURL String 0..1
externalNam
e

String 0..1

Constraints expressed generically

N/AFormal Constraints Expressed in Terms of the UML Metamodel
context ExternalDocument

Diagram Notation

N/A

2.4.7 UML Model_Management Package

There is no «profile» Package in the UML Profile for CCA, corresponding to the
ModelManagement Package of the metamodel.

All the concrete metamodel elements have counterparts in UML, and therefore no
stereotypes are required.

The metamodel elements named Package and ElementImport correspond to the UML
model elements of the same name.

ad/2001-08-19 – UML for EDOC Part I

161 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

2.4.8 Relationships

This section specifies the correspondence between associations defined in the CCA Meta-model and associations defined in the
UML Meta-model. The relationship name is the same as that found in the CCA Model diagrams (detail level). This correspondence
is shown in the tables below, with a header for each relationship in the metamodel. This section provides detailed information for
those implementing transformations between UML and MOF CCA tools, it is not required to use or understand CCA.

How to use this section.

Each relationship between two concepts in the metamodel, or their specializations, is represented with a UML relationship(s), and in
some cases as a taggedValue, or by relating through UML Association.

The tables show the Left Hand and Right Hand sides of relationships, with the role names, the actual model elements at the ends of
the relationship, and the specializations or stereotypes of interest, related through the relationship - directly or by inheritance.
Multiple related metamodel elements or stereotypes may appear, at any side of relationships used by multiple elements.

The semantics of each row and column in the table are

• For each relationship in the metamodel, there is one or more tables, each table showing a particular mapping for that
relationship. Each table has two lines – one for the CCA model (MOF) and one for the UML model (UML)

• For each relationship mapping in the metamodel :

• there is one row, labeled MOF, that describes the relationship in the metamodel. Its columns mean :

o "LeftHandSide" in MOF rows, it names the MOF metamodel element that participates or inherits the relationship whose UML
mapping we want to express. It may be the same as "LeftHandSide related", or a subtype of it. There may be multiple names, for
various subtypes of polymorphically related metamodel elements.

o "LeftHandSide related": in MOF rows, it names the actual metamodel element referenced by the relationship. May be the same as
"LeftHandSide", or a supertype of it.

o "LeftHandSide role name": in MOF rows, it names the relationship role on the LeftHandSide.

o "RightHandSide role name": in MOF rows, it names the relationship role on the RightHandSide.

o "RightHandSide related": in MOF rows it names the other actual MOF metamodel element referenced by the relationship. May be
the same as 'RightHandSide", or a supertype of it.

ad/2001-08-19 – UML for EDOC Part I

162 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

o "RightHandSide": in MOF rows, it names the other metamodel element that participates or inherits the relationship whose UML
mapping we want to express. It may be the same as in "RightHandSide related", or a subtype of it. There may be multiple names, for
various subtypes of polymorphically related metamodel elements.

• row labeled 'UML' defining the corresponding UML Meta-model relationship. There may be additional tables for various UML
mappings, describing alternative representations of the metamodel relationship in UML. The UML columns mean :

o "LeftHandSide": In UML rows, it names the UML stereotype corresponding to the LHS MOF metamodel element. There may be
multiple names, for various stereotypes and specializations.

o "LeftHandSide related": In UML rows, it names the baseClass of the LHS UML stereotype, or the supertype of the
baseClass, that is the actual UML model element referenced by the relationship.

o "LeftHandSide role name": in UML rows, it names the relationship role on the LeftHandSide

o "RightHandSide role name": in UML rows, it names the relationship role on the RightHandSide '.

o "RightHandSide related": In UML rows, it names the baseClass of the RHS UML stereotype, or the supertype of the
baseClass, that is the actual UML model element referenced by the relationship.

o "RightHandSide": In UML rows, it names the UML stereotype corresponding to the RHS MOF metamodel element. There may be
multiple names, for various stereotypes and specializations.

2.4.8.1 AttributeType

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF Attribute Attribute _type type DataElement DataType or
Enumeration or
CompositeData
ExternalDocument

UML «PropertyDefintion» Attribute typedFeature type Classifier DataType or
Enumeration or
«CompositeData»
«ExternalDocument
»

ad/2001-08-19 – UML for EDOC Part I

163 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

2.4.8.2 Bindings

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF Composition Composition owner bindings ContextualBinding ContextualBinding

UML «Composition » Namespace namespace ownedElement ModelElement «ContextualBinding
»

2.4.8.3 BindsTo

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF ContextualBinding ProcessComponent _bindsTo bindsTo ProcessComponent ProcessComponent

UML «ContextualBinding
»

ModelElement supplierDependency supplier ModelElement «ProcessComponent
»

2.4.8.4 Configuration

MOF or
UML

LeftHandSide LeftHandSide related LeftHandSide role
name

RightHandSide role
name

RightHandSide related RightHandSide

MOF ComponentUsage ComponentUsage owner configuration PropertyValue PropertyValue

UML «ComponentUsage» ModelElement constrainedElement constraint Constraint «PropertyValue»

ad/2001-08-19 – UML for EDOC Part I

164 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

2.4.8.5 Connections in Choreography

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF Choreography Choreography _choreography connections AbstractTransition Transition

UML «Choreography» StateMachine or stateMachine transitions Transition Transition

2.4.8.6 Connections in Composition

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF Composition Choreography _choreography _connections AbstractTransition Transition

UML «Composition» Collaboration namespace ownedElement AssociationRole «Connection»

2.4.8.7 DataAtribute

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF CompositeData CompositeData owner feature DataElement Attribute

UML «CompositeData» Classifier owner feature Feature Attribute

2.4.8.8 DataConstraint

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF DataInvariant DataInvariant constraints constrainedElement DataElement DataElement
subtypes: DataType
or Enumeration or
CompositeData or
ExternalDocument

ad/2001-08-19 – UML for EDOC Part I

165 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

UML «DataInvariant» Constraint constraint constrainedElement ModelElement DataType or
Enumeration or
«CompositeData» or
«ExternalDocument
»

2.4.8.9 DataGeneralization

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF CompositeData CompositeData supertype subtypes CompositeData CompositeData

UML «CompositeData» GeneralizableElemen
t

generalization.parent specialization. child GeneralizableElement «CompositeData»

2.4.8.10 Fills

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF ContextualBinding ProcessComponent _fills fills ProcessComponent ProcessComponent

UML «ContextualBinding
»

ModelElement clientDeendency fills ModelElement «ProcessComponent
»

ad/2001-08-19 – UML for EDOC Part I

166 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

2.4.8.11 FlowType

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF FlowPort FlowPort _ type type DataElement DataType or
Enumeration or
CompositeData or
ExternalDocument

UML «FlowPort» ClassifierRole
(indirectly thru
AssociationEnd and
Association)

association.
association.
connection.
participant

association.
association.
connection.
participant

ClassifierRole
(indirectly thru
AssociationEnd and
Association)

DataType or
Enumeration or
«CompositeData» or
«ExternalDocument
»

2.4.8.12 Generalization

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF ProcessComponent Choreography supertype subtypes Choreography ProcessComponent

UML «ProcessComponent
»

GeneralizableElemen
t

generalization.parent specialization. child Generalizable Element «ProcessComponent
»

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF Protocol Choreography supertype subtypes Choreography Protocol

UML «Protocol» GeneralizableElemen
t

generalization.parent specialization. child Generalizable Element «Protocol»

ad/2001-08-19 – UML for EDOC Part I

167 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF CommunityProcess Choreography supertype subtypes Choreography CommunityProcess

UML «CommunityProcess
»

GeneralizableElemen
t

generalization.parent specialization. child Generalizable Element «CommunityProcess
»

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF Interface Choreography supertype subtypes Choreography Interface

UML Classifier GeneralizableElemen
t

generalization.parent specialization. child Generalizable Element Classifier

2.4.8.13 ImportElement

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF ElementImport ElementImport elementImport modelElement PackageContent Package or
DataType or
Enumeration or
CompositeData or
ExternalDocument or
Protocol or Interface
or ProcessComponent
or CommunityProcess

ad/2001-08-19 – UML for EDOC Part I

168 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

UML ElementImport ElementImport elementImport importedElement ModelElement Package or
DataType or
Enumeration or
«CompositeData» or
«Protocol» or
Classifier or
«ProcessComponent»
or
«CommunityProcess»

2.4.8.14 Initiator

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF Protocol or
Interface

Protocol _initiator initiator InitiatingRole InitiatingRole

UML «Protocol» or
Classifier

Classifier association.
association.
connection. participant

association. association.
connection. participant

Classifier «InitiatingRole»

2.4.8.15 Is_a_Choreography

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF ProcessComponent
or Protocol or
Interface

ProcessComponent is specialization is generalization Choreography Choreography

UML «ProcessComponent
» or «Protocol» or
Classifier

ModelElement context behavior StateMachine «Choreography»

ad/2001-08-19 – UML for EDOC Part I

169 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

2.4.8.16 Is_a_Composition

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF ProcessComponent
ComunityProcess

ProcessComponent is specialization is generalization Composition Composition

UML «ProcessComponent
»
«ComunityProcess»

Classifier represented
Classifier

collaboration Collaboration «Composition»

2.4.8.17 Nodes in Choreograpy

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF Choreography Choreography _choreography _nodes Node PortActivity or
Pseudostate

UML «Choreography» StateMachine container.
stateMachine

container. container.
... stateMachine

top.subvertex
top.subvertex.
subvertex…

StateVertex «PortActivity» or
«Success» or
«Failure» or
Pseudostate

2.4.8.18 Nodes in Composition

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF Choreography Choreography _choreography _nodes Node PortActivity or
Pseudostate

ad/2001-08-19 – UML for EDOC Part I

170 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

UML «Choreography» Composition namespace ownedElement ClassifierRole «PortActivity» or
«Success» or
«Failure» or
Pseudostate

2.4.8.19 PackageElements

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF Package
ProcessComponent
Protocol

Interface
CommunityProcess

Package owner ownedElements PackageContent Package or
DataType or
Enumeration or
CompositeData or
ExternalDocument
or Protocol or
Interface or
ProcessComponent
or
CommunityProcess

UML Package
«ProcessComponent
» «Protocol»
Classifier
«CommunityProcess
»

Namespace owner ownedElement ModelElement Package or
DataType or
Enumeration or
«CompositeData» or
«Protocol» or
Classifier or
«ProcessComponent
» or
«CommunityProcess
» indirectly through
behavior.top.subvert
ex

ad/2001-08-19 – UML for EDOC Part I

171 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

2.4.8.20 Ports

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF ProcessComponent
or Protocol or
MultiPort *

PortOwner owner ports Port FlowPort or
ProtocolPort or
MultiPort

UML «ProcessComponent
» or «Protocol» or
«MultiPort»*

Classifier
(indirectly thru
AssociationEnd and
Association)

association.
association.
connection.
participant

the Association may
be stereotyped as
«initiates» or
«responds»

association.
association.
connection.
participant

Classifier
(indirectly thru
AssociationEnd and
Association)

«FlowPort» or
«ProtocolPort» or
«MultiPort»

(*) Constrained to «FlowPort». See Stereotype definitions, in sections above.

Additional Notes:

The MOF row is the description of the relationship in the metamodel:

The ProcessComponent, Protocol and MultiPort inherits from PortOwner, and therefore has a role 'owner' in a relationship
with Port, which participates in the relationship with the role name 'ports'. Specific subtypes of Port are FlowPort,
ProtocolPort, OperationPort and MultiPort, that are related with ProcessComponent through the relationship inherited from
Port.

The UML row identifies the UML relationships to represent the relationship in the metamodel, above.

The stereotypes «ProcessComponent», «Protocol» and «MultiPort», corresponding to the metamodel elements of the same
name, has a baseClass inheriting from Classifier, and therefore may be the participant in an AssociationEnd of a UML
Association, with Classifier as the participant of the other AssociationEnd. The stereotypes with baseClass subtype of
Classifier, «Port», «FlowPort», «ProtocolPort», and «MultiPort», corresponding to the metamodel elements of same name,
are related with «ProcessComponent» through the said relationships with UML AssociationEnd and UML Association.
MultiPort may only aggregate FlowPort.

ad/2001-08-19 – UML for EDOC Part I

172 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF ProcessComponent
or Protocol or
Interface

PortOwner owner ports Port OperationPort

UML «ProcessComponent
» or «Protocol» or
Classifier

Classifier owner feature Feature Operation

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF OperationPort PortOwner owner ports Port Exactly one
FlowPort with
direction
="Responds"

UML Operation BehavioralFeature behavioralFeature parameter Parameter For each attribute of
the «FlowPort».type
a Parameter with
kind=pdk_in and
Parameter.type =
the type of the
Attribute

ad/2001-08-19 – UML for EDOC Part I

173 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF OperationPort PortOwner owner ports Port At most one
FlowPort
with
direction="Responds
" and
postCondition="Suc
cess"

UML Operation BehavioralFeature behavioralFeature parameter Parameter Parameter with
Parameter.type=
FlowPort.type and
kind=pdk_return

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF OperationPort PortOwner owner ports Port with
direction="Responds"
and
postCondition<>"Succ
ess"

FlowPort

UML Operation BehavioralFeature context raisedSignal Signal Signal with feature =
«FlowPort».type.feat
ure

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF Interface PortOwner owner ports Port OperationPort

UML Classifier Classifier owner feature Feature Operation

ad/2001-08-19 – UML for EDOC Part I

174 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

A metamodel Interface, owner of OperationPort, owner of FlowPort, map in the UML Profile, to a UML Classifier, owner of UML
Operation, with UML Parameter with the type corresponding to the type of the metamodel FlowPort.

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF OperationPort PortOwner owner ports Port FlowPort

UML Operation BehavioralFeature behavioralFeature parameter Parameter Parameter

2.4.8.21 PortUsages in Choreography

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF ProcessComponent
or Protocol

UsageContext extent portsUsed PortUsage PortActivity or
Pseudostate

UML «ProcessComponent
» or «Protocol»
indirectly through
«Choreography»

ModelElement
indirectly through
StateMachine

indirectly through
container.
stateMachine.
context

indirectly through
behavior.top.subverte
x

StateVertex indirectly
through StateMachine

«PortActivity» or
Pseudostate or
«Success» or
«Failure» indirectly
through
«Choreography»

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF PortActivity UsageContext extent portsUsed PortUsage PortActivity or
Pseudostate

UML «PortActivity» CompositeState container subvertex StateVertex «PortActivity» or
Pseudostate or
«Success» or
«Failure»

ad/2001-08-19 – UML for EDOC Part I

175 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

2.4.8.22 PortUsages in Composition

 MOF

UML

LeftHandSide LeftHandSide LeftHandSide role RightHandSide role RightHandSide RightHandSide
or related name name related

MOF ProcessComponent UsageContext extent portsUsed PortUsage ctor PortConne

UML «ProcessCom onent
» indirectly through
«Composition»

Classifier
indirectly through
Collaboration

indirectly through
_representedClassifie
r. ownedElements

indirectly through
owner.
representedClassifier
or

owner.owner

ClassifierRole
indirectly through
Collaboration

«PortConnector»
indirectly through
«Composition»

p

 andSide role dSide role dSide e MOF
or
UML

LeftHandSide LeftHandSide
related

LeftH
name

RightHan
name

RightHan
related

RightHandSid

MOF ge ComponentUsa UsageContext extent portsUsed PortUsage PortConnector

UML «ComponentUsage» ClassifierRole
(indirectly thru
AssociationEndRole
and AssociationRole)

association.
association.
connection.
participant

association.

connection.
participant

ClassifierRole
(indirectly thru
AssociationEndRole
and AssociationRole)

«PortConnector»
association.

 MOF
or

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

UML

MOF PortConnector UsageContext extent portsUsed PortUsage PortConnector

UML «PortConnector»

AssociationEndRole
and AssociationRole)

.
connection.
participant

.
connection.
participant

AssociationEndRole
and AssociationRole)

«PortConnector» ClassifierRole
(indirectly thru

association.
association

association.
association

ClassifierRole
(indirectly thru

ad/2001-08-19 – UML for EDOC Part I

176 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

LeftHandSide LeftHandSide LeftHandSide role RightHandSide role RightHandSide RightHandSide

2.4.8.23 Properties

MOF
or
UML

related name name related

MOF ProcessComponent PropertyDefinition ProcessComponent component properties PropertyDefinition

UML «ProcessComponent
»

Attribute

«Property
Definition»

Classifier owner feature StructuralFeature

2.4.8.24 PropertyType

LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide MOF
or
UML

LeftHandSide

MOF efinition or
n or

iteData
ExternalDocument

PropertyDefinition PropertyD _type type DataElement DataType
Enumeratio
Compos

UML «PropertyDefintion» Attribute typedFeature type Classifier DataType or
Enumeration or
«CompositeData»
«ExternalDocument
»

MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

2.4.8.25 ProtocolType

RightHandSide

MOF ProtocolPort ProtocolPort _uses uses Protocol Protocol

ad/2001-08-19 – UML for EDOC Part I

177 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

RightHandSide MOF
or
UML

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

UML ableElemen .child ralization.parent ble Element «ProtocolPort» Generaliz
t

specialization gene Generaliza «Protocol»

2.4.8.26 Represents in Choreography

The metamodel element Choreography is represented by a UML StateMachine, where a PortActivity in the metamodel is mapped to

Repr ip in the s a rt, L to a he
typ

UML

 Side

a stereotype of CompositeState.

The
Stereo

esents relationsh
e «PortActivity».

metamodel, that link PortActivity with a Po corresponds in UM TaggedValue of t

MOF
or

LeftHandSide LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHand

MOF FlowPort or
ProtocolPort
OperationPort
MultiPort

Port represents _represents PortUsage PortActivity
 or

 or

UML «FlowPort» o
«ProtocolPort
«OperationPort
«MultiPort»

SubmachineState or

SubactivityState

 r
» or

 » or

Class taggedValue "uses" N/A : tagged values
not bidirectional

SimpleState or
CompositeState or

«PortActivity»

StubState or
ActionState or

2.4.8.27 Represents in Composition

The metamodel element Composition is represented by a UML Collaboration.

A PortConnector is mapped to a ClassifierRole.

ad/2001-08-19 – UML for EDOC Part I

178 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

The "Represents" relationship linking a PortActivity with a Port, is represented in UML as a the UML relationship between a
ClassifierRole and its base Classifier.

UML

e andSide ide role Side role dSide ide MOF
or

LeftHandSid LeftH
related

LeftHandS
name

RightHand
name

RightHan
related

RightHandS

MOF

Port represents _represents PortUsage PortConnector FlowPort or
ProtocolPort or
OperationPort or
MultiPort

UML « or
«ProtocolPort» or
«OperationPort » or
«MultiPort»

Classifier base _base «PortConnector» FlowPort» ClassifierRole

2.4.8.28 Responder

MOF
or
UML

LeftHandSid e LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

MOF Protocol or
Interface

Protocol _initiator initiator RespondingRole RespondingRole

UML
Classifier ciation.

connection. participant
connection. participant

e» «Protocol» or Classifier association.
asso

association. association. Classifier «RespondingRol

ad/2001-08-19 – UML for EDOC Part I

179 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

2.4.8.29 Source

MOF
or

LeftHandSid LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

UML

e LeftHandSide
related

MOF PortActivity or
Pseudostate

 incoming Transition Transition Node target Abstract

UML «PortActivity»
«Success

 or
» or

ex g

«Failure» or
Pseudostate

StateVert target incomin Transition Transition

2.4.8.30 Target

MOF LeftHandSide LeftHandSide LeftHandSide role RightHandSide role RightHandSide RightHandSide
or
UML

related name name related

MOF PortActivity or Node source outgoing AbstractTransition Transition
Pseudostate

UML » or StateVertex source outgoing Transition Transition «PortActivity
«Success» or
«Failure» or
Pseudostate

2.4.8.31 TypeProperty

MOF LeftHandSide LeftHandSide LeftHandSide role RightHandSide role RightHandSide RightHandSide
or
UML

related name name related

MOF FlowPort FlowPort _ typeProperty typeProperty PropertyDefinition PropertyDefinition

ad/2001-08-19 – UML for EDOC Part I

180 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

MOF
or
UML

LeftHandSide
related

LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

LeftHandSide RightHandSide

UML «FlowPort» Class N/A : t
not bidi

agged values
rectional

lue named finitiontaggedVa
"typeExp"

Attribute «PropertyDe
»

2.4.8.32 Uses

MOF
or

LeftHandSid eftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide

UML

e LeftHandSide
related

L

MOF Composition tion entUsage ComponentUsage Composi owner uses Compon

UML «Composition» Namespace owner ownedElement ModelElement «ComponentUsage»

2.4.8.33 ValueFor

MOF
or
UML

LeftHandSide LeftHandSide LeftHandSide role
name

RightHandSide role
name

RightHandSide
related

RightHandSide
related

MOF n PropertyValue PropertyValue elementImport fills PropertyDefinition PropertyDefinitio

UML «PropertyValue» nt Import constrainedElement lement PropertyDefinition Constrai element ModelE

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 181

2 9 General OCL Definition Constraints

These definition constrains have been incorporated from the OMG Document ad/2000-02-
02, UML Profile for CORBA, Joint Revised Submission Version 1.0 by Data Access
Corporation, DSTC, Genesis Development Corporation, Telelogic AB, UBS AG, Lucent
Technologies, Inc. and Persistence Software.

.4.

context ModelElement

 def:
 let allStereotypes : Set(Stereotype) =
 -- set with the Stereotype applied to the
 -- ModelElement and all the stereotypes
 -- inherited by that Stereotype
 self.stereotype->union(

 self.stereotype.generalization.parent.allStereotypes)

 let isStereoTyped(theStereotypeName : String) :

Boolean =
 -- returns true if an Stereotype
 -- with name equalto the argument as been
 -- applied to the ModelElement
 self.stereotype.name = theStereotypeName

 let isStereoKinded(theStereotypeName : String) :

Boolean =
 -- returns true if an Stereotype with its
 -- name equal to the argument, or equal to
 -- any of its inherited Stereotypes,
 -- has been applied to the ModelElement,
 self.allStereotypes->exists(aStereotype :

Stereotype |
 aStereotype.name = theStereotypeName)

Diagramming CCA
CCA models may be diagramed using generic as well as CCA specific notations. The
generic notations (as found in UML 1.4) are supported by a wide variety of tools which
allow CCA concepts to be made part of the larger enterprise picture without specific tool
support. When using generic notations the CCA profile stereotypes should be used. CCA
aware design & implementation tools may provide the CCA specific notation in addition to
or instead of the other forms of notation.

This section suggests a non-normative way to utilize generic UML diagrams and CCA
notation to express CCA concepts. For the generic diagrams it does so using an “out of the
box” UML tool – Rational Rose 2000e ®.

2.5.1 Types of Diagram

The diagrams used to express CCA concepts are as follows:

2.5

ad/2001-08-19 – UML for EDOC Part I

182 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

2.5.1.1 Class Diagrams for the Document Model

These are used to express the document model.

ols, their ports and properties.

 Diagrams for Composition

d to express the composition of components within another component or
u

5 . S te or
C

Th

&
pos

d intuitive
r t repla e CCA
t o

2.5.2

c iques iagra
e y/sell ts in

s
. These two actors “collaborate” within this process to effect an order.

2.5.3 Collaboration diagram shows community process

2.5.1.2 Class Diagrams for the Component Structure

These are used to define components & protoc

2.5.1.3 Collaboration

These are use
comm nity processes.

2. .1 4 ta Activity Diagrams for Protocols & Process
omponents

ese express the ordering constraints on ports within or between components.

2.5.1.5 CCA Notation for Process Component Structure
C mo ition

This expresses the component structure and composition in a more compact an
m, hus cing the class and collaboration diagrams. We will show how thfo

no ati n expresses the same concepts found in the generic diagrams.

The Buy/Sell Example

The te hn for d mming CCA will be presented by example. We will utilize a
e poinsimpl bu business process to illustrate the concepts. We will summarize th

the specification from the perspective of using a diagramming tool.

The basic business problem of buy/sell is to define a “community process” with two actor
– a buyer and seller

At the highest level we show a collaboration diagram of the Buy/Sell community process.
In the design tool we also created a package for this process to hold the relevant model
elements. See Figure 24.

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 183

 : B

Process
Buy/Sell Comminity

uyer : Seller

 : Buys : Sells

Figure 24: Top Level Collaboration Diagram

This collaboration shows both business roles: “Buyer” and “Seller”. These are each a
sage” in the CCA M

eller has a “sells” po
“ComponentU eta-model. It also shown that the buyer has a “buys”
port and the s rt that are connected by a Connection in this
collaboration. The “buys” and “sells” ports are “PortConnectors” in the CCA Meta-model.

te on these
ports using a “Connection”.

There is no way to show which port is the initiator and which is the responder in a
collaboration diagram, so we have noted the “buys” in blue and “sells” in green, for those

, respectively. The
use of this nested classifier notation shown that the ports are owned by the component. We

arately with a connected line, but nesting them seems to
cs.

ey

u would also see that
the entire package has the stereotype <<CommunityProcess>>.

in a collaboration diagram for a community process:

2.5.3.1 Summary of stereotypes for a Community Process

The line between “Buys” and “sells” indicates that the buyer and seller collabora

of you who have color (for others you may be able to tell from the shade).

Note that “buys” and “sells” are shown inside of “buyer” and “seller”

could have also shown the ports sep
better reflect the underlying semanti

The design tool we are using does not show stereotypes in a collaboration diagram, if th
did show you would see that buyer and seller have the <<ComponentUsage>> stereotype
and “Buys” and “Sells” have the <<PortConnector>> stereotype. Yo

The following is a summary of the elements, stereotypes and base elements you would use

CCA element Stereotype Base UML Element Example Elements

ommunityProcess>> PaCommunityProcess <<C ckage or Subsystem BuySell

ComponentUsage <<ComponentUsage>> Classifier Role (Object*) Buyer, Seller

PortConnector <<PortConnector>> Classifier Role (Object*) Buys, Sells

Connection None Association Role (Object Link*) Link from buys to sells

ContextualBinding <<ContextualBinding>> Binding (Note*) None – used to refine which
component type to use

ad/2001-08-19 – UML for EDOC Part I

184 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

CCA element Stereotype Base UML Element Example Elements

PropertyValue <<PropertyValue>> Constraint (Note*) None – use to set a
configuration property of a
component

Table 10: Summary of stereotypes for a Community Process

* Denotes the name used in the design tool

2.5.4 Class diagram for protocol structure

iagram

em (the document model), or this information can be shown
on a separate class diagram.

The buys and sells ports seen in the community process must have a prescribed protocol, a
description of what information flows between them. This is shown in a class d
(Figure 25). Additional information as to when information flows between them is shown
on an associated state or activity diagram. The class diagram can include the definition of
the data that flows between th

Order
<<CompositeData>>

OrderConfirmation
SendOrder

(from Buy SellProtocol

<<FlowPort>>
GetConfirmat ion

(from BuySellProtocol)
BuySellProtocol

>

Class diagram for buy/sell protocol

<<Compos iteData>>
<<FlowP ort>>

<<Protocol>><<responds>>
<<ini tiates>

)

OrderDenied
<<Compos iteData>>GetDenied

(from BuySellProtocol)

<<FlowP ort>>

<<initiates>>

Figure 25: Class diagram for protocol structure

This diagram shows the protocol as well as the data used in the protocol (detail suppressed
for this view). The protocol is a class stereotyped as <<Protocol>>. It has a set of flow

ndOrder, GetCo he
association to the data that flows over it; Order, OrderConfirmation and OrderDenied –

A very important aspect of a port is its direction (initiates or responds), which is a tagged
e tagge diagram w stereotyped the

relation to the ports as either <<initates>> or <<responds>> and have changed their color as
s done in the collabor

ow f the protoco
receive a “SendOrder” containing an “Order” and will send (with
data “OrderConfirmation”) and/or a “GetDenied” (with data “OrderDenied”).

The following is a summary of the elements, stereotypes and base elements you would use
in a collaboration diagram for a protocol:

ports: Se nfirmation, GetDenied. Each of t se flow ports has an

respectivly.

value. Since thes d values don’t sow on the e have also

wa ation diagram.

What this diagram sh s is that implementers o l “BuySellProtocol” will
out a “GetConfirmation”

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 185

2.5.4.1 Summary of stereotypes for a Protocol

CCA element Stereotype Base UML Element Example Elements

Protocol <<Protocol>> Class or Subsystem BuySellProtocol

FlowPort <<FlowPort>> Class

GetDenied

SendOrder,
GetConfirmation,

“Ports” relation Op nal: <
<<responds>>

Lines between FlowPorts
and BuySellProtocol

tio <initiates>> or Association

ProtocolPort <<ProtocolPort>> Class None – used to nest one
protocol in another

OperationPort <<OperationPort>> Class None – used to define a

)
two-way message (could
have been used for BuySell

InitiatingRole <<I o
rela

nitiatingR le>> with
tion to protocol

Class None – Used to name the
initiating “side” of the
protocol (the client)

RespondingRole <<RespondingRole>>
with relation to protocol

Class None – Used to name the
responding “side” of the
protocol (the service)

Interface Optional: <<Interface>> Classifier None – defines an object
service

Direction (value) <<initiatiates>> Association SendOrder

Direction (value) <<responds>> Association OrderConfirmation,
OrderDenied

Table 11: Summary of stereotypes for a Protocol

2.5.4.2 Summary of tagged values for a Protocol

While tagged values can’t be seen in the dia e
The tagged values used to define a protocol are:

gram, th se elements will have tagged values.

CCA attribute Tagged Vale Applies to Example Values

synchronous synchronous FlowPort, ProtocolPort,
OperationPort, MultiPort

All ports

Synchronous=false (The
response may come back at
a later time)

transactional tran olPort,
OperationPort, MultiPort

True for all ports – each
interaction is atomic.

sactional FlowPort, Protoc

direction dire

GetConfirmation &

ction FlowPort, ProtocolPort,
OperationPort, MultiPort

Initiates for SendOrder.

responds for

GetDenied

ad/2001-08-19 – UML for EDOC Part I

186 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

CCA attribute Tagged Vale Applies to Example Values

postCondition postcondition FlowPort, ProtocolPort,
Port

GetConfirmation=Success

sinessFailure
OperationPort, Multi

GetDenied=Bu

 of tagged values fo

2. Activity Diagram (Choreo rotocol

The class diagr protocol will send and re
nformation by specify

each port will per ormation).

SendO

GetConfirmation GetDeni

Table 12: Summary r a Protocol

5.5 graphy) for a P

am for a protocol (Figure 26) shows what the ceive
but not when. The activity diagram of the prtocol adds this i ing when

form its activity (sending and receiving inf

rder

ed

uc<<S cess>> <<BusinessFailure>>

Figure 26: Choreography of a Protocol

As you can see, the activity diagram for the protocol is quite simple, it shows the start state,
one activiation of each port and the transitions between them. It also shows that after the

er” a choice is ther “GetConfirmation” or “GetDenied” is activated,
but not both.

The start state (Black cir col will
“PortActivity” for the SnedOrder port (the port and the activ is
case). It then shows a choice (the diamond) and PortAcitivites for GetConfirmation and
GetDenied ports. It then shows that either of these ends the protocol, but that

ation ends it ss Success ith
BusinessFailure. (Succe in later t d on the

tion). The transitio early show he
protocol.

Note that if there are multiple activities for one port it may be convenient to use swim lanes,
one for each port. But swim lanes are not required.

“SendOrd made and ei

cle) shown where the proto start. It then goes to a
ity have the same name in th

GetConfirm with the status of Busine
ss and failure can be tested

 while GetDenied ends it w
ransitions, using a guar

transi ns (each of the arrows) cl s the flow of control in t

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 187

What can not be seen is that each PortActivity has a tagged value: “represents” to connect it
to the port it is an activity of. In the example “represents” w he activity
name.

2.5.5.1 Summary of stereotypes for an Activity Diagram or
Choreography

ill be the same as t

CCA element Stereotype Base UML Element Example Elements

Choreography <<C col (not horeography>> StateMachine BuySellProto
visible)

PortActivity <<PortActivity>> State SendOrder,
GetConfirmation,
GetDenied

Psedostate (initial) None (Black circle) Psedostate (initial) Start state

Psedostate (fork) None (bar) Psedostate (fork) None – shows concurrency
in process

Psedostate (join) None (bar) Psedostate (join) None – shows concurrency
coming together.

Psedostate (choice) None (diamond) Psedostate (choice) Choice of confirm or
denied.

Transition <<ChoreographyTransition>> Transition All arrows

Table 13: Stereotypes for an Activity Diagram or Choreography

2.5.5.2 Summary of tagged values for a Choreography

While tagged values can’t be seen in the diagram, these elements will have tagged values.
The tagged values used to define a Choreography are:

CCA attribute Tagged Vale Applies to Example Values

represents <<represents>> PortActivity All Activities

Represents has the same
value as element name

Table 14: Tagged Values for a Choreography

2.5.6

iagram for

Class Diagram for Component Structure

The external “contract” of a component is shown on two diagrams – the class d
structure and the activity diagram for Choreography (much like the protocol). The structure
shows the process component(s), their ports and properties.

ad/2001-08-19 – UML for EDOC Part I

188 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

Buys
(from Buyer)

<<ProtocolPort>>

yer
omponen

(from Seller)

<<ProtocolPort>> t>><<responds>

BuySellProtocol
<<Protocol>>

Bu
<<ProcessC t>> <<initiates>>

Seller
<<ProcessComponen>Sells

Figure 27: Class Di nt Structure agram for Compone

This class diagram shows two process components being defined: “Buyer” and “Seller”.
ocess component uses the “ProcessComponent” stereotype. It also shows that each

of these components has one protocol port each: “Buys” and “Sells”, respectively and that
ese ProtocolPorts i SellProtocol

We can also see that the buyer “initiates” the protocol via the “Buys” port and that the seller
 (or implement e “Sells” p orts will

have their direction set in a tagged value – the color and ster n relations is just

You may also note that we
components, as can be seen from the phrases (from Buyer) and (from Seller). This helps

e c

These components are the ones we saw being used inside of the community process.

 Process Component
Class Diagram

Each pr

mplement the Buy we saw earlier.

“responds” to ort. As before, both p
eotypes o

informational.

choose to define the ports as nested classes of their process

2.5.6.1 Summary of stereotypes for a

Stereotype Base U

both of th

s) that interface via th

organize th lasses but is purely optional.

CCA element ML Element Example Elements

ProcessComponent nent>> hine <<ProcessCompo StateMac Buyer, Seller

ProtcolPorts and
ProcessComponents

rotocolPort>> Class Buy

 perationPort>> Class No
two-way message

ultiPort>> Class None – Shows a set of ports

FlowPort <<FlowPort>> Class s None – for primitive flow

between “Ports” relation Optional: <<initiates>> or
<<responds>>

Association Associations

ProtocolPort <<P s, Sells

OperationPort <<O ne – used to define a

MultiPort <<M
with a behavioral constraint

PropertyDefinition <<PropertyDefiinition>> Attribute None – shows a
configuration value

Direction (value) <<initiatiates>> Association Buyer

Direction (value) <<responds>> Association Seller

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 189

Table 15: Stereotypes for a Process Component Class Diagram

2.5.6.2 Summary of tagged values for a Process Component
Class Diagram

While tagged values can’t be seen in the diagram, these elements will have tagged values.
The tagged values used to define a process component are:

CCA attribute Tagged Vale Applies to Example Values

granularity granularity ProcessComponent Buyer & Seller are “shared”

isPersistent isPersistent ProcessComponent Buyer & Seller are
persistent

primitiveKind PrimitiveKind ProcessComponent Buyer & Seller are not
primitive so have no
primitiveKind.

primitiveSpec PrimitiveSpec ProcessComponent Buyer & Seller are not
primitive so have no
primitiveSpec

synchronous synchronous FlowPort, ProtocolPort,
OperationPort, MultiPort

All ports

Synchronous=false (The
response may come back at
a later time)

transactional transactional FlowPort, ProtocolPort, True for all ports – each
OperationPort, MultiPort interaction is atomic.

direction dire

responds for Sells

ction FlowPort, ProtocolPort,
OperationPort, MultiPort

Initiates for Buys

postCondition postcondition FlowPort, ProtocolPort,
Ope

N/A
rationPort, MultiPort

initial None: UML “Initial
Value”

PropertyDefinition None

isLocked None: UML changability PropertyDefinition None

Table 16: tagged values for a Pro lass Diagram

2.5.7 gram for face

Classical “services” are provided for with the CCA “Interfac terface
 to the normal concept of an object. An interfac
 may not have su ocols. Once such servic

cess Component C

Class Dia Inter

e”, such a service in
corresponds
protocol and

e is a one-way version of a
e is defined for our example. b-prot

ad/2001-08-19 – UML for EDOC Part I

190 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

CustS ervice

 Order)
Float) : Boolean

<< e>

Interfac >

checkCustomer(order :
checkCredit(amount :

Figure 28: Class Diagram for Interface

S

CCA Element

ince the semantics of such an interface are will understood, let’s just relate to the CCA
elements:

Example
Element

UML Element

CustService Interface Interface

CheckCustomer Operation FlowPort

CheckCustomer.
order

DataElement Parameter

checkCredit Operation OperationPort

CheckCredit.
ount

FlowPort Parameter
an

ble 17: Elements of an InteTa rface

Note that the use of a stereotype for an interface is optional., allowing the use of other
ML classifier

Interfaces may have the same tagged values as protcol, but interfaces don’t need
tion”, the direction

2.5.7.1 Using Interfaces

While we are on the subject, let’s also look at the class diagram for a process component
mpleme

forms of U s.

 is always “responds”. “direc

with a port that i nts this interface.

CustS ervice
<<Interface>>

EnqStatus
(from CustomerComponent)

CustomerComponent

checkCustomer()
checkCredit()

<<ProtocolPort>> <<Entity>><<responds>>

Figure 29: Using Interfaces

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 191

This diagram shown an “Entity” ProcessComponent (see entity profile) called
“CustomerComponent” which exposes a ProtocolPort (EnqStatus) which implements this
interface.

2.5.8 Class Diagram for Process Components with multiple ports

Up to this point we have seen process components w
components interact with multiple other components. We are going to define such a
component that will be used inside other components later.

ith only one port, while most process

CustService

checkCustomer()
checkCredit()

<<Interface>>

CheckCustomer
)

<<ProtocolPort>>

che
(from OrderValidation)

<<FlowPort>>

acceptOrder
(from CheckCustomer)

<<FlowP ort>>

Order
(from BuySell)

<<Composi teData>>

OrderValidation
sComponent>>

OrderDenied
<<Composi teData>>

reject
(from OrderValidation)

<<FlowP ort>>

<<ini tiates>>

<<responds>>

<<initiates>>

er Validati
ponent

Ord
Com

on

ckOrder

<<Proces

(from OrderValidation<<initiates>>

Figure 30: Process Components with multiple ports

This diagram defines the OrderValidation ProcessComponent. Note that it has the
following ports:

• checkOrder – responding flow port (the order)

• CheckCustomer – initiating protocol port to a service

• AcceptOrder – intiating flow port (the order)

• Reject – initiating flow port (OrderDenied)

ad/2001-08-19 – UML for EDOC Part I

192 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

2.5.9 ocess

activity diagram much like the protocol.

Activity Diagram showing the Choreography of a Pr
Component

Since our Order Validation process component has multiple ports, we may also want to
specify the choreography of those ports, when each will activate. This is done using an

Collaboration Diagram for Process Component
Compositio

A composition collaboration diagram shows how compon

community process. Now we will look at a collab

checkOrder

rejectacc eptOrder

CheckCustomer

success failure

Order Validation
Choreography

Figure 31: Choreography of a Process Component

Since the model elements used here are
repeat the tables.

2.5.10
n

ents are used to help define and
(perhaps) implement another component. We have already seen one composition, for the

oration diagram which specifies the
ller.

 the same as those for the protocol, we will not

inside of one of our process components – the se

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 193

Seller : Sells
: checkOrder

 : reject

 :
acceptOrder

: CheckCustomer

Process : OrderProcessing

: doOrder

: ProcessedOrder

CustB ean :
CustomerComponent

 : SendOrder

 : GetDenied

 :
GetConfirmation

 : EnqStatus

er Composit ion

1: checkCustomer(order : Order)

Sell

Validate : OrderValidation

Figure 32: Process Component Composition

This is a collaboration diagram “inside” the seller, which the seller will do to implement its
protocol by using other components. This is a very specific use of a collaboration diagram
and needs some explanation.

First note that, like the community process, we are showing the ports of components and of
protocols nested inside the component or protocol.

The Component Usages are as follows:

• Validate – uses the “OrderValidation” component

• CustBean – uses the CustomerComponent

• Process – uses the “OderProces m

If we look inside of “Validate” we see a classifier role for each port: checkOrder, reject,
nd

omponent being
or for each port

component for which we are making the collaboration diagram. Since
this port is a protocol port, it also has sub-ports which show up as nested classifier roles.

s
ollowing connections:

sing” co ponent (not previously shown)

CheckCustomer & acceptOrder. We see the same pattern repeated inside of CustBean a
Process.

Note “Seller : Sells”. This is the representation of the “Sells” port on the c
defined – in this case “Seller”. There will be such a “proxy” PortConnect
on the outside of the

To “connect” one port to another we draw an association role (a line representing a
Connection) from one port to another. The connected ports must have compatible type
and directions. So in this diagram we have made the f

ad/2001-08-19 – UML for EDOC Part I

194 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

2.5.10.1 Connections in the example

From Component
Usage

From Port
Connector

To Port Connector To Component
Usage

Seller Sells CheckOrder Validate

CheckOrder Reject GetDenied Seller

Validate CheckCustomer EnqStatus * Using Operation
“checkCust”

CustBean

Validate AcceptOrder DoOrder Process

Process ProcessOrder GetConfirmation Seller

Table 18: Connections

Each of these connections will cause data to flow from one component to the other, via the
selected ports. It is these Connections which connect the activities of the components
together in the context of this composition.

2.5.10.2 Summary of stereotypes for a Process Component
Collaboration

CCA element Stereotype Base UML Element Example Elements

Composition <<Composition>> Collaboration Seller Composition

ProcessComponent Implied Classifier Seller

ComponentUsage <<C ifier Role (Object*) Validate, Process, CustBean omponentUsage>> Class

PortConnector <<P

GetConfirmation

CheckOrder, reject,
CheckCustomer,
acceptOrder

DoOrder, ProcessOrder

ortConnector>> Classifier Role (Object*) Seller, SendOrder,
GetDenied,

EnqStatus

Connection Connection (Optional) Association Role (Object Link*) See above table

ContextualBinding <<ContextualBinding>> Binding (Note*) None – used to refine which
component type to use

PropertyValue <<PropertyValue>> Constraint (Note*) None – use to set a
configuration property of a
component

Table 19: Stereotypes for a Process Component Collaboration

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 195

activities.

As can be seen from the exa ect the “outside” p
com g defined) with the “inside” ports (those on the comp eing used).
The PortConnectors for the outside ports are shown without an owning ComponentUsage,
whi PortConnectors fo nts being used are shown i e
Co Usage being use

2.5 ial no

Sin ve us the a est” ports, ports may be seen rts to any
lev le only sh ch nesting. The sam f nesting is
used within activity diagrams – since activities may be nested as well.

2.5.11 Model Management

e in
w the example components are organized in

the Data Access Technologies’ UML tool. Note how using nested classes (such as Ports
ces

separate.

2.5.10.3 Special note on “proxy” port

mple, we need to conn orts (those on the
onents bponent bein

le the r the compone nside of th
mponent d.

.10.4 Spec te on protocols

ce protocols gi bility to “n within po
el. This examp own one level of su e kind o

While the organizational structure of components is not visible in a diagram, it is visibl
tools. The screen shot in Figure 33 shows ho

being inside of their ProcessComponent) helps to organize the model and keep namespa

ad/2001-08-19 – UML for EDOC Part I

196 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 September 17, 2001

Figure 33: Model Management

2.5.12 Using the CCA Notation for Component & Protocol
Structure

Figure 34 shows the CCA notation being used for the protocol and process component
structure, above. Note that as with the UML notation, this is done from an out-of-the-box
tool (Component-X®) - the notation is not quite standard CCA yet.

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing – Chapter 3 197

This shows the community process and protocol corresponding to the UML example,
above.

Figure 34: Community Process and Protocol

Figure 35 Composition in CCA notation

Figure 35 shows the seller composition in CCA notation; it is equivalent to the seller
collaboration diagram.

ad/2001-08-20 – UML for EDOC Part II

A-8 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

3. The Sales example

This example illustrates the specification of a system of collaborating parties, involved in a
commercial Sale.

The Sales example defines the collaboration between the parties involved.

The focus is on the boundaries between the parties – ComponentUsages, their specification
– ProcessComponents, their connectable point – Ports, and the externally observable
contract of candidate interactions – Protocols .

Each party may be further specified as an internal composition of collaborating sub-
components, onto which the external contract is delegated.

3.1 Performer for the ProcessOrder Activity of the Procurement
System example

The Sales example is referenced as part of the Procurement Process of the Buyer, as the
Performer for the ProcessOrder Activity..

Please refer to the Procurement System example of the Business Processes Profile (Section 2
above), for the specification of the Business Process of the Buyer, where this Sales example
is used and initiated, to fulfill the ProcessOrder Activity.

In the context of the Buyer Business Process :

(copied from the Procurement System example (Section 2))

"… After the Authorizing Officer has awarded the contract to a particular supplier, the order
is released to that supplier for processing. …"

The organization performing the Procurement Process plays the role of Buyer, and the
awarded supplier plays the role of Seller, in the BuySellCommunity CommunityProcess.

The Award Activity will determine the identity of the actual Seller instance, corresponding
to a ProcessComponent type of Seller, that plays the Seller role in the BuySell
CommunityProcess.

3.2 BuySell Community Process

The BuySell CommunityProcess specifies how a Buyer, a Seller and a Logistics collaborate
to complete a business. Each role is played by a ComponentUsage of the same name. The
specifications for the used ProcessComponent can be found under headers below.

The Buyer collaborates directly with the Seller, through the Buy and Sell ProtocolPorts,
according to the Sales Protocol.

The Seller and the Buyer collaborate with the Logistics, through the Ship and Delivery
ProtocolPorts, according to Protocol of the same names. The specification for the Protocols
can be found under headers below.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II A-9

Buyer Seller

BuySell CommunityProcess

Buy Sell

Logistics

ShipDelivery

ShipDelivery

Figure 4 BuySell CommunityProcess

The activities in the BuySell Community Process start by the Buyer initiating the interactions
on its Buy ProtocolPort, according to the Sales Protocol.

The Seller is connected through its Sell ProtocolPort, to the Buy ProtocolPort of the Buyer.
Therefore, the Seller will respond to the Sales Protocol, as initiated from the Buyer.

The Seller will follow the Sales Protocol, and eventually initiate the Ship Protocol with the
Logistics role. The Logistics role will respond to the Ship Protocol, and initiate the Delivery
Protocol on the Buyer. The Buyer will then be able to proceed with the Sales Protocol, and
complete the overall collaboration.

3.3 Protocols

3.3.1 Sales Protocol

The interactions between the ComponentUsage in the BuySell CommunityProcess, above,
occur according to Protocols, as specified below.

ad/2001-08-20 – UML for EDOC Part II

A-10 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

Protocol Sales

ShippingNoticeBT

responderRole
Seller

initiatorRole
Buyer

QuoteBT

OrderBT

PaymentNoticeBT

<<initiates>> Quote

<<initiates>> OrderBT

<<responds>> ShippingNoticeBT

<<initiates>> PaymentNoticeBT

Success

[OrderDenied]

[OrderConfirmation]

Figure 5 Sales Protocol structure and choreography

Structure

The Sales Protocol is an integration of four simpler Protocols : QuoteBT, OrderBT and
PaymentNoticeBT. The Sales Protocol has a ProtocolPort using each of these simpler
Protocols. The specification for these Protocols can be found under headers below.

Interactions in the ProtocolPorts QuoteBT, OrderBT and PaymentNoticeBT will be initiated
by the initiatorRole of the Sales Protocol.

The initiatorRole of the Sales Protocol will respond to interactions in the ShippingNoticeBT
ProtocolPort.

Choreography

Interactions in the Sales Protocol will begin by the initiatorRole of the Sales Protocol,
initiating and fully performing the interactions of the QuoteBT ProtocolPort.

After this, the initiatorRole will initiate and fully perform the interactions of the OrderBT
ProtocolPort.

If during performance of the interaction of the OrderBT ProtocolPort, an OrderDenied has
flown between initiatorRole and responderRole, then the Protocol ends with a Failure
condition.

Else, if an OrderConfirmation has flown, then the initiatorRole of the Sales Protocol will
respond and fully perform the interactions of the ShippingNoticeBT ProtocolPort.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II A-11

After this, the initiatorRole will initiate and fully perform the interactions in the
PaymentNoticeBT ProtocolPort.

3.3.2 QuoteBT Protocol

Protocol QuoteBT

Quote QuoteRequest

responderRole
Seller

initiatorRole
Buyer

<<initiates>> QuoteRequest

<<responds>> Quote

Figure 6 QuoteBT Protocol structure and choreography1

QuoteBT is a Protocol in the form of a Request-Reply, where the initiatorRole will send a
QuoteRequest, and receive a Quote as response. QuoteRequest and Quote are FlowPort of
the QuoteBT Protocol, typed to CompositeData of the same name.

3.3.3 OrderBT Protocol

Protocol OrderBT

OrderDenied

OrderConfirmation Order

responderRole
Seller

initiatorRole
Buyer

<<initiates>> Order

<<responds>> OrderDenied <<responds>> OrderConfirmation

Failure Success

Figure 7 OrderBT Protocol structure and choreography2

QuoteBT is a Protocol in the form of a Request-Multiple_Candidate_Reply, where the
initiatorRole will send an Order, and receive as response an OrderConfirmation or an
OrderDenied. Order, OrderConfirmation and OrderDenied are FlowPort of the OrderBT
Protocol, typed to CompositeData of the same name.

1 The direction of the ports is incorrect in Figures 6 to 11. In all these diagrams, <<responds>> should read <<initiates>>,
and vice versa .
2 See footnote to Figure 6

ad/2001-08-20 – UML for EDOC Part II

A-12 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

An OrderConfirmation leads to a successful termination of the Protocol, while an
OrderDenied is a Failure condition.

3.3.4 ShippingNoticeBT Protocol

Protocol ShippingNoticeBT

ShippingNotice

responderRole
Buyer

initiatorRole
Seller

<<initiates>> ShippingNotice

Figure 8 ShippingNoticeBT Protocol structure and choreography3

ShippingNoticeBT is a Protocol with a single FlowPort, corresponding to the sending of a
ShippingNotice by the initiatorRole of the Protocol.

To declare a Protocol for a single flow may be redundant, as the unique FlowPort could be
included wherever the Protocol is used, like in the Sales Protocol of our example. In this case,
ShippingNoticeBT has been defined, for symmetry, and to illustrate the benefit of this
approach, encapsulating as a Protocol the single flow nature of the interaction.

3.3.5 PaymentNoticeBT Protocol

Protocol PaymentNoticeBT

PaymentNotice

responderRole
Seller

initiatorRole
Buyer

<<initiates>> PaymentNotice

Figure 9 PaymentNoticeBT Protocol structure and choreography4

PaymentNoticeBT is a Protocol with a single FlowPort, corresponding to the sending of a
PaymentNotice by the initiatorRole of the Protocol.

3 See footnote to Figure 6
4 See footnote to Figure 6

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II A-13

3.3.6 ShipBT Protocol

Protocol ShipBT

ShippingRequest

responderRole
Logistics

initiatorRole
Shipper

PickupReceipt

<<initiates>> ShippingRequest

<<responds>> PickupReceipt

Figure 10 ShipBT Protoco structure and choreography5

ShipBT is a Protocol in the form of a Request-Reply, where the initiatorRole will send a
ShippingRequest, and receive a PickupReceipt as response. ShippingRequest and
PickupReceipt are FlowPort of the ShipBT Protocol, typed to CompositeData of the same
name.

3.3.7 DeliveryBT Protocol

Protocol DeliveryBT

DeliveryReceipt

responderRole
Adressee

initiatorRole
Logistics

DeliveryAcceptance

<<initiates>> DeliveryReceipt

<<responds>> DeliveryAcceptance

Figure 11 DeliveryBT Protocol structure and choreography6

DeliveryBT is a Protocol in the form of a Request-Reply, where the initiatorRole will send a
DeliveryReceipt, and receive a DeliveryAcceptance as response. DeliveryReceipt and
DeliveryAcceptance are FlowPort of the DeliveryBT Protocol, typed to CompositeData of
the same name.

5 See footnote to Figure 6
6 See footnote to Figure 6

ad/2001-08-20 – UML for EDOC Part II

A-14 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

3.4 Components

3.4.1 Buyer ProcessComponent

Buyer

BuyDelivery

Failure

Success

<<initiates>> Buy

<<responds>> Delivery

[OrderConfirmation][OrderDenied]

Figure 12 Buyer ProcessComponent structure and choreography

Buyer ProcessComponent is used in the BuySell CommunityProcess, as ComponentUsage
of the same name.

Buyer has two ProtocolPort named Buy and Delivery.

The Buyer initiates interactions through the Buy ProtocolPort according to the Sales
Protocol. The Delivery ProtocolPort responds to the DeliveryBT Protocol.

The activities of the Buyer ProcessComponent will begin by initiating and fully performing
the interactions through the Buy Port, according to the used Sales Protocol.

After this, if during performance of the interaction of the Sales Protocol through the Buy
ProtocolPort, an OrderDenied has flown, then the choreography ends with a Failure
condition.

Else, if an OrderConfirmation has flown, then the Buyer ProcessComponent will respond to
interactions through the Delivery ProtocolPort, and complete successfully.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II A-15

3.4.2 Seller ProcessComponent

Seller

Sales

Quote

Order

Shipping

Payment

Ship

<<initiates>> Ship

<<responds>> Quote

<<responds>> Order

<<initiates>> ShippingNotice

<<responds>> PaymentNotice

Failure

Success

[OrderDenied] [OrderConfirmation]

Sales

Ship

Figure 13 Seller ProcessComponent structure and choreography

Seller ProcessComponent is used in the BuySell CommunityProcess, as ComponentUsage
of the same name.

Seller has two ProtocolPort named Sell and Ship.

The Seller responds to interactions through the Sell ProtocolPort according to the Sales
Protocol. The Ship ProtocolPort initiates interactions in the Delivery Protocol.

The activity of the Seller ProcessComponent will begin when responding and fully
performing the interactions through the Buy Port, according to the used Sales Protocol.

ad/2001-08-20 – UML for EDOC Part II

A-16 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

The Failure termination condition of the Sales Protocol is als o a Failure termination condition
of the choreography of the Seller ProcessComponent.

In the choreography for the Seller ProcessComponent, the interactions through the Ship
ProtocolPort, according to the ShipBT Protocol, are inserted as a whole in between two
consecutive states of the Sales Protocol in the Sell ProtocolPort.

The choreography of the Seller ProcessComponent is an integration of the choreographies
of the Sales and ShipBT Protocols, of the Sell and Ship ProtocolPort. The integration is
safely achieved by insertion, as a refinement of a Transition in the Sales Protocol, as two
Transitions to and from the inserted Ship PortActivity.

The interactions through the Sell ProtocolPort are integrated with the Ship ProtocolPort, by
insertion of the whole ShipBT Protocol, interleaved between two activities of the Sales
Protocol. This is a case of safe synthesis, where the constraints and partial ordering of each
Protocol are still valid in the synthesized protocol.

The successful termination of the choreography of the Sales Protocol in the Sell
ProtocolPort, is also the successful termination of the Seller ProcessComponent.

This structure and choreography fully specify the external contractual obligations and
expectations of the Seller ProcessComponent.

No details have been offered, about how the Seller ProcessComponent actually performs its
duties, in compliance with the externally observable structure and behavior specified above.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II A-17

3.4.3 Seller ProcessComponent – internal composition

Seller

Sales

Quote

Order

ShippingNotice

PaymentNotice

QuoteCalculator

Quote

Seller_Orders

Order

Accounts Receivable

Warehouse

OrderConfirmation

OrderConfirmation Shipping

OrderConfirmation

Payment

Ship

Ship

Figure 14 Seller ProcessComponent : internal composition

In the header above, the externally observable structure and choreography have been
defined, without revealing any internal details of the Seller ProcessComponent.

When des igning a system, that will play the Seller role in a BuySell CommunityProcess, the
Seller ProcessComponent will have to be further specified, and its complexity decomposed in
smaller units – and recursively – until the resulting ProcessComponent can be directly
mapped or implemented to non-CCA artifacts.

The internal de-composition of the Seller ProcessComponent, must comply with the
externally observable choreography. If it complies, the Seller may play the role in the BuySell
Community Process – and others using the Seller ProcessComponent definition –
independently of how the Seller ProcessComponent has been internally defined.

In our example, the Seller ProcessComponent is internally composed by using
QuoteCalculator, Seller_Order, Warehouse and AccountsReceivablel components.

ad/2001-08-20 – UML for EDOC Part II

A-18 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

The Sell ProtocolPort is rendered expanded, displaying the ProtocolPort of the Sales
Protocol, as sub-Port of the Sell ProtocolPort.

The individual sub-ProtocolPort of Sell are delegated or initiated to/from port of sub-
component of Seller.

The usage of QuoteCalculator responds to and handles the Quote sub-port of Sell. The
QuoteCalculator ProcessComponent has a ProtocolPort using the QuoteBT Protocol, and is
therefore compatible for direct delegation from the Quote sub-port of Sell.

Similarly, the Seller_Orders component usage responds to and handles the Order sub-Port of
Sell. In addition, the Seller_Orders ProcessComponent has an additional OrderConfirmation
outgoing flow, connected to the Warehouse and AccountsReceivable component usages.
When Seller_Orders responds an OrderConfirmation, the same OrderConfirmation will be
sent to Warehouse and AccountsReceivable.

The Warehouse component usage responds to the OrderConfirmation from the
Seller_Orders component, and initiates the interactions of the ShipBT Protocol, forwarded
through the Ship ProtocolPort of the container Seller ProcessComponent. After, the
Warehouse component initiates the interactions of the ShippingNoticeBT Protocol, through
the ShippingNotice sub-Port of Sell.

The AccountsReceivable component usage receives OrderConfirmation from Seller_Orders,
and responds to and handles the PaymentNotice sub-port of Sell.

3.4.4 QuoteCalculator ProcessComponent

The QuoteCalculator ProcessComponent has the structure as shown in its component usage
in the Seller internal compositions.

QuoteCalculator has a single ProtocolPort responding to the QuoteBT Protocol.

The chorography of QuoteCalculator corresponds to the choreography of the QuoteBT
Protocol.

3.4.5 Seller_Orders ProcessComponent

Seller_Orders

Order
OrderConfirmation

<<initiates>>
OrderConfirmation

<<responds>> Order

Failure

Success

[OrderDenied]

[OrderConfirmation]

Figure 15 Seller_Orders ProcessComponent structure and choreography

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II A-19

Seller_Orders ProcessComponent responds to interactions of the OrderBT Protocol through
the Order ProtocolPort.

The Seller_Orders ProcessComponent has an additional OrderConfirmation outgoing flow.
When Seller_Orders responds an OrderConfirmation, the same OrderConfirmation will be
sent also through the FlowPort.

3.4.6 Warehouse ProcessComponent

Warehouse

OrderConfirmation Shipping

Ship

<<initiates>> Ship

<<responds>>
OrderConfirmation

<<initiates>> Shipping

Figure 16 Warehouse ProcessComponent structure and choreography

The Warehouse ProcessComponent receives an OrderConfirmation flow, and initiates the
interactions of the ShipBT Protocol, through the Ship ProtocolPort. After, the Warehouse
component initiates the interactions of the ShippingNoticeBT Protocol, through the
ShippingNotice Port.

3.4.7 AccountsReceivable ProcessComponent

Accounts Receivable

OrderConfirmation

Payment

<<responds>> Payment

<<responds>>
OrderConfirmation

Figure 17 AccountsReceivable ProcessComponent structure and choreography

ad/2001-08-20 – UML for EDOC Part II

A-20 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

The AccountsReceivable ProcessComponent receives an OrderConfirmation, and responds
to the PaymentNoticeBT Protocol through the Payment ProtocolPort.

3.4.8 Logistics ProcessComponent

Logistics

ShipDelivery

<<initiates>> Delivery

<<responds>> Ship

Figure 18 Logistics ProcessComponent structure and choreography

Logistics ProcessComponent is used in the BuySell CommunityProcess, as
ComponentUsage of the same name.

Logistics has two ProtocolPort named Ship and Delivery.

The Logistics responds to interactions through the Ship ProtocolPort according to the
ShipBT Protocol. The Delivery ProtocolPort initiates interactions of the DeliveryBT Protocol.

The activities of the Logistics ProcessComponent will begin by responding and fully
performing the interactions through the Ship Port, according to the used ShipBT Protocol.

After this the Logistics ProcessComponent will initiate and fully perform the interactions
through the Delivery ProtocolPort.

The Logistics ProcessComponent integrates the ShipBT and DeliveryBT Protocols, by
safely synthesizing them in a sequence, where the ShipBT Protocol is fully exercised and
completed, before starting the DeliveryBT Protocol.

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing 445

Glossary

Table 35, below, defines the specialist terms used in this Submission.

Term Explanation

b2b Business to Business

b2c Business to Customer

BFOP Business Function Object Pattern

CBOP Common Business Object Patterns Consortium

CCA Component Collaboration Architecture – a profile for specifying
components at multiple levels of granularity

EAI Enterprise Application Integration

ebXML XML for Electronic Business

ECA Enterprise Collaboration Architecture – a set of profiles for
making technology independent models of EDOC systems

EDOC Enterprise Distributed Object Computing – what the submission
is all about.

EJB Enterprise JavaBeans

FCM Flow Composition Model

RM-ODP Reference Model of Open Distributed Processing

UML Unified Modeling Language

VMM Virtual metamodel: a formal model of a package of extensions to
the UML metamodel using UML’s own built-in extension
mechanisms

Table 35 Glossary of Terms

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing 447

References

[1] ISO/IEC & ITU-T: Information technology – Open Distributed Processing – Part 1
– Overview – ISO/IEC 10746-1 | ITU-T Recommendation X.901

[2] ISO/IEC & ITU-T: Information technology – Open Distributed Processing – Part 2
– Foundations – ISO/IEC 10746-2 | ITU-T Recommendation X.902

[3] ISO/IEC & ITU-T: Information technology – Open Distributed Processing – Part 3
– Architecture – ISO/IEC 10746-3 | ITU-T Recommendation X.903

[4] ISO/IEC & ITU-T: Information technology – Open Distributed Processing –
Enterprise Viewpoint – ITU-T Recommendation X.911 | ISO/IEC 15414

[5] DISGIS Web site: http://www.disgis.com

[6] COMPASS Web site: http://www.compassgl.org

[7] OBOE Web site: http://www.dbis.informatik.uni-frankfurt.de/~oboe/

[8] ISO TC211 Web site: http://www.statkart.no/isotc211/

[9] Open Geodata Consortium Web site: http://www.opengis.org

[10] ISO/IEC JTC1/SC21, Information Technology. Open Systems Interconnection -
Management Information Services - Structure of Management Information - Part 7: General
Relationship Model, 1995. ISO/IEC 10165-7.

[11] T.Gilb, G.Weinberg. Humanized Input. Winthrop Publ., 1977.

[12] H.Kilov, J.Ross. Information modeling. Prentice-Hall, 1994.

[13] H.Kilov, L.Cuthbert. A model for document management. Computer
Communications, Vol. 18, No. 6 (June 1995), pp. 408-417

[14] H.Kilov. Business specifications. Prentice-Hall, 1999.

[15] H.Kilov, A.Ash. How to ask questions: Handling complexity in a business
specification. In: Proceedings of the OOPSLA’97 Workshop on object-oriented behavioral
semantics (Atlanta, October 6th, 1997), ed. by H.Kilov, B.Rumpe, I.Simmonds, Munich
University of Technology, TUM-I9737, pp. 99-114.

[16] H.Kilov, A.Ash. An information management project: what to do when your
business specification is ready. In: Proceedings of the Second ECOOP Workshop on
Precise Behavioral Semantics, Brussels, July 24, 1998 (ed. by H.Kilov and B.Rumpe).
Technical University of Munich, TUM-I9813, pp. 95-104.

[17] H.Kilov, B.Rumpe, I.Simmonds (Eds.). Behavioral specifications of businesses and
systems. Kluwer Academic Publishers, 1999.

ad/2001-08-19 – UML for EDOC Part I

448 A UML Profile for Enterprise Distributed Object Computing September 17, 2001

[18] B.Potter, J.Sinclair, D.Till. An introduction to formal specification and Z. Prentice-
Hall, 1991.

[19] Sun Java Community Process JSR-26 currently under public review,
http://jcp.org/jsr/detail/26.jsp

[20] Sun Java Community Process JSR-40 not yet released for public review,
http://jcp.org/jsr/detail/40.jsp

[21] MOF 1.3 Specification, OMG document http://cgi.omg.org/cgi-bin/doc?ad/99-09-
05

[22] UML Profile for CORBA 1.1 specification, OMG document http://cgi.omg.org/cgi-
bin/doc? ptc/01-01-06

[23] Unified Modeling Language Specification, Version 1.4, OMG document
http://cgi.omg.org/cgi-bin/doc?ad/01-02-13

[24] XMI 1.1 Specification, OMG document http://cgi.omg.org/cgi-bin/doc?ad/99-10-02

[25] Unified Modeling Language Specification, Version 1.3, June, 1999
http://cgi.omg.org/cgi-bin/doc?ad/99-06-08

[26] Desmond F. D’Souza, Alan Cameron Wills. Objects, Components, and frameworks
with UML: The Catalysis Approach. Reading, Mass., Addison-Wesley, 1999.

[27] Martin Fowler. M. Analysis Patterns: Reusable Object Models. Reading, Mass.,
Addison-Wesley, 1997.

[28] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading, Mass., 1995.

[29] Ivar Jacobson, Grady Booch, James Rumbaugh, The Unified Software Development
Process. Addison-Wesley, Reading, Mass., 1999.

[30] OMG, Model Driven Architecture – under development

[31] Trygve Reenskaugh, Per Wold and Odd Arild Lehne. Working with Objects : the
OORAM Software Engineering Method 1996 Manning Publications Co. 1996

[32] Bran Selic, Garth Gullekson and Paul T. Ward Real-Time Object-Oriented
Modeling. John Willey & Sons, Inc. 1994

ad/2001-08-19 – UML for EDOC Part I

September 17, 2001 A UML Profile for Enterprise Distributed Object Computing 449

	Contents
	Figures
	Tables
	Table of Contents
	Introduction
	The Joint UML for EDOC Profile Submission
	Co-submitting Companies
	Status of this document
	Guide to the Submission
	Overall structure of the submission
	Part I
	Part II

	Structure of Chapter 1

	Missing Items
	Submission contact points
	CBOP
	Data Access Technologies
	DSTC
	EDS
	Fujitsu
	IBM
	Iona
	Open-IT
	SINTEF
	Sun Microsystems
	Unisys

	Proof of Concept
	CBOP
	Data Access Technologies
	DSTC
	EDS
	Fujitsu
	IBM
	Iona
	Open-IT and SINTEF
	Sun Microsystems
	Unisys
	ebXML

	Response to RFP Requirements
	General Mandatory Requirements
	Specific Mandatory Requirements
	Component Modeling
	Modeling of Business Process, Entity, Rule, and Event Objects
	Specification of Business Process Objects
	Specification of Relationships
	Meta-Object Facility Alignment
	Proof of Concept of Profile
	Proof of Concept of Mappability

	Optional Requirements
	Subset Integrity
	Simplification of and Aid to the Development Process
	Tool support
	Alignment with Action Semantics for UML

	Conformance Issues
	Summary of optional versus mandatory interfaces
	Proposed Compliance Points
	Mandatory Compliance Points
	MOF Repository
	MOF XMI interchange
	UML Profile
	UML Profile XMI interchange

	Optional Compliance Points
	Patterns Profile
	Patterns Model
	Java Model
	EJB Model
	FCM Model
	UML Profile for MOF
	CCA Notation
	Business Process Notation

	Changes or extensions required to adopted OMG specifications
	Proof of Concept mappings
	Table of Contents
	Vision
	The EDOC Profile Elements
	The Enterprise Collaboration Architecture
	Component Collaboration Architecture
	Entities profile
	Events profile
	Business Process profile
	Relationships profile

	Patterns
	Technology Specific Models and Technology Mappings

	Application of the EDOC Profile Elements
	Separation of Concerns and Viewpoint Specifications
	Enterprise Specification
	Concepts
	EDOC Enterprise Subprofile

	Computational Specification
	Concepts
	EDOC Computational Specifications
	Levels of ProcessComponent in a Computational Specification
	E-Business Components
	Application Components
	Distributed Components
	Program Components
	Relationships between ProcessComponent levels
	Relationships between ProcessComponent levels

	Information Specification
	Concepts
	EDOC Information Specifications

	Engineering Specification
	Concepts
	EDOC Engineering Specifications

	Technology Specification
	Specification Integrity - Interviewpoint Correspondences
	Computational-Enterprise Interrelationships
	Computational-Information Interrelationships
	Computational-Engineering Interrelationships
	Engineering-Technology Interrelationships

	Table of Contents
	ECA Design Rationale
	Key Design Features
	Recursive component composition
	Process Specification
	Specification of Event Driven Systems
	Integration of Process and Information Models
	Rigorous relationship specification
	Mappings to Technology - Platform Independence

	ECA Elements

	The Component Collaboration Architecture
	Rationale
	Problems to be solved
	Recursive decomposition and assembly
	Traceability
	Automating the development process
	Loose coupling
	Technology Independence
	Enabling a business component Marketplace
	Simplicity

	Approach
	Class Structure (Structure)
	Statecharts (Choreography)
	Collaborations (Composition)
	CCA Notation (Structure & Composition)

	Concepts
	What is a Component Anyway?
	ProcessComponent Libraries
	Execution & Technology profiles
	Specification Vs. Methodology
	Notation

	Conceptual Framework
	ProcessComponent Specification
	Protocols and Choreography
	Primitive and Composed Components
	Composition
	Document & Information Model
	Model Management

	CCA Metamodel
	Structural Specification
	ProcessComponent
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	Granularity
	UML Representation

	isPersistent
	UML Representation

	primitiveKind
	UML Representation

	primitiveSpec
	UML Representation

	Related elements
	Ports \(via “PortOwner”\)
	UML Representation

	Supertype (zero or one) , Subtypes (any number)
	UML Representation

	Properties (Any number)
	UML Representation

	Constraints

	Port
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	isTransactional
	UML Representation

	isSynchronous
	UML Representation

	name
	UML Representation

	Direction
	UML Representation

	PostCondition
	UML Representation

	Related elements
	“Owner” ProcessComponent or Protocol \(Exactly O
	UML Representation

	Constraints

	FlowPort
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	None

	Related elements
	type
	UML Representation

	TypeProperty
	UML Representation

	Constraints

	ProtocolPort
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	Related elements
	uses
	UML Representation

	Constraints

	OperationPort
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	Related elements
	Ports (Via PortOwner)
	UML Representation

	Constraints

	MultiPort
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	Related elements
	Ports (Via PortOwner)
	UML Representation

	Constraints

	Protocol
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	Related elements
	Ports (Via PortOwner)
	UML Representation

	Initiator
	UML Representation

	Responder
	UML Representation

	Constraints

	Interface
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	Related elements
	Ports (Via Protocol & PortOwner)
	Initiator (Via Protocol)
	Responder (Via Protocol)

	Constraints

	InitiatingRole
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	name
	UML Representation

	Related elements
	Protocol
	UML Representation

	Constraints

	RespondingRole
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	
	UML Representation

	Related elements
	Protocol
	UML Representation

	Constraints

	PropertyDefinition
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	name
	UML Representation

	initial
	UML Representation

	isLocked
	UML Representation

	Related elements
	component
	UML Representation

	type
	UML Representation

	Constraints

	PortOwner
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Related elements
	ports
	UML Representation

	Constraints

	Choreography
	Choreography
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	Related elements
	Nodes
	UML Representation

	AbstractTransitions
	UML Representation

	Supertype (zero or one) , Subtypes (any number)
	UML Representation

	Node
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	
	UML Representation

	Related elements
	Choreography
	UML Representation

	Incoming
	UML Representation

	outgoing
	UML Representation

	Constraints

	AbstractTransition
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	None

	Related elements
	Choreography
	UML Representation

	Source
	UML Representation

	Target
	UML Representation

	Constraints

	Transition
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	preCondition
	UML Representation

	Related elements
	Choreography (Via AbstractTransition)
	UML Representation

	Source
	UML Representation

	Target
	UML Representation

	Constraints

	PortUsage
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	Related elements
	extent
	UML Representation

	Represents
	UML Representation

	Constraints

	UsageContext
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	Related elements
	PortsUsed
	UML Representation

	Constraints

	PortActivity
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	Related elements
	Constraints

	PseudoState
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	Kind ; PseudostateKind

	Related elements
	Constraints

	Composition
	Composition
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	Related elements
	bindings
	UML Representation

	uses
	UML Representation

	Connection (via choreography and AbstractTransition)
	UML Representation

	PortConnector (via Choreography and nodes)
	UML Representation

	Constraints

	ComponentUsage
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	Name
	UML Representation

	Related elements
	owner
	UML Representation

	Uses
	UML Representation

	PortsUsed (Via UsageContext)
	UML Representation

	Constraints

	PortConnector
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	Related elements
	Represents (via PortUsage)
	Contexts (via PortUsage)
	Incoming and Outgoing Connections (Via PortUsage and Node)

	Constraints

	Connection
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	Related elements
	Source and Target PortConnectors (Via PortUsage, Node & AbstractTransition)

	Constraints

	PropertyValue
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	value
	UML Representation

	Related elements
	Owner
	UML Representation

	Fills
	UML Representation

	Constraints

	ContextualBinding
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	None

	Related elements
	owner
	UML Representation

	fills
	UML Representation

	bindsTo
	UML Representation

	Constraints

	CommunityProcess
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	None

	Related elements
	None

	Constraints
	None

	Document Model
	DataElement
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	None

	Related elements
	constraints

	Constraints

	DataType
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	None

	Related elements
	None

	Constraints

	Enumeration
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	None

	Related elements
	Values
	UML Representation

	Initial
	UML Representation

	Constraints

	EnumerationValue
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	name

	Related elements
	Enumeration
	UML Representation

	Constraints

	CompositeData
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extend
	DataElements
	Properties
	None

	Related elements
	Feature
	UML Representation

	Supertype
	Subtypes
	UML Representation

	Attribute
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	isByValue
	UML Representation

	required
	UML Representation

	many
	UML Representation

	initialValue
	UML Representation

	Related elements
	type
	UML Representation

	owner
	UML Representation

	DataInvariant
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	Expression
	UML Representation

	isOnCommit (Default: False)
	UML Representation

	Related elements
	ConstrainedElement
	UML Representation

	ExternalDocument
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	MimeType
	SpecURL
	ExternalName

	Related elements
	None

	Constraints

	Model Management
	Package
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	Related elements
	OwnedElements
	UML Representation

	Constraints

	PackageContent
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	name
	UML Representation

	Related elements
	namespace
	UML Representation

	Constraints

	ElementImport
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Extends
	Properties
	None

	Related elements
	ModelElement

	Constraints

	CCA Notation
	CCA Specification Notation
	Composite Component Notation
	Community Process Notation

	UML Profile
	Tables mapping concepts to profile elements
	Introduction
	Stereotypes for Structural Specification
	
	Applicable Subset

	«ProcessComponent»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Correspondence of metamodel attributes with UML attributes
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«Port»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Correspondence of metamodel attributes with UML attributes
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«FlowPort»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«ProtocolPort»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«MultiPort»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	UML Operation represents OperationPort
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«Protocol»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Correspondence of metamodel attributes with UML attributes
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«InitiatingRole»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Correspondence of metamodel attributes with UML attributes
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«RespondingRole»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Correspondence of metamodel attributes with UML attributes
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	UML Classifier represents Interface
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Correspondence of metamodel attributes with UML attributes
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«PropertyDefinition»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Correspondence of metamodel attributes with UML attributes
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«enumeration» DirectionKind
	Instantiation in a model
	Semantics
	Enumeration Literals

	«enumeration» GranularityKind
	Instantiation in a model
	Semantics
	Enumeration Literals

	Stereotypes for Choreography
	
	Applicable Subset

	«Choreography»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«PortActivity»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Correspondence of metamodel attributes with UML attributes
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	UML Transition
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	UML Pseudostate
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«Success»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«Failure»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«enumeration» Status
	Instantiation in a model
	Semantics
	Enumeration Literals

	Stereotypes for Composition
	
	Applicable Subset

	«Composition»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«ComponentUsage»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Correspondence of metamodel attributes with UML attributes
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«PortConnector»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Correspondence of metamodel attributes with UML attributes
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«Connection»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«PropertyValue»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«ContextualBinding»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«CommunityProcess»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	DocumentModel «profile» Package
	«CompositeData»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	"isByValue" Tagged Definition
	«DataInvariant»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Correspondence of metamodel attributes with UML attributes
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«ExternalDocument»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	N/AFormal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	UML Model_Management Package
	Relationships
	AttributeType
	Bindings
	BindsTo
	Configuration
	Connections in Choreography
	Connections in Composition
	DataAtribute
	DataConstraint
	DataGeneralization
	Fills
	FlowType
	Generalization
	ImportElement
	Initiator
	Is_a_Choreography
	Is_a_Composition
	Nodes in Choreograpy
	Nodes in Composition
	PackageElements
	Ports
	PortUsages in Choreography
	PortUsages in Composition
	Properties
	PropertyType
	ProtocolType
	Represents in Choreography
	Represents in Composition
	Responder
	Source
	Target
	TypeProperty
	Uses
	ValueFor

	General OCL Definition Constraints

	Diagramming CCA
	Types of Diagram
	Class Diagrams for the Document Model
	Class Diagrams for the Component Structure
	Collaboration Diagrams for Composition
	State or Activity Diagrams for Protocols & Process Components
	CCA Notation for Process Component Structure & Composition

	The Buy/Sell Example
	Collaboration diagram shows community process
	Summary of stereotypes for a Community Process

	Class diagram for protocol structure
	Summary of stereotypes for a Protocol
	Summary of tagged values for a Protocol

	Activity Diagram (Choreography) for a Protocol
	Summary of stereotypes for an Activity Diagram or Choreography
	Summary of tagged values for a Choreography

	Class Diagram for Component Structure
	Summary of stereotypes for a Process Component Class Diagram
	Summary of tagged values for a Process Component Class Diagram

	Class Diagram for Interface
	Using Interfaces

	Class Diagram for Process Components with multiple ports
	Activity Diagram showing the Choreography of a Process Component
	Collaboration Diagram for Process Component Composition
	Connections in the example
	Summary of stereotypes for a Process Component Collaboration
	Special note on “proxy” port activities.
	Special note on protocols

	Model Management
	Using the CCA Notation for Component & Protocol Structure

	The Entities Profile
	Introduction
	Normative sections
	Relationship to other parts of ECA
	The Business Process profile
	The CCA profile
	The Events profile
	The Relationships profile
	The Patterns profile

	Design Concepts
	Composition
	Encapsulation
	Ports
	Identity
	Domain Modeling
	Entity Role
	Events
	Data Monitoring
	Distributed Computing
	Levels of Coupling

	Standard UML Facilities
	
	Attributes
	Methods
	Relationships
	Activity Graphs
	State Machines
	Interaction diagrams
	Object Constraint Language

	Entity viewpoints
	Information viewpoint
	Composition viewpoint

	Entity Metamodel
	Overview
	Entity Package
	DataManager
	Semantics
	UML base element(s) in the Profile
	Fully Scoped name
	Owned by
	Properties
	Network Access
	Sharable

	Related elements
	Process Component
	Composite Data
	Entity

	Constraints
	N/A

	EntityData
	Semantics
	UML base element(s) in the Profile
	Fully Scoped name
	Owned by
	Properties
	Related elements
	Composite Data
	Relationship
	Data Manager

	Constraints

	Key
	Semantics
	UML base element(s) in the Profile
	Fully Scoped name
	Owned by
	Properties
	Prime Key

	Related elements
	Composite Data
	Entity Data
	Key Element

	Constraints

	Key Element
	Semantics
	UML base element(s) in the Profile
	Fully Scoped name
	Owned by
	Properties
	Related elements
	Key
	Key Attribute
	Foreign Key

	Constraints

	Foreign Key
	Semantics
	UML base element(s) in the Profile
	Fully Scoped name
	Owned by
	Properties
	Related elements
	Key Element
	Relationship

	Constraints

	Key Attribute
	Semantics
	UML base element(s) in the Profile
	Fully Scoped name
	Owned by
	Properties
	Related elements
	Key Element
	Attribute

	Constraints

	Entity
	Semantics
	UML base element(s) in the Profile
	Fully Scoped name
	Owned by
	Properties
	Managed
	NetworkAccessible
	Sharable

	Related elements
	DataManager
	Entity Role
	Data Probe

	Constraints

	Entity Role
	Semantics
	UML base element(s) in the Profile
	Fully Scoped name
	Owned by
	Properties
	VirtualEntity

	Related elements
	Entity

	Constraints

	DataProbe
	Semantics
	UML base element(s) in the Profile
	Fully Scoped name
	Owned by
	Properties
	ExtentProbe

	Related elements
	Multi Port
	Entity

	Constraints

	Entity UML Profile
	Metamodel Mapping to Profile
	Entity Package
	Data Manager
	Inheritance
	Instantiation in model
	Semantics
	Tagged values
	Network Access:
	Sharable:
	Manages:

	Constraints
	Diagram notation

	Entity Data
	Inheritance
	Instantiation in a model
	Semantics
	Tagged values
	Key:

	Constraints
	Diagram notation

	Key
	Inheritance
	Instantiation in a model
	Semantics
	Tagged values
	Prime Key
	Key Elements

	Constraints
	Diagram notation

	Key Element
	Inheritance
	Instantiation in a model
	Semantics
	Tagged values
	Constraints
	Diagram notation

	Foreign Key
	Inheritance
	Instantiation in a model
	Semantics
	Tagged values
	KeySource

	Constraints
	Diagram notation

	Key Attribute
	Inheritance
	Instantiation in a model
	Semantics
	Tagged values
	AttributeName

	Constraints
	Diagram notation

	Entity
	Inheritance
	Instantiation in a model
	Semantics
	Tagged values
	Probes
	Managed
	NetworkAccessible
	Sharable

	Constraints
	Diagram notation

	Entity Role
	Inheritance
	Instantiation in a model
	Semantics
	Tagged values
	VirtualEntity

	Constraints
	Diagram notation

	Data Probe
	Inheritance
	Instantiation in a model
	Semantics
	Tagged values
	ExtentProbe

	Constraints
	Diagram notation

	The Events Profile
	Rationale
	Introduction
	Overall design rationale
	Concepts
	Event Based Business Model
	Event Driven Computing
	Event Driven Business Computing
	Publish and Subscribe

	Key Concepts of event driven business and system models
	EventBasedProcess
	Entity
	BusinessEvent
	Notification
	Publisher
	Subscriber
	Subscription
	NotificationRule

	Event and Notification based Interaction Models
	Intra Process Event Notification
	Cross Process Event Notification
	Delegation

	Leveraging event based models
	Business Event Types
	Success events
	Failure events
	TimeOut-Events
	Mutual exclusion events
	Data change events
	Timed notifications

	Event Algebra
	Management by Exception

	Metamodel
	Business Process View
	Entity View
	Whole Event Model
	Publish and Subscribe Package
	Publisher
	Semantics
	UML base element(s) in the Profile
	Fully Scoped name
	Owned By
	Properties
	Related elements
	Publication

	Constraints

	Publication
	Semantics
	UML base element(s) in the Profile
	Fully Scoped Name
	Owned By
	Properties
	publicationClause
	domain

	Related Elements
	Publisher
	PubSubNotice
	FlowPort

	Constraints

	Subscriber
	Semantics
	UML base element(s) in the Profile
	Fully Scoped Name
	Owned By
	Properties
	Related elements
	Subscription

	Constraints

	Subscription
	Semantics
	UML base element(s) in the Profile
	Fully Scoped Name
	Owned By
	Properties
	subscriptionClause
	domain

	Related Elements
	Subscriber
	EventNotice
	FlowPort

	Constraints

	PubSubNotice
	Semantics
	UML base element(s) in the Profile
	Fully Scoped Name
	Owned By
	Properties
	None

	Related Elements
	Subscription
	Publication
	CompositeData

	Constraints

	Event Package
	BusinessEvent
	Semantics
	UML base element(s) in the Profile
	Fully Scoped Name
	Owned By
	Properties
	Related Elements
	EventNotice
	ProcessEvent
	DataEvent

	Constraints

	ProcessEvent
	Semantics
	UML base element(s) in the Profile
	Fully Scoped Name
	Owned By
	Properties
	Related Elements
	Node
	BusinessEvent

	Constraints

	DataEvent
	Semantics
	UML base element(s) in the Profile
	Fully Scoped Name
	Owned By
	Properties
	Related Elements
	BusinessEvent

	Constraints

	EventNotice
	Semantics
	UML base element(s) in the Profile
	Fully Scoped Name
	Owned By
	Properties
	Related Elements
	BusinessEvent
	PubSubNotice

	Constraints

	EventBasedProcess
	Semantics
	UML base element(s) in the Profile
	Fully Scoped Name
	Owned By
	Properties
	Related Elements
	ProcessEvent
	Choreography
	Publisher
	Subscriber
	EventBasedDataManager

	Constraints

	EventBasedDataManager
	Semantics
	UML base element(s) in the Profile
	Fully Scoped Name
	Owned By
	Properties
	Related Elements
	DataEvent
	DataManager
	Publisher
	Subscriber
	EventBasedDataManager

	Constraints

	NotificationRule
	Semantics
	UML base element(s) in the Profile
	Fully Scoped Name
	Owned By
	Properties
	Condition

	Related Elements
	Subscription
	EventCondition
	Node

	Constraints

	EventCondition
	Semantics
	UML base element(s) in the Profile
	Fully Scoped Name
	Owned By
	Properties
	Condition

	Related Elements
	Subscription

	Constraints

	UML Profile
	Table mapping concepts to profile elements
	Introduction
	Publish and Subscribe Package
	Publisher
	Inheritance
	Instantiation in a model
	Semantics
	Tagged Values
	offers

	Constraints

	Publication
	Inheritance
	Instantiation in a model
	Semantics
	Tagged Values
	publicationClause
	domain
	Publisher
	announces

	Constraints

	Subscriber
	Inheritance
	Instantiation in a model
	Semantics
	Tagged Values
	holds

	Constraints

	Subscription
	Inheritance
	Instantiation in a model
	Semantics
	Tagged Values
	subscriptionClause
	domain
	heldBy
	subscribesTo

	Constraints

	PubSubNotice
	Inheritance
	Instantiation in a model
	Semantics
	Tagged Values
	subscribedBy
	announcedBy

	Constraints

	Event Package 2
	BusinessEvent
	Inheritance
	Instantiation in a model
	Semantics
	Tagged Values
	triggers
	describedBy

	Constraints

	ProcessEvent
	Inheritance
	Instantiation in a model
	Semantics
	Tagged Values
	reflects

	Constraints

	DataEvent
	Inheritance
	Instantiation in a model
	Semantics
	Tagged Values
	None

	Constraints

	EventNotice
	Inheritance
	Instantiation in a model
	Semantics
	Tagged Values
	triggeredBy

	Constraints

	EventBasedProcess
	Inheritance
	Instantiation in a model
	Semantics
	Tagged Values
	Constraints

	EventBasedDataManager
	Inheritance
	Instantiation in a model
	Semantics
	Tagged Values
	Constraints

	NotificationRule
	Inheritance
	Instantiation in a model
	Semantics
	Tagged Values
	Condition
	subscription
	guardedBy
	Node

	Constraints

	EventCondition
	Inheritance
	Instantiation in a model
	Semantics
	Tagged Values
	Condition
	requires

	Constraints

	Relationship to other ECA profiles
	Relationship to Business Process profile and Entities profile
	Relationship to ECA CCA profile
	Modeling Events with Components

	Relationship other paradigms
	
	ebXML

	Example

	The Business Process profile
	Introduction
	Metamodel
	Business Process metamodel
	CompoundTask
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Inheritance
	Properties
	Associated elements
	Constraints

	Activity
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Inheritance
	Properties
	Associated elements
	uses (from ComponentUsage)
	performedBy
	usesArtifact
	responsibleFor

	Constraints

	BusinessProcess
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Inheritance
	Properties
	Associated elements
	Constraints

	BusinessProcessEntity
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Inheritance
	Properties
	Associated elements
	Constraints

	ProcessFlowPort
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Inheritance
	Properties
	multiplicity_lb : short
	multiplicity_ub : short

	Associated elements
	ECA::CCA::DocumentModel::DataElement

	Constraints

	ProcessPortConnector
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Inheritance
	Properties
	Associated elements
	represents (from PortUsage)
	outgoing (from Node)
	incoming (from Node)

	Constraints

	DataFlow
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Inheritance
	Properties
	Associated elements
	Constraints

	ProcessMultiPort
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Inheritance
	Properties
	synchronous : boolean (from Port)

	Associated elements
	ProcessFlowPort

	Constraints

	InputGroup
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Inheritance
	Properties
	Associated elements
	Constraints

	OutputGroup
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Properties
	Associated element
	Constraints

	ExceptionGroup
	Semantics
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Properties
	Associated elements
	Constraints

	ProcessRole
	Semantics
	Inheritance
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Properties
	selectionRule
	creationRule

	Associated elements
	Constraints

	Performer
	Semantics
	Inheritance
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Properties
	Associated elements
	Constraints

	Artifact
	Semantics
	Inheritance
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Properties
	Associated elements
	Constraints

	ResponsibleParty
	Semantics
	Inheritance
	UML base element(s) in the Profile and Stereotype
	Fully Scoped name
	Owned by
	Associated elements
	Constraints

	UML Profile
	Table mapping concepts to profile elements
	BusinessProcess «profile» Package : Stereotypes
	BusinessProcess «profile» Package : TaggedValues

	BusinessProcess «profile» Package
	Applicable Subset of UML
	«ProcessComposition»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«Activity»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Correspondence of metamodel attributes with UML attributes
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«CompoundTask»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«BusinessProcess»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«BusinessProcessEntity»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«ProcessFlowPort»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«ProcessPortConnector»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«DataFlow»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«ProcessMultiPort»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«InputGroup»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel

	«OutputGroup»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel

	«ExceptionGroup»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel

	«ProcessRole»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«Performer»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«Artifact»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«ResponsibleParty»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«Performance»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«ArtifactUse»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	«Responsibility»
	Inheritance
	Instantiation in a model
	Semantics
	Relationships
	Tagged Values
	Constraints expressed generically
	Formal Constraints Expressed in Terms of the UML Metamodel
	Diagram Notation

	Relationships
	CompoundTask own ProcessMultiPort subtypes
	ProcessMultiPort Subtypes own ProcessFlowPorts
	Activities and ProcessPortConnectors owned by CompoundTasks and BusinessProcesses
	CompoundTask owns Activity and DataFlow
	Activity uses CompoundTask
	Represents in CompoundTask and BusinessProcess

	Notation for Activity and ProcessRole
	Process Model Patterns
	Timeout
	Terminate
	Activity Preconditions and Activity Postconditions
	Simple Loop
	While and Repeat-Until Loops
	For Loop
	Multi-Task

	Full Model

	The Relationships Profile
	Requirements
	Introduction
	Non-Binary Relationships
	Example: Mutually Orthogonal Non-Binary Aggregations
	Example: Multiple Subtyping
	Other Relationship Requirements

	Using UML to Address the Requirements: An Overview
	Formal Virtual Metamodel of the UML Extensions
	Aggregations
	Stereotype: Aggregation
	Inheritance
	Instantiation in a model
	Semantics
	Tagged Values
	Constraints
	Constraints Expressed Generically
	Formal Constraints Expressed in Terms of the UML Metamodel

	UML Constraint Relaxed
	Diagram Notation

	Stereotype: Assembly
	Inheritance
	Instantiation in a model
	Semantics
	Tagged Values
	Constraints
	Constraints Expressed Generically
	Formal Constraints Expressed in Terms of the UML Metamodel

	Diagram Notation

	Stereotype: Subordination
	Inheritance
	Instantiation in a model
	Semantics
	Tagged Values
	Constraints
	Constraints Expressed Generically
	Formal Constraints Expressed in Terms of the UML Metamodel

	Diagram Notation

	Stereotype: Packet
	Inheritance
	Instantiation in a model
	Semantics
	Tagged Values
	Constraints
	Diagram Notation

	Stereotype: List
	Inheritance
	Instantiation in a model
	Semantics
	Tagged Values
	Constraints
	Diagram Notation

	Special Notes on Shared and Composite Aggregations

	Reference Relationships
	Stereotype: AbstractReference
	Inheritance
	Instantiation in a model
	Semantics
	Tagged Values
	Constraints
	Constraints Expressed Generically
	Formal Constraints Expressed in Terms of the UML Metamodel

	Diagram Notation

	Stereotype: Reference
	Inheritance
	Instantiation in a model
	Semantics
	Tagged Values
	Constraints
	Constraints Expressed Generically
	Formal Constraints Expressed in Terms of the UML Metamodel

	Diagram Notation

	Stereotype: ReferenceForCreate
	Inheritance
	Instantiation in a model
	Semantics
	Tagged Values
	Constraints
	Constraints Expressed Generically
	Constraints Expressed in Terms of the UML Metamodel

	Mapping the Relationships to Technical Platforms
	Aggregations
	Decomposing Non-Binary Aggregations
	Ignoring Aggregation Sub(stereo)types
	Leveraging General Mappings

	Reference Relationships

	Examples Using the UML Extensions
	Example: List and Subordination
	Example: Reference Relationships

	Table of Contents
	Rationale
	Introduction
	Pattern Principle
	Notation for Pattern
	Simple Pattern
	Pattern Inheritance
	Pattern Composition
	Summary of Pattern Formats
	Applying Patterns

	Patterns Metamodel
	EDOC::Pattern Package
	Business Pattern Name
	
	Semantics
	UML base element(s) in the Profile
	Fully Scoped name
	Owned by
	Properties
	Business Pattern Name

	Related elements
	Namespace
	Business Pattern Package
	Business Pattern Binding

	Constraints

	Business Pattern Package
	
	Semantics
	UML base element(s) in the Profile
	Fully Scoped name
	Owned by
	Properties
	Related elements
	Business Pattern Name
	Package
	Template Parameter
	Constraint
	Operation
	Owns

	Constraints

	Business Pattern Binding
	
	UML base element(s) in the Profile
	Fully Scoped name
	Owned by
	Properties
	Related elements
	Business Pattern Name
	Collaboration
	Template Parameter
	Replaces with renaming

	Constraints

	UML Profile
	Table mapping concepts to profile elements
	Introduction
	Pattern Package
	BP Name
	
	Inheritance
	Instantiation in a model
	Semantics
	Tagged Values
	Constraints
	Diagram Notation

	BP Package
	
	Inheritance
	Instantiation in a model
	Semantics
	Tagged Values
	Constraints
	Diagram Notation

	BP Binding
	
	Inheritance
	Instantiation in a model
	Semantics
	Tagged Values
	Constraints
	Diagram Notation

	Table of Contents
	The EJB and Java Metamodels
	Introduction
	The Java Metamodel
	Class Contents
	JavaPackage
	Semantics
	Fully Scoped name
	Owned by
	Properties
	Related elements
	JavaClass

	Constraints

	JavaClass
	Semantics
	Fully Scoped name
	Owned by
	Properties
	isPublic
	isAbstract
	IsFinal

	Related elements
	JavaPackage
	JavaClass
	Field
	Method
	JavaParameter
	ArrayType

	Constraints

	Field
	Semantics
	Fully Scoped name
	Owned by
	Properties.
	isFinal
	IsStatic

	Related elements
	JavaClass

	Constraints

	Method
	Semantics
	Fully Scoped name
	Owned by
	Properties.
	isAbstract
	isNative
	isSynchronized
	isFinal
	IsConstructor
	IsStatic

	Related Elements
	JavaClass
	JavaParameter

	JavaParameter
	Semantics
	Fully Scoped name
	Owned by
	Properties.
	isFinal

	Related elements
	Method

	Constraints

	ArrayType
	Semantics
	Fully Scoped name
	Owned by
	Properties.
	arrayDimensions

	Related elements
	JavaClass

	Constraints

	Polymorphism
	JavaClass
	Related elements
	JavaClass

	Constraints

	JavaType
	
	Semantics
	Fully Scoped name
	Owned by
	Properties
	Related elements
	JavaType
	Field, JavaParameter, ArrayType

	Constraints

	JavaType
	Semantics
	Fully Scoped name
	Owned by
	Properties
	Related elements
	JavaType
	ArrayType, JavaClass, JavaDataType

	Constraints

	TypeDescriptor
	TDLangClassifier
	TDLangElement

	Data Types
	Names

	The Enterprise JavaBeans Metamodel
	Main
	EJBJar
	Semantics
	Fully Scoped name
	Owned by
	Properties
	description
	displayName
	SmallIcon
	LargeIcon
	EjbClientJar

	Related elements
	Assembly
	EnterpriseBean

	Constraints

	Assembly
	Semantics
	Fully Scoped name
	Owned by
	Properties
	Related elements
	EJBJar

	Constraints

	EnterpriseBean
	Semantics
	EnterpriseBean is a class. It can have attributes, operations, and associations. These are actually derived/filtered from its implementation classes and interfaces. For mapping and browsing purposes, though, you would like the EnterpriseBean to appear
	In this light, even Session Beans can have associations and properties implemented by their bean. For example, it would be meaningful to describe associations from a Session to the Entities that it uses to perform its work.
	Fully Scoped name
	Owned by
	Properties
	Description
	displayName
	SmallIcon
	LargeIcon

	Related elements
	EJBJar
	Session, Entity

	Constraints

	Session
	Semantics
	A transient object which provides more behavior than state. It maps to session bean in the Enterprise JavaBean specification.
	Fully Scoped name
	Owned by
	Properties
	transactionType
	The transaction-type element specifies an enterprise bean's transaction management type.
	sessionType

	Related elements
	EnterpriseBean

	Constraints

	Entity
	Semantics
	Fully Scoped name
	Owned by
	Properties
	isReentrant

	Related elements
	EnterpriseBean

	Constraints

	EJB
	EnterpriseBean
	Related elements
	SecurityRoleRef
	EJBRef
	ResourceRef
	EnvEntry

	Constraint

	SecurityRoleRef
	Semantics
	Fully Scoped name
	Owned by
	Properties
	name
	Description
	link

	Related elements
	EnterpriseBean

	Constraints

	EJBRef
	Semantics
	Fully Scoped name
	Owned by
	Properties
	name
	type
	home
	remote
	link
	Description

	Related elements
	EnterpriseBean

	Constraints

	ResourceRef
	Semantics
	Fully Scoped name
	Owned by
	Properties
	Description
	Name
	type
	Type of the resource manager connection factory that the enterprise bean expects.
	auth
	Specifies whether the enterprise bean signs on programmatically to the resource manager, or whether the Container will sign on to the resource manager on behalf of the bean.
	link

	Related elements
	EnterpriseBean

	Constraints

	EnvEntry
	Semantics
	Fully Scoped name
	Owned by
	Properties
	name
	Description
	value
	Type

	Related elements
	EnterpriseBean

	Constraints

	Entity Bean
	ContainerManagedEntity
	Semantics
	An Entity which delegates responsibility for persistence to the EJB container. Maps to an Entity Bean with Container-managed Persistence in the Enterprise.
	Fully Scoped name
	Owned by
	Properties
	Related elements
	Entity
	CMPAttribute
	Field

	Constraints

	Assembly
	AssemblyDescriptor
	Fully Scoped name
	Owned by

	SecurityRole
	Fully Scoped name
	Owned by

	MethodElement
	Fully Scoped name
	Owned by

	MethodPermission
	Fully Scoped name
	Owned by

	MethodTransaction
	Fully Scoped name
	Owned by

	EJB Implementation
	EJBMethodCategory
	Semantics
	Fully Scoped name
	Owned by
	Properties
	Related elements
	Constraints

	EnterpriseBean
	Related elements
	JavaClass

	Entity
	Related elements
	JavaClass

	References to Resources
	SecurityRole
	Fully Scoped name
	Owned by

	J2EEResourceFactory
	Semantics
	Fully Scoped name
	Owned by
	Properties
	Related elements
	ResourceRef

	Data Types

	UML Profile
	Java Profile
	EJB Profile

	Flow Composition Model
	Introduction
	FCMCore Package
	FCMComposition
	FCMComponent
	FCMNode
	FCMConnection
	FCMOperation
	FCMParameter
	FCMCommand
	FCMFunction
	FCMTerminal
	FCMTerminalToNodeLink and FCMTerminalToTerminalLink
	FCMAnnotation
	FCMSource and FCMSink
	FCMCompositionBinding
	TDLangElement
	FCMType

	FCM Package
	FCMControlLink
	FCMDataLink
	FCMDecisionNode
	FCMConditionalControlLink
	FCMJoinNode
	FCMJoinCommand
	FCMMappingNode
	FCMMappingDataLink
	FCMMapping
	FCMCondition
	FCMBranchNode

	FCM Profile
	Example

	Table of Contents
	Introduction
	UML-to-MOF Mapping Table
	Mapping Details
	ModelElement
	Tags on UML ModelElement
	ModelElement Property Map
	ModelElement Constraints
	ModelElement Limitations

	Package
	Tags on UML Model with Stereotype <<metamodel>>
	Model-to-Package Property Map
	Model-to-Package Constraints
	Model-to-Package Limitations

	Import
	Tags on UML ElementImport
	ElementImport-to-Import Property Map
	ElementImport-to-Import Constraints
	ElementImport-to-Import Limitations

	Class
	Tags on UML Class
	Class Property Map
	Class Constraints
	Class Limitations

	Attribute
	Tags on UML Attribute with No Stereotype
	Attribute Property Map
	Attribute Constraints
	Attribute Limitations

	Reference
	Tags on UML Attribute with Stereotype <<reference>>
	Explicit Reference Property Map
	Implicit Reference Property Map
	Reference Constraints
	Reference Limitations

	Operation
	Tags on UML Operation
	Operation Property Map
	Operation Constraints
	Operation Limitations

	Parameter
	Tags on UML Parameter
	Parameter Property Map
	Parameter Constraints
	Parameter Limitations

	Exception
	Tags on UML Exception
	Exception Property Map
	Exception Constraints
	Exception Limitations

	Exception Parameter
	Tags on Attribute of UML Exception
	Attribute-to-Parameter Property Map
	Attribute-to-Parameter Constraints
	Attribute-to-Parameter Limitations

	Association
	Tags on UML Association
	Association Property Map
	Association Constraints
	Association Limitations

	AssociationEnd
	Tags on UML AssociationEnd
	AssociationEnd Property Map
	AssociationEnd Constraints
	AssociationEnd Limitations

	DataType
	Tags on UML DataType
	DataType Property Map
	DataType Constraints
	DataType Limitations

	Constant
	Tags on UML DataValue
	DataValue-to-Constant Property Map
	DataValue-to-Constant Constraints
	DataValue-to-Constant Limitations

	Constraint
	Tags on UML Constraint
	Constraint Property Map
	Constraint Constraints
	Constraint Limitations

	Generalizes
	Tags on UML Generalization
	Generalization-to-Generalizes Property Map
	Generalization-to-Generalizes Constraints
	Generalization-to-Generalizes Limitations

	Tag
	Tags on UML TaggedValue
	TaggedValue-to-Tag Property Map
	TaggedValue-to-Tag Constraints
	TaggedValue-to-Tag Limitations

	Guidelines
	Modularity
	Associations
	References
	DataTypes
	Names

	Glossary
	References

