A UML Profile for Enterprise Distributed Object
Computing

Joint Final Submission

Part || Supporting Annexes

Version 1.0

Revised 22 August 2001
Submitted by: Supported by:
CBOP Hitachi
Data Access Technologies SINTEF
DSIC NetAccount
EDS
Fujitsu
IBM
lona Technologies
Open-IT
un Microsystems
Unisys

OMG Document Number: ad/2001-08-20



ad/2001-08-20 — UML for EDOC Part 11

©Copyright 2001, CBOP, Data Access Technologies, DSTC, EDS, Fujitsu, IBM, lona Technologies, Open-IT, Sun
Microsystems, Unisys.

CBOP, Data Access Technologies, DSTC, EDS, Fujitsu, IBM, lona Technologies, Open-IT, Sun Microsystems, Unisys
hereby grant to the Object Management Group, Inc. anonexclusive, royalty-free, paid up, worldwide license to copy and
distribute this document and to modify this document and distribute copies of the modified version.

Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in
the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

NOTICE
The information contained in this document is subject to change without notice.

The material in this document details an Object Management Group specification in accordance with the license and
notices set forth on this page. This document does not represent a commitment to implement any portion of this
specification in any companies' products.

WHILE THE INFORMATION IN THISPUBLICATION ISBELIEVED TO BE ACCURATE, THE OBJECT
MANAGEMENT GROUP, CBOP, DATA ACCESS TECHNOLOGIES, DSTC, EDS, FUJITSU, IBM, IONA
TECHNOLOGIES, OPEN-IT, SUN MICROSY STEMS AND UNISYSMAKE NO WARRANTY OF ANY KIND WITH
REGARDS TO THISMATERIAL INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. The aforementioned copyright holders shall not
beliablefor errors contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) isand shall at all times be the sole entity that may authorize devel opers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.
This document contains information which is protected by copyright. All Rights Reserved. No part of thiswork covered
by copyright herein may be reproduced or used in any form or by any means—graphic, electronic or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems—without permission of the
copyright owner.

RESTRICTED RIGHTSLEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013.

OMG and Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker,
OMG IDL, ORB CORBA, CORBAfacilities, and CORBAservices are trademarks of the Object Management Group.

The UML logo is atrademark of Rational Software Corp.
ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by sending email to issues@omg.org. Please
reference precise page and section numbers, and state the specification name, version number, and revision date as they
appear on the front page, along with a brief description of the problem. Y ou will not receive any reply, but your report will
be referred to the OMG Revision Task Force responsible for the maintenance of the specification. If you wish to be
consulted or informed during the resolution of the submitted issue, indicate thisin your email. Please note that issues
appear eventually in the issues database, which is publicly accessible.

ii A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22



ad/2001-08-20 — UML for EDOC Part 11

Contents

Part || — Supporting Material 1
R 1 110 1T (o o 1

Annex A — Procurement Process and Buyer/ Seller Example 1

List of Figures

I 1 1 oo [0 Tox £ o o OO OO OTT T

2. TheProcurement System Example

G T 4T3 1S 1= o) - PP
Annex B — The Meeting Room Example 1
List of Figures 2
Annex C - Example- Hospital Information System 1
List of Figures

N 1 011 oo LF o (o] o 1O OO OO

5. Enterprise Viewpoint SPeCIfiCation.........c.ccveevvennisisssnsesssssssssaseeneens

6.  INfOrmMation VIEWPOINL ........cccoeuveeereerecie st ssassns

7.  Computational Viewpoint Specification

Annex D - Examples of Patterns 1

List of Figures
1. Simple Pattern Examples
2.  Process Model Patterns,

Annex E - Technology mappings from EDOC to Distributed Component and Message Flow Platform Specific Models 1

List of Figures 3
List of Tables

1. Introduction to EDOC and Platform Specific Models

2. Principal Platform Specific MOGES ......ccoovveveevereceresceesesesee s

3. Mapping from EDOC t0 J2EE/EJB.........ccoveevrenreerireeeeireressssesesessssssesessssssssens

4.  Mapping from EDOC to CORBA/CCM ......coouvureeeenieerneierneremnessesesseessesesneseens

5. Mapping From EDOC Business Processto CORBA

6. Mapping from EDOC BUSINESS ProCESSTO FCM ..ottt s sssssessssssssenns

2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 iii






ad/2001-08-20 — UML for EDOC Part 11

Part |1 — Supporting Material

1. | ntroduction

This part of the Joint UML for EDOC submission contains the following non-normative
Annexes:

Annex A - Procurement, Buyer/Seller example
Annex B - Meeting Room example

Annex C - Hospital example

Annex D - Examples of Patterns

Annex E - Technology mappings from EDOC to Distributed Component and M essage
Flow Platform Specific Models

In addition, XMI and DTD datafiles for the metamodelsin the EJB/JavalFCM profiles are
included in the zip file containing this Part of the submission, in the folder named “XMI and
DTDs'.

2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 1






ad/2001-08-20 — UML for EDOC Part 11

Annex A — Procurement Process and Buyer/ Seller

Example

Contents

List of Figures 2
1. Introduction 3
2. TheProcurement System Example 3
21 AN INFOrmMal DESCIPLION. ......c.cviereerereecieecireee e 3
22 The Business Process M odel 3
23 (DTS Lo =S QD= o o o) o TR 4
231 Sourcing and Sourcing Freight-Dependent Request Processes 5
232 Evaluation 5
233 Award 6
234 Maintain 6

235 Release 6
236 Monitor 7
237 Process Order 7
238 Receipt and Approve 7

3. The Salesexample 8
31 Performer for the ProcessOrder Activity of the Procurement System example........coovcevvceeeinvenesessesseeesessseeenens 8
32 BUYSEIl COMMUNILY PrOCESS.......c.cuiuiireeiririsieisisessssesesssssssssssssessesssssessssssssssssssssssssssssssessssssssesssssssessssssssssesssssssessssssnsesens 8
33 PPOLOCOIS ...ttt s8££ bbb 9
331 Sales Protocol 9
332 QuoteBT Protocol 11
333 OrderBT Protocol 11
334 ShippingNoticeBT Protocol 12
335 PaymentNoticeBT Protocol 12
336 ShipBT Protocol 13
337 DeliveryBT Protocol 13

34 COMMIPONENES ...ttt ittt ittt bbbttt e bt e bbb s e b b e bbb E e E b e £ b b E e d b £ e A b b e E A b E e E e E b bt bbb e et et ne et st 14
341 Buyer ProcessComponent 14
342 Seller ProcessComponent 15
343 Seller ProcessComponent — internal composition 17
344 QuoteCalculator ProcessComponent 18
345 Seller_Orders ProcessComponent 18
34.6 Warehouse ProcessComponent 19
34.7 AccountsReceivable ProcessComponent 19
348 L ogistics ProcessComponent 20
2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 A-1



ad/2001-08-20 — UML for EDOC Part 11

List of Figures

Figure 1 ProCuremMent BUSINESS PIOCESS.........cccrrireeiririsesiesesssesesesssssssessssssssessssssssesssssessssssssssssssssssssssssssssesssnssesssssnssessses
Figure 2 Evaluation CompoundTask..........
Figure 3 The SellerRole Performer Role
Figure 4 BuySell COMMUNITYPIOCESS.........ccuirreereerreesriese s sssse s ssssssaens

Figure 5 Sales Protocol structure and choreography ...........ccccccecenncnnsssssssennens

Figure 6 QuoteBT Protocol structure and Choreography ... sees
Figure 7 OrderBT Protocol structure and Choreography ............ccceiccsneesesesssie st ssssssssssseses
Figure 8 ShippingNoticeBT Protocol structure and choreography
Figure 9 PaymentNoticeBT Protocol structure and Choreography..........ccvveeeeerereseeseessesssenesessssssssessssssssesssssssesssssesnes
Figure 10 ShipBT Protoco structure and Choreography I..........oceeienieeeeee e
Figure 11 DeliveryBT Protocol structure and choreography...........cooconeeneeenerencrnenns

Figure 12 Buyer ProcessComponent structure and choreography...........coeverenernenes

Figure 13 Seller ProcessComponent structure and choreography...........cccceeeceiennnns

Figure 14 Seller ProcessComponent : internal cCompoSition............ccceveveceeeneneeenenenns

Figure 15 Seller_Orders ProcessComponent structure and Choreography ..........cccccveveeeenenesrenenessessssssssessesssssesnes
Figure 16 Warehouse ProcessComponent structure and Choreography ..........cccccereresnenesssesensssessesssssssesssssesnes 19
Figure 17 AccountsReceivable ProcessComponent structure and choreography .........cccvecevenesesnenesseseneneseeenes 19
Figure 18 L ogistics ProcessComponent structure and choreography ... 20

A-2 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22



ad/2001-08-20 — UML for EDOC Part 11

1. | ntroduction

This Annex contains two linked examples. Thefirst, in Section 2, is a specification of a
system for describing and supporting the processes for procuring goods or services,
modeled using the Business Processes profile (Part |, Chapter 3, Section 5). This calls up the
second example, which uses the CCA Profile (Part I, Chapter 3, Section 2) to model in detail
the BuySell process.

2. The Procurement System Example

This section contains a specification of asystem for describing and supporting the
processes for procuring goods or services for an organization. An informal textual
description of the system is given followed by specifications of the business processes,
business entities, rules and eventsinvolved in this system.

This example has been devel oped in collaboration with Mincom Limited and represents the
expression of the business processes used by the company for sourcing goods. We thank
Mincom for their assistance.

2.1 An Informal Description

The procurement system is concerned with the procurement of goods or services by an
organization. The process for acquiring some resource (or service) can be started in either of
two ways. In both cases, arequest listing the resource requirementsisreceived. In one case
thisis sufficient, however in the second case, the request is accompanied by additional
information about the preferred freight options for delivery.

In both cases, the resource requirements are used as a basis for sourcing a number of
potential suppliers of the goods. Thislist of potential suppliers (and for the second case, a
corresponding list of freight sources) isthen evaluated. The evaluation is a sophisticated
process involving ranking and checking of potential suppliers. Asaresult of the evaluation,
asupplier isawarded the contract to supply the required goods. Both the sourcing of
potential suppliers and the evaluation process are the responsibility of the Purchasing
Officer.

After the Authorizing Officer has awarded the contract to a particular supplier, the order is
released to that supplier for processing. While the order is being processed, it is monitored
to ensure that progress is made and the contract is fulfilled. Finally, after the resources are

received, the receipt of the goodsis approved, and any claims for payment are fulfilled.

2.2 The Business Process Model

The Procurement Business Process as shown in Figure 1 provides for Resource
Requirements to be satisfied from various sources for a given request.

2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 A-3



ad/2001-08-20 — UML for EDOC Part 11

ProcurementBP ?

Procurement -l

perormedDy

SellerRole

start_procurement(ResourceRequirements r)

start_freight_proc(ResourceRequirements r, Freightinfo f)

Figure 1 Procurement Business Process

The Procurement Business Process can beinitiated in one of two ways by the invocation of

one of itstwo operations. The input parameters are then used to enable one of the two

alternative input sets on the Activity (and itsin-line CompoundTask definition) specifying:
Resource Requirements, or

Resource Requirements plus Freight Requirements information if the request includes
freight requirements.

The process compl etes successfully once sources for satisfying the Resource and Freight
Requirements have been identified and evaluated, a contract has been awarded, released and
processed, and finally the goods have been received and paid for.

Where no valid source can be found to satisfy the resource or freight requirements, the
process will throw an appropriate user-exception indicating thisand the process will
terminate unsuccessfully.

The Procurement Business Process is model ed as being comprised of anumber of Activities
and CompoundTask definitions. These are discussed in detail in the following sections.

2.3 Detailed Task Description

Unless otherwise mentioned, all the following sections will refer to Figure 1.

A-4 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22




2.3.1

2.3.2

ad/2001-08-20 — UML for EDOC Part 11

Sourcing and Sourcing Freight-Dependent Request
Processes

Both the Sourcing and the Sourcing Freight-Dependent Request processes fulfill the task of
determining alist of potential sources for satisfying the Resource Request. Both processes
will reference sourcing policies applicable to the request as well as referencing the Request
itself. The association to the Request ProcessRole is shown as a usesArtifact relation - that
is, the request isreferenced as an artifact role. Thisrelation is annotated with an ‘R’ to
indicate that the accessis aread-only operation.

The only distinction between the two tasksis that the Sourcing Freight-Dependent Request
process has the additional work of considering the freight-requirements specified in the
additional input to the task. Correspondingly it produces alist of sourcesfor freightin
addition to the list of sources for satisfying the resource request.

Evaluation

Having identified appropriate potential sources of supply, an evaluation is performed in
accordance with the sourcing policy. This evaluation process compl etes successfully with
output of the recommended preferred sourcesin alist ordered by the priority ranking of each
source. The task can terminate with an exception when no valid sources can be found.

The CompoundTask definition for the Evaluation Activity has been elided from the
Procurement process model for clarity of expression. It presents more fine-grained detail than
the rest of the Procurement processes and rather than show this extra detail in the
Procurement process, it is removed to the separate diagram Figure 2.

Evaluation L’E‘]!

—— e —

g <&T o
7] sources

Check Suppliers fL ! U owees,”

o
s

sources |

| tonly 1 supplerthen there

\
\
| mstbe anomased ankng [é.r A | e

Figure 2 Evaluation CompoundTask

2001-08-22

The Evaluation process is modeled as comprising an Evaluation Loop that iterates over alist
of potential sources until either aprioritized list is produced, or the processis unable to find
any valid sources and terminates with an exception.

A UML Profile for Enterprise Distributed Object Computing — Part |1 A-5




ad/2001-08-20 — UML for EDOC Part 11

2.3.3

2.3.4

2.3.5

A-6

The Evaluation Loop has three InputGroups. Two are for inputting the list of sources, and
thelist of sources accompanied by thelist of freight sources. The third InputGroup has an
Input that is alist of maintained and evaluated sourcesthat will be subject to further
evaluation.

The Evaluation Loop has two OutputGroups. The first has two output ProcessFlowPorts- a
list of ranked sources and alist of discarded sources. The list of discarded sourcesis passed
to an input ProcessFlowPort of the Log to Reject DB process that records details regarding
the rejection of sources. The second OutputGroup of the Evaluation Loop has asingle
ProcessFlowPort that isalist of maintained or altered and evaluated sources that will be
subject to further evaluation. This ProcessFlowPort is connected by a DataFlow back to one
of the InputGroups allowing for re-iteration over the list of sources.

The Evaluation Loop makes use of anumber of Artifact roles. It uses the Request,
Weightings of the sources, and possibly the Request Group that is related to a specific
request to assist in the evaluation. The Evaluation Loop terminates when all of the potential
Sources have either been ranked and prioritized, or added to the list of discarded sources.

Award

The Award processtakes asinput the list of Evaluated Sources. From this|list, the selected
supplier is assigned to the Request and an order, contract or contract releaseis created as an
Artifact ProcessRole. The Activity produces as output areference to the Artifact role
representing either the order, the contract, or the contract release.

The Award Activity is performed by the Authorizing Officer ProcessRole.

Commitment details about the order, contract or contract rel ease are passed to the
Accounting artifact ProcessRole.

Both the Maintain and the Release Activities may start concurrently after the Award
Activity has enabled its output as they are both connected by DataFlows from the output
ProcessFl owPort of this Activity.

Maintain

The Maintain Activity supports the maintenance of the Orders, Contracts or Contract
Releases. It takes asinput an identifier for an Order, Contract or Contract Release and uses
thisreference to read and possibly modify the actual data. The Maintain process uses the
identified Order, Contract or Contract Release as an Artifact ProcessRole. Basically this
process existsin recognition that Order, Contract or Contract Release are not completely
static or stable and will need modification due to unforeseen circumstances.

This process has no output ProcessFlowPorts.
Release

The Order/Contract or Contract Releaseis forwarded to the selected supplier as part of the
Release Activity. The Activity takes an identifier for an Order, Contract or Contract Release
asinput and passes thisidentifier on as output.

Thetermination of the Release Activity enablesa Timer Task to start when it receivesa
signal via a Connection from the OutputGroup of the Release Activity. The Timer Task is
used to enforce adelay on the enabling of the Monitor Activity.

A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22



ad/2001-08-20 — UML for EDOC Part 11

2.3.6 Monitor

The Monitor Activity provides mechanismsto monitor supplier performance for timely
delivery of the goods or services. It also monitors compliance with the terms of the Order,
Contract or Contract Release.

The process has a single Asynchronous OutputGroup that will produce some notification to
the supplier to expedite delivery.

2.3.7 Process Order

The BuySellCp ProcessRol e performs the Process Order Activity. The Process Order
Activity represents the actual supply of the goods or servicesto satisfy the order.

SellerRole

selectionRule:
BuySell CP.Seller.name = Order.supplier

type

BuySell CP.Seller

Figure 3 The SellerRole Performer Role

The BuySell CommunityProcess is specified in Section 3 of this Annex. The three Rolesin
the Community Process are played by the identity of the invoker of the Procurement
BusinessProcess (self), and by the selected Supplier and freightSupplier. The only other
input required to initiate the BuySell protocol between these Rolesisthe Order itself. Not
shown here or in Figure 1 are the represents associations between the PortConnectors and
the Protocol Ports of the BuySell CommunityProcess. For example, the PortConnector of the
Process Order Activity, labeled Order, to the Protocol Port of the SalesProtocol, labeled
OrderBT.

Asynchronously, the Supplier will supply goods to satisfy the order and will also generate
notification of invoices that require payment for the delivery of the goods.

2.3.8 Receipt and Approve

The Receipt and Approve Activity handles the receiving goods, updating the inventory to
reflect this, and the payment of invoices for the goods.

This process has an InputGroup comprising of adetails relating to the receipt of the
requested resource, and arequest for approval of aclaim for payments from the supplier.

2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 A-7




ad/2001-08-20 — UML for EDOC Part 11

3.

3.1

3.2

A-8

The Sales example

This exampleillustrates the specification of a system of collaborating parties, involvedin a
commercial Sde.

The Sales exampl e defines the collaboration between the partiesinvolved.
Thefocusis on the boundaries between the parties— ComponentUsages, their specification
— ProcessComponents, their connectable point — Ports, and the externally observable

contract of candidate interactions— Protocols.

Each party may be further specified as an internal composition of collaborating sub-
components, onto which the external contract is delegated.

Performer for the ProcessOrder Activity of the Procurement
System example

The Sales exampleis referenced as part of the Procurement Process of the Buyer, asthe
Performer for the ProcessOrder Activity..

Please refer to the Procurement System exampl e of the Business Processes Profile (Section 2
above), for the specification of the Business Process of the Buyer, where this Sales example
isused and initiated, to fulfill the ProcessOrder Activity.

In the context of the Buyer Business Process :

(copied from the Procurement System example (Section 2))

"... After the Authorizing Officer has awarded the contract to a particular supplier, the order
isreleased to that supplier for processing. ..."

The organi zation performing the Procurement Process plays the role of Buyer, and the
awarded supplier playstherole of Seller, in the BuySell Community CommunityProcess.

The Award Activity will determine the identity of the actual Seller instance, corresponding
to a ProcessComponent type of Seller, that playsthe Seller role in the BuySell
CommunityProcess.

BuySell Community Process

The BuySell CommunityProcess specifies how aBuyer, a Seller and a L ogistics collaborate
to complete a business. Each roleis played by a ComponentUsage of the same name. The
specifications for the used ProcessComponent can be found under headers below.

The Buyer collaborates directly with the Seller, through the Buy and Sell Protocol Ports,
according to the Sales Protocol.

The Seller and the Buyer collaborate with the Logistics, through the Ship and Delivery
Protocol Ports, according to Protocol of the same names. The specification for the Protocols
can be found under headers below.

A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22



ad/2001-08-20 — UML for EDOC Part 11

BuySell CommunityProcess

Buyer Seller

Logistics

Delivery

Figure 4 BuySell CommunityProcess

3.3

2001-08-22

The activitiesin the BuySell Community Process start by the Buyer initiating the interactions
on its Buy Protocol Port, according to the Sales Protocol.

The Seller is connected through its Sell Protocol Port, to the Buy Protocol Port of the Buyer.
Therefore, the Seller will respond to the Sales Protocol, asinitiated from the Buyer.

The Seller will follow the Sales Protocol, and eventually initiate the Ship Protocol with the
Logisticsrole. The Logistics role will respond to the Ship Protocol, and initiate the Delivery
Protocol on the Buyer. The Buyer will then be able to proceed with the Sales Protocol, and
complete the overall collaboration.

Protocols
3.3.1 Sales Protocol

The interactions between the ComponentUsage in the BuySell CommunityProcess, above,
occur according to Protocols, as specified below.

A UML Profile for Enterprise Distributed Object Computing — Part |1 A-9




ad/2001-08-20 — UML for EDOC Part 11

<<initiates>> Quote

<<initiates>> OrderBT

[OrderDenied],

[OrderConfirmation]

[«responds» ShippingNoticeBa

Protocol Sales

|: ShippingNoticeBT QuoteBT -I

OrderBT _|
PaymentNoticeBT [

E<initiates>> PaymentNoticeBa

responderRole initiatorRole
Seller Buyer Success

Figure 5 Sales Protocol structure and choreography

Structure

The Sales Protocol is an integration of four simpler Protocols : QuoteBT, OrderBT and
PaymentNoticeBT. The Sales Protocol has a Protocol Port using each of these simpler
Protocols. The specification for these Protocols can be found under headers below.

Interactionsin the Protocol Ports QuoteBT, OrderBT and PaymentNoticeBT will be initiated
by theinitiatorRole of the Sales Protocol.

TheinitiatorRole of the Sales Protocol will respond to interactions in the ShippingNoticeBT
Protocol Port.

Choreography

Interactions in the Sales Protocol will begin by the initiatorRole of the Sales Protocol,
initiating and fully performing the interactions of the QuoteBT Protocol Port.

After this, theinitiatorRole will initiate and fully perform the interactions of the OrderBT
Protocol Port.

If during performance of the interaction of the OrderBT Protocol Port, an OrderDenied has
flown between initiatorRole and responderRol e, then the Protocol endswith aFailure
condition.

Else, if an OrderConfirmation has flown, then theinitiatorRole of the Sales Protocol will
respond and fully perform the interactions of the ShippingNoticeBT Protocol Port.

A-10 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22




3.3.2

ad/2001-08-20 — UML for EDOC Part 11

After this, theinitiatorRole will initiate and fully perform the interactionsin the
PaymentNoticeBT Protocol Port.

QuoteBT Protocol

E<initiates>> QuoteRequest)

Protocol QuoteBT
[:l Quote QuoteRequest - <<responds>> Quote
responderRole initiatorRole
Seller Buyer
Figure 6 QuoteBT Protocol structure and choreography* ‘

QuoteBT isaProtocol in the form of a Request-Reply, where the initiatorRole will send a
QuoteRequest, and receive a Quote as response. QuoteRequest and Quote are FlowPort of

the QuoteBT Protocol, typed to CompositeData of the same name.

3.3.3 OrderBT Protocol

Protocol OrderBT

<<initiates>> Order

OrderConfirmation
OrderDenied

Order - (<<re5ponds>>0rderDenied) E<re5ponds>> OrderConfirmatioD

responderRole
Seller

initiatorRole
Buyer Failure Success

Figure 7 OrderBT Protocol structure and choreography®

QuoteBT isaProtocoal in the form of a Request-Multiple_Candidate Reply, where the
initiatorRole will send an Order, and receive as response an OrderConfirmation or an
OrderDenied. Order, OrderConfirmation and OrderDenied are FlowPort of the OrderBT
Protocol, typed to CompositeData of the same name.

! The direction of the portsisincorrect in Figures 6 to 11. In all these diagrams, <<responds>> should read <<initiates>>,

and vice versa.
% See footnote to Figure 6

2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 A-11



ad/2001-08-20 — UML for EDOC Part 11

An OrderConfirmation leads to a successful termination of the Protocol, while an
OrderDenied isaFailure condition.

3.3.4  ShippingNoticeBT Protocol

Protocol ShippingNoticeBT
ShippingNotice -| E<initiates>> ShippingNotica
responderRole initiatorRole
Buyer Seller

Figure 8 ShippingNoticeBT Protocol structure and choreography®

ShippingNoticeBT isa Protocol with asingle FlowPort, corresponding to the sending of a
ShippingNotice by the initiatorRole of the Protocol.

To declare aProtocol for asingle flow may be redundant, as the unique FlowPort could be
included wherever the Protocol is used, like in the Sales Protocol of our example. In this case,
ShippingNoticeBT has been defined, for symmetry, and to illustrate the benefit of this
approach, encapsulating as a Protocol the single flow nature of the interaction.

3.3.5 PaymentNoticeBT Protocol

Protocol PaymentNoticeBT t
PaymentNotice [ NEGNIN ( o ] J
<<initiates>> PaymentNotice
responderRole initiatorRole
Seller Buyer

Figure 9 PaymentNoticeBT Protocol structure and choreography”

PaymentNoticeBT is aProtocol with asingle FlowPort, corresponding to the sending of a
PaymentNotice by the initiatorRole of the Protocol.

% Seefootnote to Figure 6
* See footnote to Figure 6

A-12 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22




ad/2001-08-20 — UML for EDOC Part 11

3.3.6  ShipBT Protocol

(«initiates>> ShippingRequesD

Protocol ShipBT
D PickupReceipt shippingRequest | ENGcGNN» G<res‘)°“d5» PiCKUpRecei@
responderRole initiatorRole
Logistics Shipper

Figure 10 ShipBT Protoco structure and choreography®

ShipBT isaProtocol in the form of a Request-Reply, where the initiatorRole will send a
ShippingRequest, and receive a PickupReceipt as response. ShippingRequest and
PickupReceipt are FlowPort of the ShipBT Protocol, typed to CompositeData of the same
name.

3.3.7 DeliveryBT Protocol

(«initiates» DeliveryReceipD

Protocol DeliveryBT
> DeliveryAcceptance DeliveryReceipt | NGN]NH («reSPOHdS» DeliveryAcceptancej
responderRole initiatorRole
Adressee Logistics

Figure 11 DeliveryBT Protocol structure and choreography®

DdiveryBT isaProtocol in the form of a Request-Reply, where theinitiatorRole will send a
DeliveryReceipt, and receive a DeliveryAcceptance as response. DeliveryReceipt and
DeliveryAcceptance are FlowPort of the DeliveryBT Protocol, typed to CompositeData of
the same name.

® See footnote to Figure 6
® See footnote to Figure 6

2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 A-13




ad/2001-08-20 — UML for EDOC Part 11

3.4 Components

34.1

Buyer ProcessComponent

<<initiates>> Buy

/ . .
[OrderDenied] [OrderConfirmation]

Buyer

Failure

I:Del ivery

Success

Figure 12 Buyer ProcessComponent structure and choreography

Buyer ProcessComponent is used in the BuySell CommunityProcess, as ComponentUsage
of the same name.

Buyer has two Protocol Port named Buy and Delivery.

The Buyer initiates interactions through the Buy Protocol Port according to the Sales
Protocol. The Delivery Protocol Port responds to the DeliveryBT Protocol.

The activities of the Buyer ProcessComponent will begin by initiating and fully performing
the interactions through the Buy Port, according to the used Sales Protocol.

After this, if during performance of theinteraction of the Sales Protocol through the Buy
Protocol Port, an OrderDenied has flown, then the choreography ends with a Failure
condition.

Else, if an OrderConfirmation has flown, then the Buyer ProcessComponent will respond to
interactions through the Delivery Protocol Port, and compl ete successfully.

A-14 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22




ad/2001-08-20 — UML for EDOC Part 11

3.4.2  Seller ProcessComponent

Seller

|: Sales

Quote
Order
Shipping

Payment

EF :
°

~
Sales

<<responds>> Quote

( .
@é [OrderDenied] <<responds>> Order [OrderConfirmation Shlp
N

Failure \I/

G<initiates>> ShippingNotica

(<<responds>> PaymentNotice

N |I J

.

Success

Figure 13 Seller ProcessComponent structure and choreography

2001-08-22

Seller ProcessComponent is used in the BuySell CommunityProcess, as ComponentUsage
of the same name.

Seller hastwo Protocol Port named Sell and Ship.

The Seller respondsto interactions through the Sell Protocol Port according to the Sales
Protocol. The Ship Protocol Port initiates interactions in the Delivery Protocol.

The activity of the Seller ProcessComponent will begin when responding and fully
performing the interactions through the Buy Port, according to the used Sales Protocol.

A UML Profile for Enterprise Distributed Object Computing — Part |1 A-15




ad/2001-08-20 — UML for EDOC Part 11

A-16

The Failure termination condition of the Sales Protocol is also a Failure termination condition
of the choreography of the Seller ProcessComponent.

In the choreography for the Seller ProcessComponent, the interactions through the Ship
Protocol Port, according to the ShipBT Protocol, are inserted as awhole in betweentwo
consecutive states of the Sales Protocol in the Sell Protocol Port.

The choreography of the Seller ProcessComponent is an integration of the choreographies
of the Sales and ShipBT Protocols, of the Sell and Ship Protocol Port. Theintegrationis
safely achieved by insertion, as arefinement of a Transition in the Sales Protocol, astwo
Transitions to and from the inserted Ship PortActivity.

The interactions through the Sell Protocol Port are integrated with the Ship Protocol Port, by
insertion of the whole ShipBT Protocol, interleaved between two activities of the Sales
Protocol. Thisisacase of safe synthesis, where the constraints and partial ordering of each
Protocol are still valid in the synthesized protocol.

The successful termination of the choreography of the Sales Protocol in the Sell
Protocol Port, is also the successful termination of the Seller ProcessComponent.

This structure and choreography fully specify the external contractual obligations and
expectations of the Seller ProcessComponent.

No details have been offered, about how the Seller ProcessComponent actually performsits
duties, in compliance with the externally observable structure and behavior specified above.

A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22



ad/2001-08-20 — UML for EDOC Part 11

3.4.3 Seller ProcessComponent — internal composition
Seller
QuoteCalculator
Sales Quote }

Quote

—
Order \

ShippingNotice OrderConfirmation
pping _\[‘jomr ﬂ—

Seller_Orders

PaymentNoticg—
N/
Warehouse
—> OrderConfirmation | Shipping
IS\
Accounts Receivable ’
——/> OrderConfirmation |

Figure 14 Seller ProcessComponent : internal composition

In the header above, the externally observable structure and choreography have been
defined, without revealing any internal details of the Seller ProcessComponent.

When designing a system, that will play the Seller rolein a BuySell CommunityProcess, the
Seller ProcessComponent will have to be further specified, and its complexity decomposed in
smaller units— and recursively — until the resulting ProcessComponent can be directly
mapped or implemented to non-CCA artifacts.

Theinternal de-composition of the Seller ProcessComponent, must comply with the
externally observable choreography. If it complies, the Seller may play the rolein the BuySell
Community Process— and others using the Seller ProcessComponent definition—
independently of how the Seller ProcessComponent has been internally defined.

In our example, the Seller ProcessComponent isinternally composed by using
QuoteCalculator, Seller_Order, Warehouse and AccountsReceivablel components.

2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 A-17




ad/2001-08-20 — UML for EDOC Part 11

The Sell Protocol Port is rendered expanded, displaying the Protocol Port of the Sales
Protocol, as sub-Port of the Sell Protocol Port.

Theindividual sub-ProtocolPort of Sell are delegated or initiated to/from port of sub-
component of Sdller.

The usage of QuoteCalculator responds to and handles the Quote sub-port of Sell. The
QuoteCalculator ProcessComponent has a Protocol Port using the QuoteBT Protocol, and is
therefore compatible for direct delegation from the Quote sub-port of Sell.

Similarly, the Seller_Orders component usage responds to and handles the Order sub-Port of
Sell. In addition, the Seller_Orders ProcessComponent has an additional OrderConfirmation
outgoing flow, connected to the Warehouse and AccountsReceivable component usages.
When Seller_Orders responds an OrderConfirmation, the same OrderConfirmation will be
sent to Warehouse and A ccountsReceivable.

The Warehouse component usage responds to the OrderConfirmation from the
Seller_Orders component, and initiates the interactions of the ShipBT Protocol, forwarded
through the Ship Protocol Port of the container Seller ProcessComponent. After, the
Warehouse component initiates the interactions of the ShippingNoticeBT Protocol, through
the ShippingNotice sub-Port of Sell.

The AccountsReceivable component usage receives OrderConfirmation from Seller_Orders,
and responds to and handles the PaymentNotice sub-port of Sell.

3.4.4  QuoteCalculator ProcessComponent

The QuoteCal culator ProcessComponent has the structure as shown in its component usage
in the Seller internal compositions.

QuoteCalculator has a single Protocol Port responding to the QuoteBT Protocol.

The chorography of QuoteCalculator corresponds to the choreography of the QuoteBT
Protocol.

3.45  Seller_Orders ProcessComponent

[OrderDenied] <<responds>> Order

i [OrderConfirmation]
Failure

Seller_Orders ( <<initiates>> j

OrderConfirmation
OrderConfirmation
Order

Figure 15 Seller_Orders ProcessComponent structure and choreography

Success

A-18 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22




ad/2001-08-20 — UML for EDOC Part 11

Seller_Orders ProcessComponent responds to interactions of the OrderBT Protocol through
the Order Protocol Port.

The Seller_Orders ProcessComponent has an additional OrderConfirmation outgoing flow.

When Seller_Orders responds an OrderConfirmation, the same OrderConfirmation will be
sent also through the FlowPort.

3.4.6 Warehouse ProcessComponent

<<responds>>
OrderConfirmation

<<initiates>> Ship

il il
Ul

Warehouse

D OrderConfirmation | Shipping

<<initiates>> Shipping

R
-/

Figure 16 Warehouse ProcessComponent structure and choreography

The Warehouse ProcessComponent receives an OrderConfirmation flow, and initiates the
interactions of the ShipBT Protocol, through the Ship Protocol Port. After, the Warehouse
component initiates the interactions of the ShippingNoticeBT Protocol, through the
ShippingNotice Port.

3.4.7  AccountsReceivable ProcessComponent

<<responds>>
OrderConfirmation

Accounts Receivable ( )
<<responds>> Payment
[> OrderConfirmation |

Figure 17 AccountsReceivable ProcessComponent structure and choreography

2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 A-19




ad/2001-08-20 — UML for EDOC Part 11

The AccountsReceivable ProcessComponent receives an OrderConfirmation, and responds
to the PaymentNoticeBT Protocol through the Payment Protocol Port.

3.4.8 Logistics ProcessComponent

<<responds>> Ship

[ <<initiates>> Delivery )

Logistics

N

Figure 18 Logistics ProcessComponent structure and choreography

L ogistics ProcessComponent is used in the BuySell CommunityProcess, as
ComponentUsage of the same name.

L ogistics has two Protocol Port named Ship and Delivery.

The Logistics responds to interactions through the Ship Protocol Port according to the
ShipBT Protocol. The Delivery Protocol Port initiatesinteractions of the DeliveryBT Protocol.

The activities of the Logistics ProcessComponent will begin by responding and fully
performing the interactions through the Ship Port, according to the used ShipBT Protocol.

After this the L ogistics ProcessComponent will initiate and fully perform the interactions
through the Delivery Protocol Port.

The Logistics ProcessComponent integrates the ShipBT and DeliveryBT Protocols, by

safely synthesizing them in a sequence, where the ShipBT Protocol isfully exercised and
completed, before starting the DeliveryBT Protocol.

A-20 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22




Annex B — The Meeting Room Example

ad/2001-08-20 — UML for EDOC Part 11

2001-08-22

Contents

List of Figures

35 [ gL (00 [0 £ o o T

351 Description
352 Assumptions

36 Enterprise Viewpoint SPECITiCaLiON..........ccvveurerrieniiresiresinee e sesennes

36.1 Community Structure

36.2 Objectives of each Community
36.3 The Project Working Community
364 The Administration Community

37 INfOrMatioN VIEWPOINT.......cueirececeeesecesieeseses st s st sas s sssesnsnsens

371 Server-Side Information View
3.7.2 Client-Side Information View

38 CompULELiONEl VIBWPOINT. ......cucveeereeerreeeireeeesesseses e ss s ssssessnnes

381 Overview

382 Identified set of Legacy Wrapper Service Components
383 Identified set of Entity Components

384 I dentified set of Computational Components

385 Protocol Specification

386 Component Collaboration

39 Engineering Viewpoint SPECifiCaLiON. ..........ccveerieeerieresiresiressese e seseenes
310 Technology Viewpoint SPECifiCatiON. ..o s

3101  Client-Side Components (Java models)
3102  Server-Side Components (EJB models)

A UML Profile for Enterprise Distributed Object Computing — Part |1

QOO BArDPWOWWWDN

10

............................................. 13

13
14

16
16
17
20
25
29

............................................. 29

32

B-1



ad/2001-08-20 — UML for EDOC Part 11

List of Figures

Figure 19: Organi Zation COMMUIITY .........cccorrireeeerereseeireresssseeesessssesesessssssssesssssessessssssssssssssessssssssesessssssessssssssesssssssessssssssessssen
Figure 20: Communities, Enterprise Objects, and ROI€s ..........cccoveniveennee.
Figure 21: Project Working Community Use Case VieW..........ccoveenieeeeenns
Figure 22: “Plan and arrange Meeting” PrOCESS.........oceereeemrieemrmeemseeeseenens
Figure 23: “Plan meeting” sub process details.............

Figure 24: “ Arrange meeting” sub process details
Figure 25:; “Check requirements” activity details........cccoovevvevecnerescecnnne,
Figure 26: “ Reserve chosen resources’ activity details .......ccooveevereeceennnne.
Figure 27: “Check requirements’ activity specification..........c.ccceevrerveeenene.
Figure 28: “Reserve chosen resources’ activity specification....................
Figure 29: “Respond to meeting invitation” activity specification.............
Figure 30: Administration Community Use Case View........c.ccnenieeeernens
Figure 31: “Administrate reSOUrCES’ PrOCESS.......ccovereerreerissessssssssssenes
Figure 32: “Remove meeting resource’ activity specification.....................
Figure 33: Server-Side Information View........
Figure 34: Server-Side Composition View......
Figure 35: Client-Side INFOrMELION VIBW........ccoceurirreeiriresieen st sessssssesessssssssesssssessessssssssesssssessesssssessssssssssssssssseses
Figure 36: COMPONENE SEIUCLUINE OVEIVIEW. .....c.cveuereeeeseeeeseeseessese s essseesss st ssse s sess s sss sttt essssesassenaes
Figure 37: Organization Service Component Structure
Figure 38: Email Service COMPONENT SIIUCLUIE .......c.vueiiereriereesreseereeeesteesss s sese s sess s ssssss s sssessssesassasans
Figure 39: Authorization Service COMPONENE SITUCLUIE.........ccuvueieieieirieeteieisis st sasssistsssassssssssssssssssssesssssssssssssssssssssssns
Figure 40: Reservation Entity Component Entity View.
Figure 41: Reservation Entity COMPONENt SITUCLUIE.........cceuieueirerecieeressistsssesss st sssssessssssse st sessssssessssssssesees
Figure 42: ReservationRemMOte [NtErfate SITUCLUIE..........cccueeececrsece sttt s sttt ses
Figure 43: Resource Entity Component Entity View
Figure 44: Resource Entity COMPONENE SETUCIUNE .......c.euirierecereseireecensieesieesi e sese st esassenaes
Figure 45: ResourceRemOote INErfaCe SIIUCIUNE.........c.cuieiericerecere et
Figure 46: Meeting Reservation Tool Component Structure
Figure 47: Meeting Reservation Service COMPONENE SLIUCLUNE ......cucveveveieieereeeirisieeisssisssssssssssssssssssssssssssssssssssssssssssssssens
Figure 48: Meeting Response Tool COMPONENE SETUCLUTE........c.c.vueiecieireceeeseee et ssssse s sesssssessssssssesees
Figure 49: Meeting Response Service Component Structure
Figure 50: Resource Administration TOol COMPONENt SITUCIUIE .......c.ouvvceeeeereeeeerirereeseetsersssssssesssssessesssssessessssssssesssssesnes
Figure 51: Resource Administration Service COMPONENT SLIUCLUIE ........ccuvurereeererereesieiresessenesessssesssesssssessesssssssesssssesnes
Figure 52: Reservation Manager Component Structure
Figure 53: Resource Manager COMPONENT SITUCLUIE ..........c.veereererieerieeesieesrsese e sess s sessessssessssssssssse s essssessssenaes
Figure 54: Meeting INVitation PrOtOCOL ...........ocuieiiieeirirnercne e
Figure 55: Meeting Invitation Business Transaction Protocol Structure
Figure 56: Meeting Invitation Business Transaction Protocol Choreography ...........cccveeevecenencseenenesssesesessenns
Figure 57: Meeting RESEIVation ProtOCOI ..........covciciriiecieeicse ettt s st s s s sessssnsesaes
Figure 58: Meeting Reservation Business Transaction Protocol Structure
Figure 59: Reservation Management PrOtOCOL ..o sessssesesesssssesessssssssessssssssesssssessesssssesssssssssssssssseses
Figure 60: Reservation Management System Transaction ProtoCol SIrUCUFE ..........cveveeeerienerenenseneeneeneieeeeeeeneenas
Figure 61: CCA Component Collaboration Model
Figure 62: Meeting Reservation Tool and Service IMplementation...........cou e sesessssessrenaes
Figure 63: Meeting Response Tool and Service IMplementalion...........cccvcerrennnsnsesssssessssssssessssssssssssssssssssssnens
Figure 64: Resource Administration Tool and Service Implementation
Figure 65: Reservation Manager ImMplemMENtatioN...........cccceurieeeurresieesesssssssessss st sesssssessssssssessssssssesessssssssssssssseses
Figure 66: Resource Manager IMPIEMENTALiON...........covvreerieer st s s st ns s eensssesaes
Figure 67: Reservation Entity Implementation
Figure 68: Resource Entity IMPIEMENEELION............ccuieirieieriercreeeei et

B-2 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22



3.5

2001-08-22

ad/2001-08-20 — UML for EDOC Part 11

Introduction

3.5.1

3.5.2

This annex describes and specifies a Meeting Reservation System (MRS) in terms of the
UML Profile for EDOC. The SO RM -ODP framework (The Enterprise, Information,
Computational, Engineering and Technology Viewpoint) isused to structure the MRS
specification.

The model for the Meeting Reservation System comes from the COMBINE (COM ponent-
Based I nteroperable Enterprise system development) project, where it function as the small-
grained pilot for proving the COMBINE concepts.

The overal goal of COMBINE (ESPRIT project no. IST-1999-20893) is to support model-
driven development of enterprise systems- using components. This requires further
development of methods, infrastructures and tools as well as business solutions for
modeling, designing, deploying, testing and running components successfully in an
enterprisewide scale. The UML profile for EDOC will form abaseline for the COMBINE
project.

Description

The Meeting Reservation System is a system for allocation of resources (e.g. rooms and
equipment) within specified time-slots and requesting participants for meetings or similar.
Resources are defined as being any kind of resource with a set of properties related to it.
Personsinvited to the meeting should be automatically notified and requested for response.

The reservation system should be able to present alist of reservation suggestions
based on the requirements set by the organizer. Typical kinds of organizer
requirements are: time period, duration, equipment, room capacity, equipment
capacity and required participants.

Notifications should provide efficient feedback to participants and it should be
very simpleto respond to them.

The system should help the users making the mo st appropriate reservation by
making suggestions based on input from the user as well as relevant information
that isavailable. (E.g. suggest meeting room(s) nearby the requesting user, make
suggestion based on room properties (number of sites, room equipment etc), check
schedule of required participants and give intelligent suggestions and feedback to
the user, suggest additional equipment if appropriate (e.g. extension lead,
appropriate plugs (e.g. for power supply when there is an international meeting)).

Assumptions

The Meeting Reservation System modeled in this context are based on the following
assumptions:

Availability of an organization structure and information system with employee
information.

Meeting invitations are sent viae-mail (asynchronous).

A UML Profile for Enterprise Distributed Object Computing — Part |1 B-3



ad/2001-08-20 — UML for EDOC Part 11

Allocation of resourcesistransacted on the server-side of the system
(synchronous).

The usage of the system is assumed to be internal within one organization
structure. However, the model s described, can be applied to virtual and/or
collaborating organization structures.

3.6 Enterprise Viewpoint Specification

3.6.1

In the Enterprise Viewpoint Specification, we structure communities for the Meeting
Reservation System. Thisincludes describing the general structure of the communities, their
enterprise objects, roles, the objectives of those roles, and the enterprise processes involved
in accomplishing those objectives.

Community Structure

Figure 19 shows the community structure for the M eeting Reservation System. The top-level
community that this system istargeted at is an Organization community. An organization
can consist of several interacting departmental communities. Two sub communities of
interest for the Meeting Reservation System are: The Project working community in which
we find the end-users of the system, and the Administration community in which we find the
system operators responsible for running and administrating the system.

Organization Community |

[ 1

Project Working Community |

[ 1

Administration Community |

Figure 19: Organization Community

B-4

Figure 20 shows a“rich picture” describing the relationship among communities, rolesin
communities and objects performing those roles. (Thisis an ad-hoc UML diagram, where
classes are used to represent objects and actors are used to represent roles. A roleis
performed by an object, which is shown using a dependency from an actor to aclass.)

A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22




ad/2001-08-20 — UML for EDOC Part 11

Organization Community |
2|
J“ ——— - Organization Server o> > Employee Resource
| 1 * 1 P
_— ’ 7
Organization Information System /N A A A s ANA
| JARRVANVAN - TAWAWA
o t e
— e
J“ Aulhorization Server e
r I A
Authorization System [ _ L~
(] ! ,l’ e
=% l' ) A
rj‘\ ! E"Tlall Server ///
-
Email Information System " G P v
[ s
-
Project Working Community | " ,, ,‘ vl
-
-
o ~
.
N —_ P — j
— e —
Meeting Organizer < ~ ~~~ Z—1T ¥
e’ ><—"7" T TI—
T - \<\,(\ ‘\\é. Manager Attendee |
.'J'\. o \\\\
Meeting Attendee .~~~ ~—__ >N~
s T~ >~
'l Tm——
£ T3
J‘I Project Worker - Room
iy
Meeting Resource
*
Y Operator Equipment
Administration Community e
O e
i i
|
Resource Administrator
Figure 20: Communities, Enterprise Objects, and Roles

3.6.2  Objectives of each Community

The objectives of each community are shown below:
The Project Working Community is responsible for accomplishing project activities,

and isasub community of the Organization Community.
The Administration Community is responsible for supporting the other sub
communities of the Organization Community.
3.6.3  The Project Working Community
The end-users of the Meeting Reservation System are primarily found in the Project
Working Community.

3.6.3.1 Scope

project. The system described hereisrestricted to afew supporting activities, namely:

Planning project/research meetings

A UML Profile for Enterprise Distributed Object Computing — Part |1

2001-08-22

There are many activities involved regarding the life cycle of aresearch or adevelopment

B-5



ad/2001-08-20 — UML for EDOC Part 11

Arranging and holding project/research meetings.
3.6.3.2 Enterprise Objects

Enterprise objects participating in this community and performing those roles described
below are the following:

Manager::Employee

Project Worker::Employee
Attendee::Resource

Room::Resource
Equipment::Resource

Organization Server (existing system)
Email Server (existing system)
Authorization Server (existing system)

3.6.3.3 Roles

Figure 21 shows a use case diagram for the roles (actors) in the Project Working Community
with regards to the M eeting Reservation System.

B-6 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22



ad/2001-08-20 — UML for EDOC Part 11

Meeting Ans\\jee\ =~
NN
N\
A\
\ \
\ N
\ \
\
\
\
\

N\

Meeting Reservation System

Make Meeting Reservation

<include>>
~.

~.
~
~

~
= ; ; y<incl d9>>\\\ I:} |
Change Meeting Reservation include>2 ) e N A T
N = Send Meeting Information o~ |
N ' |
N <<includex>-~ Email Information System
N\, - 7 \,
- v \
. - Y
Cancel Meeting Reservation <<inclu 9@» y Vi \\
e / \\
// <<incluge>> \,
s / N

/
/
/
/
/

Respond to Meeting Invitiation

7
/
/

/ /
/

N\,

Change Meeting Acknowledgement

/
/

7
7

View Meeting Schedule

//
s
s
\
\
\
\

-~

View Resource Calendar

-

P

—_—
—
—_—

p——
_—
g
—

Organization Information System

Meeting Resource

Login

- //

x

Authorization System

Figure 21: Project Working Community Use Case View

2001-08-22

Detailed roles required for this community to function are the followings:

Meeting Organizer (performed by ::Employee)

Meeting Attendee (performed by ::Employee)

M eeting Resource (performed by ::Resource)

Organization Information System (performed by Organization Server)

Email Information System (performed by Email Server)

Authorization System (performed by Authorization Server)

3.6.34 Policies

Here are some policies (constraints) placed on various roles. Note that more constraints,

such as pre-conditions, are described

A Meeting Resourcerole of
object.

in Process section below.

type Attendee must have an associated Employee

The Organization Information System must have all Meeting Resource roles of type

Attendee registered.

A UML Profile for Enterprise Distributed Object Computing — Part |1

B-7




ad/2001-08-20 — UML for EDOC Part 11

3.6.35 Processes

The processes for this community are described in terms of the Business Process Profile and
corresponding EDOC notation.

Figure 22 shows a high-level diagram that describes the main process from the planning of a
meeting until it is cancelled or isheld. This processis further elaborated below in detailed
diagrams for the two sub processes.

Plan and arrange

meeting 8
[ i
o N Fan meeting 8

frrange
eeting

yA
Meeting Meeting Reservati
organizer attendee on server

Figure 22: “ Plan and arrange meeting” process

Figure 23 shows the details for the “ Plan meeting” sub process.

Plan meeting 8

O
selecttime [§

allocate
resources

Meeting
|-reservation
requirements

Write meetlng
agenda

Figure 23: “ Plan meeting” sub process details

Figure 24 shows the details for the “ Arrange meeting” sub process. This sub process
consists of several activities, some of which are described in own diagrams below.

B-8 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22




ad/2001-08-20 — UML for EDOC Part 11

Arrange

meeting g
chedille

suggestions schedule

suggestions

Plan meeting g

oId meeing g

Figure 24: “ Arrange meeting” sub process details

Figure 25 shows the details for the “ Check requirements” activity.

check
requirements 8

get res. o
requirementsC]

{meeting

reservation

requirements

must be filled

out properly}
\

resource
calendars

- schequle

oD | =D, > 2 = )/ suggdstions

e —

ECK resource) create res. 8 Meetihg
khced O suggestion ﬂ_

Figure 25: “ Check requirements’ activity details

Figure 26 shows the details for the “ Reserve chosen resources’ activity.

{One legal Reserve

rsv::?]z:jlaﬁe resources 8
suggestion

chosen}y

Parse meeting
suggestion L

reserve
resources

reservati
on Mgr

4
Reserve
Resource

X

Figure 26: “ Reserve chosen resources’ activity details

2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 B-9




ad/2001-08-20 — UML for EDOC Part 11

3.6.3.6  Activity Specification

The activity specifications for this community are described using the Business Process
Profile. The activities are derived from the process diagrams presented above.

Figure 27 shows the activity specification for the “ Check requirements” activity.

<<ActivityPreCondition>> <<Activity>> <<ActivityPostCondition>>
meeting reservation requirementsreceived > Check requirements < meeting schedule suggestions cr eated
- ~—
~
<<Performer>> ///’/<<Artifact>> \\\\\ <<ResponsibleParty>>
-~ ~
///// \\\\
~
/// ~<
£= =
<<ProcessComponent>> <<CompositeData>> <<EntityRole>>

M eetingReser vationSer vice

Reser vationRequirements

M eeting Reser vation System

Figure 27: “ Check requirements’ activity specification

Figure 28 shows the activity specification for the “ Reserve chosen resources’ activity.

<<ActivityPreCondition>> PN <<Activity>> o | <cActivitypostCondition>> |
chosen valid meeting schedule suggestion Reserve chosen resources | all selected resour ces allocated I
= <
e /// . \\\\\ .
<<Performer>>_—~— <<Artifact>% ~~s<ResponsibleParty>>
- \\

(///// \\\\§_
I <<ProcessComponent>> I <<CompositeData>> <<EntityRole>> i
I M eetingReser vationSer vice I Reser vationSuggestion M eeting Reser vation System I

Figure 28: “ Reserve chosen resources’ activity specification

Figure 29 shows the activity specification for the “ Respond to meeting invitation” activity.

<<ActivityPreCondition>> & <<Activity>> e~ <<ActivityPostCondition>>
meeting invitation created and delivered Respond to meeting invitation |~ attendee meeting status updated and response stor ed
//// \\\\
<<Performer>>_ -~ 7 <<Artifact>> \\\\<iR&sponsibIeParty>>
é//// N \\\\\_
<<ProcessComponent>> <<CompositeData>> <<EntityRole>>

M eetingResponseT ool

M eetingl nvitationM essage

Meeting attendee

Figure 29: “ Respond to meeting invitation” activity specification

3.6.4  The Administration Community

The administration community is responsible for the operations and maintenance
information systems supporting the project working community.

B-10 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22



ad/2001-08-20 —-

3.64.1 Scope

UML for EDOC Part 11

The scope of the administration community described in this context is restricted to the
operations and maintenance of the Meeting Reservation System.

3.6.4.2 Enterprise Objects

The enterprise objects participating in this community and performing the roles described

below are the following:
Operator::Employee
Attendee::Resource
Room::Resource
Equipment::Resource
Organization Server (existing system)
Email Server (existing system)
Authorization Server (existing system)

3.6.4.3 Roles

Figure 30 shows a use case model for the roles (actors) in the Administration community

with regards to the M eeting Reservation System.

L~
//

s I_/;,_ Create Resource

£ >
1 M ~.
Resource Administgator S~ O |
Remove Resource :[L
i
~

Meeting Reservation System

x|

Authorization System

///// .
N — Meeting Resource
—

N
<<extend>>

\\\\\
<<extend>> Handle Existing Reservation Conflicts

<<include>>
A\

Modify Resource

Send Reservation Conflict Information —

x|

Organization Information System

X

Email Information System

Figure 30: Administration Community Use Case View

2001-08-22

Detailed roles required for this community to function are the followings:

A UML Profile for Enterprise Distributed Object Computing — Part |1

B-11




ad/2001-08-20 — UML for EDOC Part 11

Resource Administrator (performed by Operator::Employee)

M eeting Resource (performed by ::Resource)

Organization Information System (performed by Organization Server)
Email Information System (performed by Email Server)

Authorization System (performed by Authorization Server)

3.6.44 Policies

Here are some policies (constraints) placed on various roles. Note that more constraints,
such as pre-conditions, are described in the process section below.

A Meeting Resource role of type Room or Equipment must have an associated real-
life, physical object.

3.6.45 Processes

The processes for this community are described in terms of the Business Process Profile and
corresponding EDOC notation.

Figure 31 shows a high-level diagram that describes the main process of resource
administration.

Administrate
resources 8

Adm phys. g
resources Q)

]

Meeting
resource
hanges

U U

andle res.

Figure 31: “ Administrate resources’ process

The remaining process details of the administration community are not described here.

3.6.4.6  Activity Specification

The activity specifications for this community are described using the Business Process
Profile. The activities are derived from the process diagrams presented above.

Figure 32 shows the activity specification for the “ Remove meeting resource” activity.

B-12 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22




ad/2001-08-20 — UML for EDOC Part 11

<<ActivityPreCondition>> <<Activity>> ~ <<ActivityPostCondition>>
resourceid exists C Remove meeting resour ce resour ceremoved and conflicts notified or ganizer
4
/ N
/ ~
<<Perfoyfner>> <<Respawei@IeParty>>
\\
/ ~
4 N
<<ProcessComponent>> <<EntityRole>>
Resour ceAdministrationT ool Resour ce administrator
Figure 32: “ Remove meeting resource” activity specification
3.7 Information Viewpoint

The information viewpoint describes the information context of the Meeting Reservation
System using the Entity and Relationship Profile.

3.7.1 Server-Side Information View

Figure 33 shows the server-side information view that describes the information context
represented on the server tier.

<<CompositeData>>
ReservationRequirements

organizer : undefined

<<EntityData>> startTime : undefined
Calendar endTime : undefined
) duration : undefined
calendar | « properties <<EntityData>> )
I —————— > PropertyList 1 (
. | | 1 [oroperties : undefined o
events|| | | \!/rwourc&s
<<EntityData>> é é <<CompositeData>>
Reservation organizer __<<_En_t|§D_aI_a>_>_ Resour ceProperties
id: string 1 Resource type | <<EntityData>> attendance : undefined
description : undefined . id- sring 9 Resour ceType actualReference : boolean
reason  siring relations name: string l< ! type : undefined actualResource : undefined
startTime : undefined . : N _a-rllent resourceType : undefined
endTime : undefined b NF p | resourceProperties : undefined
subregources |
N |
Y ______ ]
| ;
resourcesJ 0.1 <<CompositeData>>
. Reser vationSuggestion
;<Ent|t3£;ta;> startTime : undefined
esourc ation endTime : undefined
resourceAttendances : undefined resourceObjects : undefined
resourceResponses ; undefined resourceAttendances : undefined

Figure 33: Server-Side Information View

Each of the information profile types are described in more detail below:

Reservation represents the all ocation of a set of resources for a specific time frame. A
Reservation has aresources role of type ResourceRelation and an organizer role of
type Resource.

2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 B-13




ad/2001-08-20 — UML for EDOC Part 11

Resour ceRelation has arelations role of type Resource that represents the set of
allocated resources. A ResourceRelation also has information about resource
attendances and responses.

Resource represents the target for reservations. A Resource has a Calendar that
contains the set of reservationsit participatesin. A Resource can have
subresources role and a parent role of type Resource describing the recursive
structure of aresource. A Resource has properties defined in a PropertyList and a
type defined in a ResourceType.

Calendar represents a plan for resources. A Calendar defines a set of events of type
Reservation.

PropertyList represents a set of defined properties for aresource.
ResourceType represents the resource type (e.g. attendee, room, equipment).

ReservationRequirements is a composite data element representing a composed
requirement specification for areservation. It contains a set of ResourceProperties.

ResourceProperties control required settings areservation. ResourceProperties can
be used to refer to an actual resource or describe the properties of a suggested
resource.

ReservationSuggestion represents the suggested resources for areservation.

Figure 34 describes the two entity components derived from the information view.

ResourceComposition
<<EntityData>>
ReservationComposition /7 Calendar
e
<<EntityData>> S < EntityData>> - Vd -
Reservation Resour ceRelation <<EntityData>> <<EntityData>>
Resource ResourceType

\y| <<EntityData>>
PropertyList

Figure 34: Server-Side Composition View

The entities corresponding to the ReservationComposition and ResourceComposition are
further elaborated in the Computational Viewpoint.

3.7.2 Client-Side Information View

Figure 35 shows the client-side information view that describes the information context on
the client tier. The server-side information view typically supports a more generic
information model, while the client-side information view represents alocal view, possibly
augmented with information objects necessary to support business logic near the client tier.

B-14 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22




ad/2001-08-20 — UML for EDOC Part 11

<<CompositeData>>
ReservationRequirements
<<EntityData>> organizer : undefined
Calendar X X

startTime : undefined

<<EntityData>> caendar | , endTime : undefined

. duration : undefined
Resour ceRelation

events| * resourceAttendances : undefined| 1
resourceResponses : undefined
<<EntityData>> * | resources
M eetingReser vation resources/{0..1 -

— - <<EntityData>> <<CompositeData>>
description : undefined Resource Resour cePronerties
id : string o relations id- srin P

: 9 attendance : undefined

reason : string
startTime : undefined

* |name: string

actual Reference : boolean

endTime : undefined

A actual Resource : undefined
resourceType : undefined
resourceProperties : undefined

<<CompositeData>>
M eetingl nvitationM essage

. <<Entity>> <<Entity>> <<Entity>>
organizer | Attendee Room has|  Equipment
- n - n - <<CompositeData>>
email : undefined capacity : undefined * |category : undefined
! . h Yy ooy ReservationSuggestion
role : undefined
startTime : undefined

endTime : undefined

description : string
responseURL : string

resourceObjects : undefined
resourceAttendances : undefined

Figure 35: Client-Sde Information View

2001-08-22

Each of theinformation profile types are described in more detail below:
MeetingReservation represents the local view of areservation.

Attendee represents the local view of aresource, with defined properties, of type
“Attendee”.

Roomrepresents the local view of aresource, with defined properties, of type
“Room”.

Equipment represents the local view of aresource, with defined properties, of type
“Equipment”.

MeetinglnvitationMessage is a composite data element that is sent (viae-mail) to
every invited attendee containing an URL that is used to start a meeting response
tool.

The remaining information elements are as described for the server-side information view.

No compositions are described on the client-side since the entity data are to be interpreted
as object by value data controlled in alocal, client workspace session

Computational Viewpoint

The Computation Viewpoint is mainly described using the Component Collaboration
Architecture (CCA) profile. In the Computational Viewpoint Specification, Computational
Objects are derived and presented as CCA Process Components. Port specification as
interface specifications for comp utational object, and Protocol specification as interaction
specifications between computational objects are described.

A UML Profile for Enterprise Distributed Object Computing — Part |1 B-15




ad/2001-08-20 — UML for EDOC Part 11

3.8.1 Overview

Figure 36 shows an overview of the component structure model, which describes the
relationships between the Tool, Service, and Manager component types used to model the
M eeting Reservation System.

<<ProcessComponent>>
AuthorisationServiceComponent

|

AuthorisatioR

nService
<<ProcessComponent>> <<ProcessComponent>> <<ProcessComponent>>
MeetingReservationToolComponent MeetingResponseToolComponen ResourceAdministrationToolComponent

AN

IMeetingRes  IMeetinglnvit IMeetingRetr  |Resourcew

ervation ation ieval Retrieval IMeet\ngRes IMeetingRetr IResourceAd |ResourceR
\ \ / ponse ieval minsitration elrleval
. <<Pf0C95500mDF’”em>> <<ProcessComponent>>
) <<Proce5§Comp9nent>> MeetingResponseServiceComponent ResourceAdministrationServiceComponent
MeetingReservationServiceComponent

EmailServic M O

. IReservation anagement OrgUnitServi
| Management ce

Ef;ﬁgiﬁf;’&ﬁ’,fgjﬁ;f <<ProcessComponent>> <<ProcessComponent>> <<ProcessComponent>>
ReservationManagerComponent ResourceManagerComponent OrganisationServiceComponent
HomeManag HomeManag
ement ement

Figure 36: Component Structure Overview

3.8.2 Identified set of Legacy Wrapper Service Components

The Organization Community contained three existing systems (Organization, Email, and
Authorization server) that we can view as “ classical” services having interfaces, which
exposes their usage. In order for the Meeting Reservation System to be able to interact with
each of these services, wrapper process components are needed:
OrganizationServiceComponent of type ProcessComponent
Email ServiceComponent of type ProcessComponent
AuthorizationServiceComponent of type ProcessComponent
Each of these componentsis elaborated in diagrams below. The wrapper process
components defined below can be replaced by the actual server systemsif they provide the
interfaces described.

Figure 37 shows the component structure for the organization service component.

B-16 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22



ad/2001-08-20 — UML for EDOC Part 11

<<comment>>
<<l ntejrface>.> Thisinterface can be designed e.g. using the
OrgUnitService javax.naming.ldap API.

f

<<Protocol Port>> <<responds>>
EngOrgUnit

<<ProcessComponent>>
OrganizationSer viceComponent

Figure 37: Organization Service Component Structure

Figure 38 shows the component structure for the email service component.

<<comment>>
<<Interface>> Thisinterface can be designed e.g. using the
EmailService javax.mail API.
<<Protocol Port>> | <<responds>> | <<ProcessComponent>>
SendM ail ] EmailServiceComponent

Figure 38: Email Service Component Structure

Figure 39 shows the component structure for the authorization service component.

<<comment>>
<<Interface>> This interface can be designed e.g. using the
AuthorizationService javax.naming.ldap API.

i

<<Protocol Port>> <<responds>>
CheckAuthorization

<<ProcessComponent>>
AuthorizationSer viceComponent

Figure 39: Authorization Service Component Structure

2001-08-22

3.8.3 Identified set of Entity Components

In the Information Viewpoint we defined two entity compositions (ReservationComposition
and ResourceComposition) that we now map onto corresponding entity components:

ReservationComponent of type Entity

ResourceComponent of type Entity

3.8.3.1 Reservation Component

Figure 40 shows the entity view for the reservation entity component.

A UML Profile for Enterprise Distributed Object Computing — Part |1 B-17




ad/2001-08-20 — UML for EDOC Part 11

<<Entity>> <<Key>>
) K :
ReservationComponent 1 1 ReservationK ey
1 1<> 1
1
1 1 X
<<KeyAttribute>>
<<EntityData>> <<EntityData>> id
Reservation ResourceRelation
*
<<ForeignKey>>
Resour ceK ey

Figure 40: Reservation Entity Component Entity View

Figure 41 shows the component structure for the reservation entity component.

<<Interface>>
ReservationRemote

<<Protocol Port>>
Reser vationRemoteM anagement

<<Interface>>
ReservationHome

<<responds>> <<Entity>> <<responds>>

ReservationComponent

<<Protocol Port>>
Reser vationHomeM anagement

Figure 41: Reservation Entity Component Structure

Figure 42 shows the protocol structure for the ReservationRemote interface (protocol)
describing the operations defined.

<<Interface>>
ReservationRemote

+getResources():ResourceRelation

+getKey():ReservationKey

+addResource(Inout key:ResourceKey ,Inout attendance:string):boolean|
+getDescription():string

+getEndTime():Date

+getOrganizer():ResourceK ey

+getReason():string

+getResourcesByA ttendance(I nout attendance:string): [*] ResourceKey
+getResourcesByResponse(I nout response:string): [*] ResourceKey
+getStartTime():Date

+removeResource(Inout key:ResourceKey):boolean
+setDescription(Inout newDescription:string)

+setEndTime(Inout newEndTime: Date):boolean

+setOrgani zer(Inout newOrganizer:ResourceK ey):boolean
+setReason(Inout newReason:string)

+setResources(Inout newResources: ResourceRel ation):boolean
+setStartTime(Inout newStartTime:Date):boolean

Figure 42: ReservationRemote I nterface Structure

B-18 A UML Profile for Enterprise Distributed Object Computing — Part |1

2001-08-22




ad/2001-08-20 — UML for EDOC Part 11

3.8.3.2 Resource Component

Figure 43 shows the entity view for the resource entity component.

subresources

<<ForeignKey>>

- K>—
parent 0.1] ResourceRelationK ey 1
1 1
<<EntityData>> ! S <<Entity>> > <<Key>>
ResourceType Resour ceComponent 1 Resour ceK ey

1
e f

1

— |

! 1

<<EntityData>> <<EntityData>> <<EntityData>> -
Resource PropertyList Calendar <<KeyA_t(tjr|bute>>
i
1
*
<<ForeignKey>>

ReservationK ey

Figure 43: Resource Entity Component Entity View

Figure 44 shows the component structure for the resource entity component.

<<Interface>>
Resour ceRemote

<<Protocol Port>>

<<responds>>

<<Entity>>

<<responds>>

<<Interface>>
ResourceHome

<<Protocol Port>>

Resour ceRemoteM anagement Resour ceComponent Resour ceHomeM anagement

Figure 44: Resource Entity Component Structure

Figure 45 shows the protocol structure for the ResourceRemote interface (protocol)
describing the operations defined.

2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 B-19




ad/2001-08-20 — UML for EDOC Part 11

<<Interface>>
Resour ceRemote

+getName():string

+getParent():ResourceK ey

+setName(I nout newV alue:string):boolean
+getKey():ResourceK ey

+getType():ResourceType

+getProperties():PropertyList

+setProperties(Inout newProperties:PropertyL ist):boolean
+isAvailable(Inout from:Date ,| nout to: Date):boolean
+addEvent(I nout event:ReservationK ey):boolean
+addProperty(Inout key:string ,Inout val ue:Object):boolean
+addSubresource(Inout key:ResourceKey):boolean
+getCalendar():Calendar

+getEvents(Inout sDate:Date ,Inout eDate:Date): [*] ReservationKey
+getEvents(): [*] ReservationKey

+getSubresources(): [*] ResourceKey

+removeEvent(Inout event:ReservationK ey):boolean
+removeProperty(Inout key:string):boolean
+removeSubresource(Inout key:ResourceK ey):boolean
+setCal endar(Inout newCalendar: Calendar):boolean
+setParent(Inout newParent:ResourceK ey):boolean
+setType(Inout newV alue:ResourceType):boolean

Figure 45: ResourceRemote Interface Structure

3.8.4 Identified set of Computational Components

Other computational objects that are derived from the Enterprise Viewpoint specification and
Information Viewpoint specification are (all of type ProcessComponent):

M eetingReservationTool Component: A component that represents the client
application used for booking meetings.

M eetingReservationServiceComponent: A client-side component that is used by
the MeetingReservationTool.

M eetingResponseT ool Component: A component that represents the client
application used for responding to meeting invitations.

M eetingResponseServiceComponent: A client-side component that is used by the
M eetingResponseTool.

ResourceAdministrationTool Component: A component that represents the client
application used for administrating resources.

ResourceAdministrationServiceComponent: A client-side component that is used
by the ResourceAdministrationTool.

ReservationM anagerComponent: A server-side component that manages
reservations.

ResourceM anagerComponent: A server-side component that manages resources.

A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22



ad/2001-08-20 — UML for EDOC Part 11

The specifications of the tool, service and manager components are elaborated below. The
specification are structured according to afour tier architecture. The tool and service
components are client-side components. The manager and entity components are server-
side components. I nteraction between the client and server sideis enforced using only the
service components.

3.84.1 Meeting Reservation Tool Component

Figure 46 shows the component structure for the meeting reservation tool component.

<<Protocol>> <<Protocol>> <<Protocol>> <<Protocol>>

M eetingReser vationBT

MeetinglnvitationBT

MeetingRetrievalBT

Resour ceRetrieval BT

T

T

I

I

<<Protocol Port>>
| M eetingReser vation

<<Protocol Port>>
I M eetingl nvitation

<<Protocol Port>>
IMeetingRetrieval

<<Protocol Port>>
I Resour ceRetrieval

A <<initiatt
<<initiatgs>>

<<ProcessComponent>>
M eetingReser vationT ool Component

<<irjtiates>>

<<Protocol Port>>
CheckAuthorization

v

<<Interface>>
AuthorizationService

Figure 46: Meeting Reservation Tool Component Structure

3.8.4.2 Meeting Reservation Service Component

Figure 47 shows the component structure for the meeting reservation service component.

2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 B-21




ad/2001-08-20 — UML for EDOC Part 11

<<Protocol>> <<Protocol>> <<Protocol>> <<Protocol>>
M eetingReser vationBT MeetinglnvitationBT MeetingRetrievalBT Resour ceRetrievalBT
<<Protocol Port>> <<Protocol Port>> <<Protocol Port>> <<Protocol Port>>
IM eetingReser vation | M eetingl nvitation IMeetingRetrieval |Resour ceRetrieval
<<responys>> <<responds>> <<regpefds>>
<<respon

<<ProcessComponent>>
M eetingReser vationSer viceComponent
<<inifates>> <<Mifjates>>
Tnitiates>>
<<Protocol Port>> <<Protocol Port>> <<Protocol Port>>
| ReservationM anagement IResour ceM anagement SendMail
<<Protocol>> <<Protocol>> <<Interface>>
ReservationM anagementST Resour ceM anagementST EmailService

Figure 47: Meeting Reservation Service Component Structure

3.84.3 Meeting Response Tool Component

Figure 48 shows the component structure for the meeting response tool component.

<<Protocol>> <<Protocol>>
M eetingResponseBT MeetingRetrievalBT
<<Protocol Port>> <<Protocol Port>>
IMeetingResponse IMeetingRetrieval

<<initiatgs>> A
<<initi >

<<ProcessComponent>>
M eetingResponseT ool Component

Figure 48: Meeting Response Tool Component Structure

3.8.4.4 Meeting Response Service Component

Figure 49 shows the component structure the meeting response service component.

B-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22




ad/2001-08-20 — UML for EDOC Part 11

<<Protocol>> <<Protocol>>
M eetingResponseBT MeetingRetrievalBT
<<Protocol Port>> <<Protocol Port>>
| M eetingResponse I MeetingRetrieval

<<resgonds>>
<<resgonds>>

<<ProcessComponent>>
M eetingResponseSer viceComponent

<<inifiates>>

<<Protocol Port>>
| Reser vationM anagement

<<Protocol>>
ReservationM anagementST

Figure 49: Meeting Response Service Component Structure

3.8.45 Resource Administration Tool Component

Figure 50 shows the component structure for the resource administration tool component.

<<Protocol>> <<Protocol>>
ResourceAdministrationBT Resour ceRetrieval BT
<<Protocol Port>> <<Protocol Port>>
IResour ceAdministration |Resour ceRetrieval

<<inifates>>

<<ProcessComponent>>
Resour ceAdministrationT ool Component

<<initiates>>

<<Protocol Port>>
CheckAuthorization

i

<<Interface>>
AuthorizationService

2001-08-22

A UML Profile for Enterprise Distributed Object Computing — Part |1 B-23




ad/2001-08-20 — UML for EDOC Part 11

Figure 50: Resource Administration Tool Component Structure

3.8.4.6 Resource Administration Service Component

Figure 51 shows the component structure for the resource administration service

component.
<<Protocol>> <<Protocol>>
ResourceAdministrationBT ResourceRetrievalBT
<<Protocol Port>> <<Protocol Port>>
| Resour ceAdministration |Resour ceRetrieval
<<respogds>> <<r nds>>
<<ProcessComponent>>

Resour ceAdministr ationSer viceComponent

<<Nitiates>>
<<irfitiates>>

<<Protocol Port>> <<Protocol Port>>
| Resour ceM anagement EngOrgUnit
<<Protocol>> <<Interface>>
Resour ceM anagementST OrgUnitService

Figure 51: Resource Administration Service Component Structure

3.8.4.7 Reservation Manager Component

Figure 52 shows the component structure for the reservation manager component.

B-24 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22




ad/2001-08-20 — UML for EDOC Part 11

<<Protocol>>

. << >
Reser vationM anagementST Interface>

ReservationM anager Home

<<Protocol Port>> <<responds>> <<ProcessComponent>> <<responds>> <<Protocol Port>>
: — . >———
| ReservationM anagement ReservationM anager Component HomeM anagement
<<ipftiates>> <<iniths{es>>
<<Protocol Port>> <<Protocol Port>>
ReservationRemoteM anagement Resour ceRemoteM anagement
<<Interface>> <<Interface>>
ReservationRemote Resour ceRemote

Figure 52: Reservation Manager Component Structure

3.8.4.8 Resource Manager Component

Figure 53 shows the component structure for the resource manager component.

<<Protocol>> —
Resour ceM anagementST <<Interface>>
Resour ceM anager Home
<<Protocol Port>> «Lﬁnd?; <<ProcessComponent>> <<responds>> [ <<protocolPort>>
>——
| Resour ceM anagement Resour ceM anager Component HomeM anagement

<<inftiates>>

<<Protocol Port>>
Resour ceRemoteM anagement

<<Interface>>
Resour ceRemote

Figure 53: Resource Manager Component Structure

3.8.5  Protocol Specification

The following are partial protocol specifications for some identified business transactions
using CCA.

2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 B-25




ad/2001-08-20 — UML for EDOC Part 11

3.85.1 Meeting Invitation Protocol

Figure 54 shows an activity diagram that describes the protocol for the meetinginvitation
business transaction.

MeetingInvitationRequester MeetingInvitationResponser
<<FlowPort>> VAPPSO \.
Sendinvitation /° <<FlowPort>> 3\

{ Notify )
\\ Participants /
o —————— — e
-7 _I
-
- |
-
L i
i - ¥ i— a
' - — |
<<EntityData>> <<EntityData> I
Meetngeserv MeetingNotifical a
——aton____ tion
—

/7 <Fiowpom
( SendMail \

<<FlowPort>> &

getlnvitation

Responses

T~ <o N
( getlinvitationRes ]
\ ponses J

S —

<<CompositeData>>
ResponseType

Figure 54: Meeting Invitation Protocol

Figure 55 shows the protocol structure for the meeting invitation business transaction. Since
meeting invitations and responses can be sent asynchronpusly via e-mail, publisher and
flow ports are defined that supports this business transaction.

<<CompositeData>>
M eetingl nvitationM essage
’ |
_ <<FlowPort>> <<CompositeData>> |
_ B & ’ ;
<<resgond’s>> GetTentatived M eetingTentativedResponseType !
-~
<<Publisher>> <<initiates>> <<Protocol>> <<responds>> | <<FlowPort>> <<CompositeData>>
Sendinvitation |~ "®1 eetingl nvitationBT & ————— GetAccepted ‘Il MeetingAcceptedResponseType
<<re‘qur3]s>>
S~ <<FlowPort>> <<CompositeData>>
GetDeclined 7] M eetingDeclinedResponseType

Figure 55: Meeting Invitation Business Transaction Protocol Structure

Figure 56 shows the protocol choreography for the meeting invitation business transaction.

B-26 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22




ad/2001-08-20 — UML for EDOC Part 11

< GetTentatived > < GetAccepted > < GetDeclined >

| [Attendee optional]

[Attendee required]

@

<<Success>>

@

<<BusinessFailure>>

Figure 56: Meeting Invitation Business Transaction Protocol Choreography

3.85.2 Meeting Reservation Protocol

Figure 57 shows an activity diagram that describes the protocol for the meeting reservation
business transaction.

MeetingReservationRequester MeetingReservationResponder

<<FlowPort>> //
createMeeting (
\
\

___T__,
v

<<EntityData>>

<<FlowPor>>
createMeetingR \

esponse /
/

Reservation

<<FlowPort>> <<EntityData>> | //-___<<_FIEVE)n_>>___q\

createSuggestion ———3] Reservation R S createSuggestionList \

List “ | _Requirements_ “\ Response /J
___________________ p

V= = i
/ <<FlowPort>> N <<CompositeData>>
{ Reserve Reservation
\ Schedule // _Suggestion
N __/I
| ,
| <<CompositeData>>
| S—— Reservation 1
_Suggestion ¥
/7 T owaie
( ReserveSchedule \
T s . \\ Response /)
_Reservation I

Figure57: Meeting |

rReservation Protocol

Figure 58 shows the protocol structure for the meeting reservation busi

2001-08-22

A UML Profile for Enterprise Distributed Object Computing — Part |1

ness transaction.

B-27




ad/2001-08-20 — UML for EDOC Part 11

<<Protocol>>
M eetingReser vationBT

+createMeeting(): MeetingReser vation
+createSuggestionList(Inout requirements: ReservationRequirements): [*] ReservationSuggestion
+reserveSchedul (I nout meeting: MeetingReservation ,Inout suggestion: ReservationSuggestion): MeetingReser vatiol

Figure 58: Meeting Reservation Business Transaction Protocol Structure

3.8.5.3 Reservation Management Protocol

Figure 59 shows an activity diagram that describes the protocol for the reservation
management system transaction.

ReservationManagementRequester ReservationManagerResponder

<<FlowPort>>
FindReservation
Y
<<CompositeData>>|
Resemvationkey | | _
_________ /<<FIowPOrt>>\
FindReservat /\
L—="\_ionR n:
/’,’—’ \Nionkespansez
—
<<Entity> e,—”
IReservatior|
/" <<FlowPorts> O\
\ CreateReservationRequ )
N est _//
T
! ——
<<Compo!neData>> | / SHAETRIES \\
ReservationRequirements [~ — | -t _CreateSuggestionistResp )
|  ReservationRec quirements, | \e____os ____/
v
<<FlowPort>> :
( CreateReservation %‘ SECUIGREEISEERS
\ : ReservationSuggestion_
\
<<Entity>> /___<_<F_IOWF$H_>>___\\
_______ | createnesenasonmesponse )
N T___"/
\\
/<9\)
<R<Entll)/t?> ZZ<FlowPorss ™ /7
[Resenvation ReservationR
\ /
N_esponse L/ /
(T =R wRorss N
CreateReservationExcepti )
_________ J— ——‘l\_____m_____/
<<CompositeData>> | , _ ———=— -
ReservationTransaction
—AhortedException__

Figure 59: Reservation Management Protocol

Figure 60 shows the protocol structure for the reservation marnagement system transaction.

B-28 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22




ad/2001-08-20 — UML for EDOC Part 11

<<Protocol>>
Reser vationM anagementST

+createReservation(I nout requirements: ReservationRequirements): Reservation
+createReservation(Inout suggestion: ReservationSuggestion): Reservation
+createReservation():Reservation

+createSuggestionList(Inout requirements: ReservationRequirements): [*] ReservationSuggestion
+del eteReservation(I nout reservation:Reservation)

+findReservationByPrimaryK ey(Inout pk:ReservationK ey):Reservation
+findReservationsAll():Enumeration

+findReservationsByOrgani zer(Inout pk:ResourceK ey):Enumeration

Figure 60: Reservation Management System Transaction Protocol Structure

3.8.6  Component Collaboration

Figure 61 shows a diagram describing the collaboration of some of the component specified
above.

ResourceAdministratio)
ServiceComponent

b IResourceAdministration EnqOrgunit *
b IResourceRetrieval ResourceM anagemem* OrganizationServer @

-84

Property | Type I Value

MeetingReservation @
ServiceComponent

- - ResourceManager @
E>'Mee“"gReseNa"°" ResourceManagement b—‘ |Component
E\IMeetinglnvitation _ L___ > b IResourceManagement ResourceRemoteMgt
ReservationManagement]

b IMeetingRetrieval
en dMai }—‘

b IResourceRetrieval

eservationvManager @

Component
b IReservationManagement |ReservationRemotemMgt
ResourceRemoteMgt

EmailServer

b SendMail ﬁ Property | Type I Value }

Figure 61: CCA Component Collaboration Model

3.9

2001-08-22

Engineering Viewpoint Specification

Thetable, below, provides a mapping of the component elements specified in the
Computational Viewpoint and the component elements implemented in the Technology
Viewpoint below.

Computational Viewpoint Element Technology Viewpoint Element
<<ProcessComponent>> not described
Organi zationServiceComponent

A UML Profile for Enterprise Distributed Object Computing — Part |1 B-29




ad/2001-08-20 — UML for EDOC Part 11

<<ProcessComponent>> not described

Email ServiceComponent

<<ProcessComponent>> not described

Authori zationServiceComponent

<<Entity>> <<EJBImplementation>>
Reservation ReservationBean
<<Entity>> <<EJBImplementation>>
Resource ResourceBean
<<ProcessComponent>> <<Javaapplication>>

M eetingReservationT ool Component M eetingReservationT ool Component
<<ProcessComponent>> <<Javainterface>>
MeetingReservationService M eetingReservationService

<<Javaclass>>
M eetingReservationServicel mpl

<<ProcessComponent>> <<Javaapplication>>

M eetingResponseT ool Component M eetingResponseT ool Component
<<ProcessComponent>> <<Javainterface>>

M eetingResponseService M eetingReservationService

<<Javaclass>>
M eetingReservationServicel mpl

<<ProcessComponent>> <<Javaapplication>>
ResourceAdministrationT ool ResourceAdministrationT ool
<<ProcessComponent>> <<Javainterface>>
ResourceAdministrationService ResourceAdministrationService
<<Javaclass>
ResourceA dministrationServicelmpl
<<ProcessComponent>> <<EJBImplementation>>
ReservationM anagerComponent ReservationM anagerBean
<<ProcessComponent>> <<EJBImplementation>>
ResourceM anagerComponent ResourceM anagerBean

Further elaboration of the engineering viewpoint is not considered here.

3.10 Technology Viewpoint Specification

The technology viewpoint specification shows the J2EE implementation models for the
components specified in the computational viewpoint.

3.10.1 Client-Side Components (Java models)

3.10.1.1 Meeting Reservation Tool and Service

Figure 62 shows the Java model for the meeting reservation tool and service components.

B-30 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22



ad/2001-08-20 — UML for EDOC Part 11

<<interface>>
|Meetinglnvitation

+send|nvitation(lnout message: MeetinglnvitationMessage ,Inout emails [*] string)

<<interface>>
IMeetingReservation

+createMeeting(): MeetingReservation

<<interface>> /‘D +createSuggestionList(Inout requirements: ReservationRequirements): [*] ReservationSuggestion
MeetingReservationService + reserveSchedul e(Inout meeting: MeetingReservation ,Inout suggestion: ReservationSuggestion): MeetingReser vatior
<<interface>>
reservationService| 0..1 IResourceRetrieval

+getResources(): [*] Resource
+getResour cesByName(Inout name: string): [*] Resource
+getResourcesBy Type(Inout type:integer): [*] Resource

*

M eetingReser vationT ool

<<interface>>
IMeetingRetrieval

+getReservationByPrimaryKey(Inout key: ReservationKey): [*] Reservation
+getReservations(): [*] Reservation

+getReservationsByDates(I nout sDate: Date ,Inout eDate: Date): [*] Reservation|
+ getReser vationsByOrganizer (Inout organizer:string): [*] Reservation

Figure 62: Meeting Reservation Tool and Service | mplementation

3.10.1.2 Meeting Response Tool and Service

Figure 63 shows the Java model for the meeting response tool and service components.

<<interface>>
IMeetingResponse
<<interface>> /D
MeetingResponseService +respondReser vation(Inout reservation: Reservation ,Inout resource: Resource ,|nout response: string): Reservatiol
responseService | 0.1 <<|r.1teﬁaoei>>
IMeetingRetrieval

*

+getReservationByPrimaryKey(Inout key: ReservationKey): [*] Reservation
+getReservations(): [*] Reservation

+getReservationsByDates(Inout sDate: Date ,Inout eDate: Date): [*] Reservatiol
+getReservationsByOrganizer (Inout organizer:string): [*] Reservation

M eetingResponseT ool

Figure 63: Meeting Response Tool and Service Implementation

3.10.1.3 Resource Administration Tool and Service

Figure 64 shows the Java model for the administration tool and service components.

2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 B-31




ad/2001-08-20 — UML for EDOC Part 11

<<interface>>

ResourceAdministrationService

resourceService

0.1

Resour ceAdministrationT ool

Figure 64: Resource Administration Tool and Service | mplementation

/P +getResour cesByName(Inout name:string): [*] Resourcq

]

<<interface>>
|Resour ceRetrieval

+getResources(): [*] Resource

+getResour cesBy Type(Inout type:integer): [*] Resource

<<interface>>
IResourceAdministration

+addResour ce(lnout resour ce: Resour ce)
+ createResource(lnout name: string ,Inout type:integer): Resourcq
+removeResource(lnout resour ce: Resour ce)

3.10.2 Server-Side Components (EJB models)

3.10.2.1 Reservation Manager

Figure 65 shows the EJB model for the reservation manager component.

<<EJBImplementation>>
ReservationM anager Bean

ejbActivate()
createReservation()
createReservation()
createReservation()
deleteReservation()
createSuggestionList()
gbCreate()

ejbPassivate()

gbRemove()
findReservationByPrimaryKey()
findReservationsAll()
findReservationsByOrganizer()
getSessionContext()

newM ethod()
setSessionContext()

-

///
L~

~.
-~
~—

7|

-~

<<EJBSessionHomelnterface>>
ReservationManager Home

~
<<EJBReslizghtoe>>
-~

<<EJBCreateMethod>>
+create(): ReservationManager

<<EJBRemote! nterface>>
ReservationManager

[~ <<EJBRealizeRemote>>

~
~—

~

<<EJBRemoteMethod>>
+createReservation(I nout requirements: ReservationRequirements): Reservation
<<EJBRemoteM ethod>>

+createReservation(lnout suggestion: ReservationSuggestion): Reservation
<<EJBRemoteMethod>>

+createReservation(): Reservation
<<EJBRemoteM ethod>>

+createSuggestionList(Inout requirements: ReservationRequirements): [*] ReservationSuggestiol
<<EJBRemoteMethod>>

+ deleteReservation(Inout reservation: Reservation)
<<EJBRemoteMethod>>

+findReservationByPrimaryKey(Inout pk: ReservationKey): Reservation
<<EJBRemoteMethod>>

+findReservationsAll(): Enumeration
<<EJBRemoteMethod>>

+findReser vationsByOrgani zer (Inout pk: ResourceKey): Enumeration

Figure 65: Reservation Manager |mplementation

B-32

3.10.2.2 Resource Manager

Figure 66 shows the EJB model for the resource manager component.

A UML Profile for Enterprise Distributed Object Computing — Part |1

2001-08-22



ad/2001-08-20 — UML for EDOC Part 11

2001-08-22

<<EJBSessionHomel nterface>>
<<EJBImplementation>> ResourceManagerHome
Resour ceM anager Bean
s <<EJBCreateM ethod>>
createResource() <<EJBRedlizeHarié>> | +create(): ResourceManager
deleteResource() | ———
gbActivate()
ejbCreate()
ejbPassivate()
gjbRemove() L <<EJBRemotelnterface>>
findResourceByPrimaryK ey() ~~_ ResourceManager
findResourcesAll() <<EJBReal 3aReote>
findResourcesByName() T <<EJBRemoteMethod>>
fi ndRa@urc&ByTypd) +createResource(): Resource
getSessionContext() <<EJBRemoteMethod>>
setSessionContext() +deleteResour ce(I nout resource: Resource)
<<EJBRemoteM ethod>>
+findResour ceByPrimaryKey(Inout pk: ResourceKey): Resourcqg
<<EJBRemoteMethod>>
+findResourcesAll(): Enumeration
<<EJBRemoteMethod>>
+findResour cesByName(Inout name: string): Enumeration
<<EJBRemoteM ethod>>
+findResour cesByType(I nout type: string): Enumeration
Figure 66: Resource Manager |mplementation
3.10.2.3 Reservation Entity

Figure 67 shows the EJB model for the reservation entity component.

A UML Profile for Enterprise Distributed Object Computing — Part |1

B-33




ad/2001-08-20 — UML for EDOC Part 11

<<EJBEntityHomel nterface>> R tionk <<EJBRemotel nterface>>
ReservationHome eservationiey Reservation
+id : string
<<EJBFinderMethod>> <o <<EJBRemoteMethod>>
[+findByOrganizer (Inout pk: ResourceKey): Enumeration +ReservationKey(Inout argld:string) +addResour ce( nout key: ResourceKey ,Inout attendance: string): boolean
<<EJBFinderMethod>> <<Crecte>> § <<EJBRemoteMethod>>
+findByPrimaryKey(Inout key: ReservationKey): Reservation +ReservationKey() + getResour cesByAttendance(Inout attendance: string): [*] ResourceKey
<<EJBCreateMethod>> +hashCode():integer <<EJBRemoteMethod>>
[+ create(Inout argld: string): Reservation +equals(Inout 0:Object):boolean /-1 + getResour cesByResponse(Inout response:string): [*] ResourceKey
[<<EJBFinderMethod>> | - . X / <<EJBRemoteMethod>>
+findAll (): Enumeration ~\\ R +removeResource(lnout key: ResourceKey):boolean
~ i N
- » <<EBR rrNKey» <<EJBReaI|zeR/evﬁot9 §<EJBRemmeMethod?§ »
<<EJSR{ehzeHom9> N / +setDescription(Inout newDescription: string)
\\\ \ / <<EJBRemoteMethod>>
N / -+ setEndTime(Inout newEndTime: Date): boolean
~_ | <<EBimplementation>> / <<EJBRemoteMethod>>
Resour ceRelation ) ReservationBean +setOrganizer (Inout newOrganizer : ResourceKey): boolean
id : string <<EJBRemoteMethod>>
+getResources(): [*] ResourceKey description : string + setResour ces(Inout newResour ces: Resour ceRelation): boolean
a rstring): - gri <<EJBRemoteMethod>>
+addResource(Inout key:ResourceKey ,Inout attendance:string):boolean reason : string N
. i +setStartTime(Inout newStartTime: Date):boolean
+getResourceAttendance(Inout key:ResourceKey):string getKey() <EJBRemoteMethod>>
+getResourceResponse(Inout key:ResourceKey):string 04 laddResource() + getEndTime():Date
+getResourcesByAttendance(l nout attendance:string): [*] ResourceKey e * eibActivate() < <EJBRer.noteM ethod>>
+getResourcesByResponses(I nout response:string): [*] ResourceK ey esources = ejbCreate() + getResources():R rceRelation
-+removeResource(Inout key:ResourceK ey):boolean eibLoad() <<EJBRemoteMethod>>
+setResourceAttendance(Inout key:ResourceKey ,Inout attendance:string):boolean| —~|eibPassivate() -+ setReason(I nout newReason:string)
N :
+setResourceResponse(I nout key:ResourceKey ,Inout response:string):boolean /// ejbPostCreate() <<EJBRemoteM ethod>>
-
— « 47 |dbRemove() -+ getKey(): ReservationKey
0"/1// - // ejbStore() <EJBRemoteMethod>>
~ / getResourcesByAttendance( +getDescription():string
Lo~ o / getResourcesByResponse() <<EJBRemoteMethod>>
Resour ek // removeResource() +getOrganizer (): ResourceKey
ey o1 // unsetEntityContext() <EJBRemot.eM.elhod>>
/ * +getReason(): string
/ // <EJBRemoteMethod>>
/" sattime Vil +getSartTime(): Date
0.1 //
//endTlme

Figure 67: Reservation Entity |mplementation

3.10.2.4 Resource Entity

Figure 68 shows the EJB model for the resource entity component.

B-34

A UML Profile for Enterprise Distributed Object Computing — Part |1

2001-08-22




ad/2001-08-20 — UML for EDOC Part 11

R K <<EJBRemotel nterface>>
esour cel
<<EJBEntityHomel nterface>> & Resource
ResourceHome +id : string
<<Crede>> <<EJBRemoteMethod>>
<<EJBFinderMethod>> +ResourceK ey(Inout argld:string) +getProperties(): PropertyList
-+findByName(Inout name: string): Enumeration <<create>> <<EJBRemoteMethod>>
<<EJBFinderMethod>> +ResourceK ey() [+ setProperties(Inout newProperties: PropertyList):boolean
" " . . " <<EJBRemoteM ethod>>
+findByPrimaryKey(I nout key: Resour ceKey): Resourcel +hashCode():integer )
<<EJBFinderMethod>> +equals(inout o:Object):boolean +addEvent(Inout event: ReservationKey):boolean
-+findByType(Inout type: string): Enumeration ,\* Iy pr— <<EJBRemoteMethod>>
<<EJBCreateMethod>> +subresources \ _ P / 0.1 [+ getEvents(Inout sDate: Date ,Inout eDate: Date): [*] ReservationKey|
-+ create(Inout argld:string): Resource \ <<EJBPr|\naryKey>> / <<EJBRemoteMe(hod.>>
<<EJBFinderMethod>> \ 1 \ [« +getEvents(): [*] ReservationKey
+findAll(): Enumeration \ \ / <<EJBRemoteMethod>>
N <<EJBImplementation>> [+ removeEvent(Inout event: ReservationKey): boolean
\\ Resour ceBean <<EJBRemoteMethod>>
<<EJBRea|izeHbrq9> TR [+ setParent(Inout newParent: ResourceKey): boolean
Resour ceType \\ e stg‘ <<EJBRemoteMethod>>
01 N\, fame : snng s setType(Inout newVal ue: Resour ceType): boolean
N oetkey() Va <<EJBRemoteM ethod>>
+type * ejbActivate() // [+ setName(I nout newVal ue: string): boolean
eibCreate() <EBRegHzeRemotet> <<EJBRemoteMethod>>
ejbL oad() // +isAvailable(Inout from:Date ,Inout to: Date): boolean
Calendar ibPassivate() <<EJBRemoteMethod>>
ejbPostCreate() +addProperty(Inout key:string ,|nout value: Object): boolean
<<create>> 0.1 * eibRemove() <<EJBRemoteMethod>>
+Calendar() :calmda' gbstore() +addSubresour ce(Inout key: ResourceKey):boolean
+addEvent(Inout event:ReservationK ey ,Inout force:boolean):boolean| isAvailable() <<EJBRemoteMethod>>
+isAvailable(Inout sDate:Date ,Inout eDate:Date):boolean * _JjunsetEntityContext() [+ getSubresour ces{): [*] ResourceKey
+removeEvent(Inout event:ReservationK ey):boolean addEvent() <<EJBRemoteMethod>>
+removeProperty(Inout key:string):boolean
01 cdProperty() <<EJBRemoteMethod>>
“+properties addSubresource() +removeSubresource(lnout key: ResourceKey): boolean
jetEvents()
9 <<EJBRemoteMethod>>
PropertyList getEvents() + setCalendar (Inout newCalendar: Calendar): boolean
removeEvent() <<EJBRemoteMethod>>
<GS removeProperty() +getParent(): ResourceKey
+PropertyList() removeSubresource() <<EJBRemoteMethod>>
“+getProperty(Inout key:Object):Object -+ getkey(): ResourceKey
+addProperty(Inout key:Object ,Inout value:Object):bool <<EJBRemoteM ethod>>
operty(Inout key:Obj .,nou value:Object):boolean| - gatT ResourceType
getPropertyKeys():Enumeration <<EJBRemoteMethod>>
+removeProperty(Inout key:Object):boolean -+ getN ):string
<<EJBRemoteMethod>>
+getCalendar (): Calendar

Figure 68: Resource Entity |mplementation

2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 B-35







ad/2001-08-20 — UML for EDOC Part 11

Annex C - Example - Hospital Infor mation System

Contents

List of Figures 2

1. Introduction 3

11 1= o 4 o1 o o OO 3

12 Assumptions of the hoSPItal MOUEL ...t es e nsnses 3

2. Enterprise Viewpoint Specification 4

21 OVEIVIBW......ceeteeceeeeeseeae st sess et esses e e e s s e esee et e s e e se s e e seanses e e e seEe b s e e anE e A e e e ae s e e e e s eE e b e e e anEesee e sns et eesese b et es e nsesetsennantesrennan 4

211 Community structure 4

212 Objectives of each community 10

22 Radi0l0giCal COMIMUNILY ....cvcvviecietieiecieteecste st s s se s s bbb ssas s s s s bbb b s s as s s s as bt s sean b et s s e ses s e antebnas 11

221 Scope 11

222 Enterprise objects 11

223 Roles 12

224 Policies 12

225 Business Processes 14

3. Information Viewpoint 19

4, Computational Viewpoint Specification 28

41 Identified set of ProcessComponents (computational 0DJECLS)........ccccceveecierencce e 28
42 PORT (interface) SpeCifiCation ..........cccvveeeevereseenrsesseeeeseeesesse s

43 Protocol (interaction) specification

2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 C-1



ad/2001-08-20 — UML for EDOC Part 11

List of Figures

Figure 1: HOSPItal COMIMUNITY ......ccueuriiiceeireseseeiseseses s esessssesesessssssssessssssssessssssssesssssessssssssssessssssesssssssesesssnssesssenssnsssnen
Figure 2: Outpatient Community .................
Figure 3: Inpatient Community .........cceeerenes
Figure4: Clinical Laboratory Community
Figure 5: Radiological COMMUNILY .......ccccceereurieinieinineeisesisssesissessssessssssssssssssssssssssssesesnens

Figure 6: PharmaceutiCal COMMIUNITY........ccciveeuerrireeieisiiescie s et esesse ettt ss s s et as et s st s st s s bt s s s ses s s nnaetsaen
Figure 7: ReCEPtioN COMMUNILY .....ccoviiieeieirieieteereeee s ssessssssse st ss st s s sssesss st s s sssesesssassesssesssesesssssesessssssnsasnen
Figure 8: Medical Accounting Community
Figure9: same day radiological examination reCeption (PrOCESS)........vwererererrrrererermssiesressssssesesssssessesssssessessssessesssssesnes 14
Figure 10: emergency cancellation of examination (SUD-PrOCESS).........couuueuueeerreerieerrisesrese s ssssessssesssenaes 15
Figure 11: instruct to move to other examinations (SUD-PIrOCESS)........couueerreerreerieerriereie s 16
Figure 12: assignment of examined images (SUD-PrOCESS) .......occuecrieermiemmremersesersese e sessessssesssssssssssessssessssesssenaes 17
Figure 13; plain X-ray iMagE (PrOCESS).....ccsurrerererrrrretrsrenietnsesnsssssesssesesssssssesesssesesesssesesssssasssssssesssssssssesesssesesesesesssssssesssssnss 18
Figure 14: interpretation (PrOCESS).......cccucruriiererreressietssressesesssssessssssssstessssssssessssssssessssssssessssssssessssssssessssssssesasssnssesssssesases 18
Figure 15: Information model (Information VIEWPOINT) .....c.c.ccceeureiiceiiiesistrees st sesssses st sssssssssesssssssseses 19
Figure 16: ExamOrder Composition (COMPOSitioN VIEWPOINL).........cceurieererereseiseressssissessssessesssssessesssssesssssssssssssssssesses 20
Figure 17: ExamOrder Component (ENtity VIEWPOINL).......ccovurerrerernrinssesenesssssesessssesssessssssesessssssssesssssesssssssssssesssssesnes
Figure 18: Patient Composition (Composition Viewpoint)
Figure 19: Patient Component (ENtity VIEWPOINT) ......c.ocerereeereeerieeieeesiessreses e sess s sesse s ssssssssssessssessssessssenaes
Figure 20: Healthcare professional Composition (COmMpOosition VieWPOINL).........cvcreeerreeerreeneeeneseneseneeesnseessssesssseenes 2
Figure 21: Healthcare professional Component (Entity Viewpoint)..........ccccceeeeennnnns

Figure 22: Healthcare Resource Composition (Composition Viewpoint)
Figure 23: Healthcare Resource Component (Entity Viewpoint)..........cccoceeevevecnreneens

Figure 24: Dept Composition (Composition VieWPOINt)........ccccceveeererreresenenesssesnsnennens

Figure 25: Dept Component (Entity VIEWPOINT).......ccovreeererereeeereneseneseressssesesesssssssseneens

Figure 26: Exam Composition (COMPOSItioN VIEWPOINL).........cveureieerieemiiemsieeessesesseses s ssssessssessssessssssessssessssesssesaes
Figure 27: Exam Component (ENtity VIEWPOINT)........cceriereneeirieieesieessses e sessssessessssesssssssssssessssessssesssssnaes
Figure 28: Interpret Composition (Composition Viewpoint)
Figure 29: Interpret Component (ENtity VIEWPOINL) ......ccccvreeiieenieisiesisiesses s esssssssssssssssssssssssssssssssssssssssssssssssssssnens
Figure 30: Takes Xray Img Composition (CoOmMpPOosition VIEWPOINL).........cccceeeeeirereecierensssesssssssessesesssesssssssessssssssesees
Figure 31: Takes Xray Img Component (Entity Viewpoint)..........cocceeeveveenerereennnenenns

Figure 32: Modality Composition (Composition ViewpOint).........cccccerereeerenersernereneens

Figure 33: Modality Component (Entity VieWPOINt) .......cccovreeeerereresnerensssenesesssessenennens

Figure 34: Component for Scanning 1D Card.........ccvereernenieneseneseneeeneee e seseenens

Figure 35: Component for patient CertifiCation..........ccveennrenesnecneeseeereersens

Figure 36: Component for obtaining an examination Order ............c.coucneenerernereenernenens

Figure 37. Component for completion of an examination NOLICE..........ccccvereeereeeierennnns

Figure 38: Component for archiving an interpretation report ............cooveveeeevevecerenenns

Figure 39: Protocol for getting ID card infOrMation..........cceueeecirieccesiseeetsee ettt se e ses
Figure 40: Protocol for patient identifiCation..........cccvreeriiecrrece st s st s et sees
Figure41: Protocol for getting examination order
Figure42: Protocol for completion Of eXamination NOLICE .........c.cverieeeiieesieereee e
Figure 43: Protocol for archiving interpretation FEPOIT ... sssenaes

C-2 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22



ad/2001-08-20 — UML for EDOC Part 11

4. | ntroduction

This annex describes the Radiological Community subset of a hospital information system
model in terms of the UML Profile for EDOC. The annex uses the UML Profile to specify the
Enterprise Viewpoint Specification, Information Viewpoint Specification, and Computational
Viewpoint Specification for the subset.

4.1 Description

The model for the hospital information system is taken from the Hospital Information
Reference Enterprise Model project in Japan. The purpose of the projectisto providea
robust starting point for the design of hospital information ODP systems, using the
concepts and rulesdefined in RM-ODP and ODP Enterprise Viewpoint Language, as well as
using UML and the UML Profilefor EDOC.

Since healthcare services are legislation-bound and culture-bound, this model includes some
legislative and cultural requirements.

4.2 Assumptions of the hospital model

The model assumes that the hospital isamajor regional hospital in Japan with approximately
300 beds. The model also makes the following assumptions.

The hospital is not a postgraduate educational institution (no resident physicians
are on the staff).

The hospital provides no advanced specialty care such asthat provided at
university hospitals. Advanced specialty careincludesrenal dialysis, radiotherapy, etc.

The hospital isageneral hospital, i.e.,

- Thehospital is anInsurance Medical Facility (ahospital is accredited by a municipal
governor to offer medical services under the public medical insurance scheme.
Almost all the hospitalsin Japan are Insurance Medical Facilities).

- Thehospital has no dental department (no dentistsare on the staff).
- Thehospital is not involved in clinical trials.

- The hospital has no surgery department, emergency department, or nutrition
department.

2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 C-3



ad/2001-08-20 — UML for EDOC Part |1

5. Enterprise Viewpoint Specification

The Enterprise Viewpoint Specification specifies the structures of communities first. The top-level
community caled the Hospital Community is dvided into sub-communities. This section describes the
overdl structure including communities, objects, and roles.

51 Overview

5.1.1 Community structure

Figure 1 shows the community structure for the hospital model, and enterprise objects. The
top-level community is called the Hospital Community and is composed of several
interacting departmental communities. Two of the interacting departmental communities,
Patient Care and Administration, are further decomposed into their sub-communities

C-4 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22



ad/2001-08-20 — UML for EDOC Part Il

Hospital Community

System administrator

Hospital information
ODP system

_|

Staff |

—| Clinical laboratory technologistl

_|

Radiological technologist |

Patient | | Healthcare professional |<l——|

Visitor |

Family |

Clinical Laboratory Community |

Physician

_|

Pharmacist

-

Nurse

_|

Hospital administrator

Radiological Community |

Pharmaceutical Community |

Patient Community |

Outpatient Community |

Inpatient Community

Administration Community |

Reception Community |

Medical Accounting Community

: Community I:I . Enterprise object

Figure 1: Hospital community

The following figures represent the relationship of the communities, the roles in the communities, and the
objects performing the roles. This figure also identifies which objects are to be shared by multiple

communities

2001-08-22

A UML Profile for Enterprise Distributed Object Computing — Part |1 C-5




ad/2001-08-20 — UML for EDOC Part |1

Hospital Community

Patient care Community

Outpatient Community

; :to % %
Outpatient Outpa;i ent Outpatient Outpatient

physician nurse staff

v v v v

Patient | | Physician | Nurse Staff

Figure 2: Outpatient Community

C-6

A UML Profile for Enterprise Distributed Object Computing — Part |1

2001-08-22




ad/2001-08-20 — UML for EDOC Part Il

Hospital Community

Patient | | Physician
Patient care Community = i N
e Administrator
~ of the patient
Inpatient Community
Inpatient Inpatient Sending Accepting
physician physician physician
Bed management  Inpatient Sending Accepting Inpatient visitor
nurse nurse nurse nurse reception staff
N ;

Figure3

. Inpatient Community

2001-08-22

A UML Profile for Enterprise Distributed Object Computing — Part |1

C-7




ad/2001-08-20 — UML for EDOC Part |1

Hospital Community

Clinica Laboratory Community

| Clinical laboratory technologist
N

r * * F

*

Outpatient Inpatient Clinical Laboratory Clinica Laboratory  Administrator of
R ; staff nurse Clinical Laboratory
§ / : |
v 1 1
! i i
! i i
A\ Vv A\ A\
Patient | | Staff | | Nurse

Figure4: Clinical Laboratory Community

Hospitd Community

>

M\

Raxidlogical Commubity

[P EE———

S S S
T ¥ %

Outpatient Inpatient Radiologit  Radiological staff

erggl%gg; Examinaion ™ ‘?i n X-ray
reception Imeges
department \ :
! i i
i i |
! i i
1 1 1
A4 AV AV
Radiologica technologist

Figure5: Radiological Community

C-8

A UML Profile for Enterprise Distributed Object Computing — Part |1

2001-08-22




ad/2001-08-20 — UML for EDOC Part Il

Hospital Community

St | | Pharmacist

SN

Pharmaceutical ECommunity

*

Pharmaceutical Administrator
staff of pharmaceutical
department

Figure 6: Pharmaceutical Community

Hospital Community

Administration Community

Reception Community

* * X * %

,"l Administration department
\ ’ ’/ ’

» ' -
) ‘ .

Outpatient Inpatient  Outpatient reception Admission  Visitor reception
staff staff staff
; ; "\‘ ; Administrator of
\V4 V2

Patient Staff

Figure 7: Reception Community

2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 C-9




ad/2001-08-20 — UML for EDOC Part |1

Hospital Community

Administration Community

Medical Accounting Community |

T * Z

Outpatient Inpatient Accounting Statement of healthcare
| ) staff reimbursement claim

I' ‘v‘ ’v‘
i ’

[} ," \\‘ ‘I'

/ \ K
¥ 2 y v
Patient Staff

Figure 8: Medical Accounting Community

5.1.2

C-10

Objectives of each community

The objectives of each community are described below.
(1) Patient Care Community

Providing patient care activities as a sub-community of the Hospital Community
(2) Outpatient Community

Providing outpatient care as a sub-community of the Patient Care Community
(3) Inpatient Community

Providing inpatient care as a sub-community of the Patient Care Community
(4) Clinical Laboratory Community

Performing laboratory tests as a sub-community of the Hospital Community
(5) Radiologica Community

Performing X-ray examinations as a sub-community of the Hospital Community

(6) Pharmaceutical Community

A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22




ad/2001-08-20 — UML for EDOC Part Il

Auditing prescriptions issued by physicians and dispensing medicine according to
prescriptions as a sub-community of the Hospital Community

(7) Administration Community

Providing administrative services including reception and medical accounting as a
sub-community of the Hospital Community

(8) Reception Community

Performing clerical and reception activities as a sub-community of the
Administration Community

(9) Medical Accounting Community

Performing medical accounting activities as a sub-community of the Administration
Community

5.2 Radiological Community

Among the communitieslisted in 5.1.1, this annex uses the Radiol ogical Community to
describe the detail s of specification using the UML Profile of EDOC. This section describes
the Enterprise Viewpoint Specification for thiscommunity.

521 Scope

The scope of this community is asfollows:
Taking X-ray images
Interpreting X-ray images
Managing X-ray images

5.2.2  Enterprise objects

The following enterprise objects participate in this community and perform the roles
described in .5.2.3.

Patient

Staff

RadTechnologist (Radiological technologist)

Physician

HospitallnfoODPSystem (Hospital information ODP system)

SystemA dmin (System administrator)

2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 C-11



ad/2001-08-20 — UML for EDOC Part |1

5.2.3

<<refine>>

C-12

5.2.4

Roles

Detailed roles that are required for this community to function are listed below. Several roles

have been refined with <<refine>>.

Outpatient
(Enterprise Object: Patient)
Inpatient
(Enterprise Object: Patient)
RadStaff (Radiological staff)
(Enterprise Object: Staff)
ExamReception (Examination reception)
(Enterprise Object: RadTechnol ogi st)
PlainX-raylmg (Plain X-ray images)
(Enterprise Object: RadTechnol ogi st)
Radiologist
(Enterprise Object: Physician)
EmgExamOrder (Emergency examination order)
(Enterprise Object: Physician)
AdminRadDpt (Administrator of the radiological department)
(Enterprise Object: SystemAdmin)
PatientCertification
GetExamOrder (Obtaining an examination order)
GetPfmExamList (Obtaining alist of performed examinations)
GetExamRslt (Obtaining an examination result)
<refined as:>
GetPfmExam (Obtaining a performed examination)
GetExamlmg (Obtaining an examination images)
GetPreReadI nfo (Obtaining pre-reading information)
<refined as:>
Getlnterpretimg (Obtaining images for interpretation)
GetPrevimg (Obtaining previous images)
GetExamOrder (Obtaining an examination order)
GetExaminfo (Obtaining examination information)
GetPatientRec (Obtaining a patient record)

ArchExamRslt (Archiving an examination result)
<refined as:>
ArchExamimg (Archiving examination images)
ArchExamlnfo (Archiving examination information)

ArchinterpretReport (Archiving interpretation report)

Policies

Here are some policies (constraints) placed on objects and roles.

(1) Administrator of the radiological department

A UML Profile for Enterprise Distributed Object Computing — Part |1

2001-08-22



2001-08-22

ad/2001-08-20 — UML for EDOC Part Il

The administrator of the radiological department is obligated to record radiation
exposure information and to archive the record for five years. (Archiving of medica
records is mandated by the Medical PractitionersLaw.)

The administrator of the radiological department is obligated to archive the
examination imagesfor two years (as mandated by the Medical Radiological
Technologists Law).

(2) Radiological technologist

If theradiological technologist has any doubts regarding the contents of an
examination order, the radiological technologist is obligated to resolve the doubts by
submitting an inquiry to the physician who issued the order.

The radiological technologist is obligated to perform radiological examination
quickly without subjecting the patient to unreasonable discomfort or anxiety.

Theradiological technologist is obligated to understand the intent of the physician
and to perform radiological examination inthe manner that satisfies the physician's
intent.

Theradiological technologist isobligated to perform radiological examination
without delay according to the type of the physician's request (urgent, routine, etc.) and
to report the examination results (including image delivery) to the physician.

Theradiological technologist is obligated to notify the Medical Accounting
Community of the accounting information related to the examination process without
delay.

The radiological technologist is obligated to maintain the equipment used for
radiological examination so that the equipment meetsits performance specifications.
Theradiological technologist is also obligated to appropriately replenish and manage
materials required to perform radiological examination.

Theradiological technologist is obligated to protect all of the patient's personal
information obtained in the process of the technologist’'s activities.

(3) Radiologist
Theradiologistis obligated to submit the interpretation report to the physician
without delay according to the type of the physician's request (degree of urgency,
reason for radiography, etc.).
(4) Physician

The physician who orderes the radiological examination is obligated to sign the
record of the radiation dose

(5) Others

Only physicians and radiological technol ogists are permitted to expose a human
body to radiation (as mandated by the Medical Radiological Technologists Law).

The hospital information ODP system is obligated to electronically archive the
medical images used for diagnosis asauthorized images. |mages acquired but not used

A UML Profile for Enterprise Distributed Object Computing — Part |1 C-13



ad/2001-08-20 — UML for EDOC Part |1

for diagnosis need not be archived. (It isassumed that the hospital information ODP
system includes an image management system.)

525 Business Processes

This section describesthree Business processes in the Radiological Community: same day
radiological examination reception, plain X-ray images, and inter pretation.

Sub-processes corresponding to activities such asemer gency cancellation of examination,
instruct to moveto other examinations, and assignment of examination images, are also
specified in the process same day radiological examination reception.

o oo same day radiological examination reception process

it
oo § e §
| |i>| mmm>—+o-|>mm| |2-| it

 _———T T I T 7

ES o ) = ¥
Patient Patient
Ioupatient SeenlDCard Salf/RedSalt PatientCertification Certification

o
perieiuee

Figure 9: same day radiological examination reception (process)

C-14 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22




ad/2001-08-20 — UML for EDOC Part Il

mmmmmmm

faion emer gency cancellation of examination sub-process

| | urgent radiography not nesded

Figure 10: emergency cancellation of examination (sub-process)

2001-08-22

A UML Profile for Enterprise Distributed Object Computing — Part |1

C-15




ad/2001-08-20 — UML for EDOC Part |1

Pttt instructsto moveto other examinations sub-process

change of exemination sequenceimpossibie

Figure 11: instruct to move to other examinations (sub-process)

C-16 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22




ad/2001-08-20 — UML for EDOC Part Il

sgoment of crrined assignment of examined images sub-process

imegessub-process

EEEEEEEE

Figure 12: assignment of examined images (sub-process)

2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 C-17




ad/2001-08-20 — UML for EDOC Part |1

plain X-ray imageprocess

Figure 13: plain X-ray image (process)

epaton reces inter pretation process

Figure 14: interpretation (process)

C-18 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22




ad/2001-08-20 — UML for EDOC Part Il

6. | nformation Viewpoint

Thefollowing figures represent the Information Viewpoint Specification for this community
specified with the Entities Profile.

<<Entity Data>>
PatientCarelnfo
ExamHist
PresentClinicHist
<<Entity D >
o <<Entity Data>>
S— Infectioninfo
SifiD <<Entity Data>>
InterpretReport
SefNem (kana) e HepatitisB
StaffNam (kanji) HepatitisC
OrderNo HIV <<Entity Data>>
SteffNam (Alphabet) ImgNo WA Patientinfo
PatientI D <<Entity Data>> MRSA
Findings re s PseudomonasAeruginosd——<J| PatientiD
<<Entity Data>> Impres Tuberculosis PatientNam(Kana)
Modlity <<Entity Date>> Diagnosis Patient| D PatientNam(Kanji)
| TakesXraylm Direct PatientNam (Kana) Pati entNam(Alphabet)
BirthDate Address
ImgNo Sex TelNo
OrderNo <<Entity Data>>
PaientlD BirthDate
<<Entity Daa>> TakesDateTime Allerqyinio < Helght
Techinfo <<Entity Data>> <<Entity Data>> ContrastAgentAllergy eigl
thsi‘cy\anlnfo De?tlnfo DrugHypsen BloodType
TechlD —
— | TechNam(kana) <<Entity Dala>> PhysicianiD | | DeptCode /
TechNam(kanji) Placerinfo PhysicianNam (Kana) D (e
TechNam(Alphabet) PhysicianNam (Kanji
(Alphebet) InPatientOutPatient thslclanNam EA|pLgbet) DeptAbbreviat
Admi #nfo
<<Entity Data>>
Directinfo $ poT=—— <<Entity Data>>
DissaspSuspected <<Entity Data>> Eilmints Conditioninfo
xamType ExamOrder <<Entity Data>>
UrgencyCat e Sub-Oryderl nfo FilmType Pregnancy
VisitCat OrderDateTime FramesNo Xlerésl‘ru‘allnlf.o
InterpretOrder 0 OrderNo E FilmsNo mbulation.ev
Directinfol ExamScheduleDateTime <> RadRoor; ExposNo gifg?:hg cli
Directinfo2 RmStas Arficloint ©
R:gf;h eason <<Entity Data>> ArtificValve
Position Medical Materialinfo FractureCement
<<Entity Data>> <<Entity Data>> <<Entity Data>> Orientation T gf‘;déalca%sgﬁ o
InterpretOrderText ExamOrderDat Examinfo Leftright N)Q,)"e Diabetes
ThyroidDisease
t
Description Pfmca PimStatus Sﬁlaln ityUsed pEApAl
| <<Entity Data>> LimbDis
Drualnfo VisualDis
<<Entity Data>> - <<Entity Data>> <<Entity Data>> fudnoryDEi,s
anguageDis
Basiclnfo IT)yrgZNam Equipinfo RadParameters MentalDis
PaientlD EquipNam Tech RenalDis
ExamType Dﬁ?{"ge QuantityUsed Voltage Hepatopathy
ExamPfmDateTime AdminMethod Current
ExpoTime

Figure 15: Information model (Information Viewpoint)

2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 C-19




ad/2001-08-20 — UML for EDOC Part |1

ExamOrder Composition

ExamOrderDat

Directinfo

A 4

Sub-Orderinfo

[ emowoa |

A

InterpretOrder Text

—
L

]
- T

L ]

|

Placerinfo

Figure 16: ExamOrder Composition (Composition Viewpoint)

<<Entity Data>>
DirectInfo

<<Entity Data>>
Placerinfo

<<Entity Data>>
ExamOrderDat

<<Entity>>
ExamOrder Component

<<Entity Data>>
ExamOrder

<<Entity Data>>
Sub-Orderinfo

O <<Entity Data>>
InterpretOrder Text

<<Key>>
Exam Order Key

k<Key Attribute>>]
OrderNo

Figure 17: ExamOrder Component (Entity Viewpoint)

C-20

A UML Profile for Enterprise Distributed Object Computing — Part |1

2001-08-22




ad/2001-08-20 — UML for EDOC Part Il

Patient Composition

|DcardInfo

PatientInfo
I

PatientCarelnfo

Conditionlnfo

Infectioninfo

—

AllergyInfo

Figure 18: Patient Composition (Composition Viewpoint)

<<Entity Data>> O
PatientCarelnfo

<<Entity Data>>
IDcardinfo

<<Entity Data>>
PatientInfo

<<Entity>>
Patient Component

O <<Entity Data>>
Conditionlnfo

<<Entity Data>>
Infectionlnfo

<<Entity Data>>
Allergylnfo

<<Key>>

Patient Key

k<Key Attribute>3]
Patientl D

Figure 19: Patient Component (Entity Viewpoint)

2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1

Cc-21




ad/2001-08-20 — UML for EDOC Part |1

Healthcare professional

Composition

]

’_k_‘

Techinfo | Physicianinfo |

\_'_1

m— -

Staffinfo

—

Figure 20: Healthcare professional Composition (Composition Viewpoint)

<<Entity Data>> <<Entity Data>>
Techinfo Physicianinfo
<<Entity>>

Healthcare professional Component

<<Entity Data>>
Stafflnfo

<<Key>> C <<Key Attribute>>
Healthcare professional Key HedthProlD

Figure 21: Healthcare professional Component (Entity Viewpoint)

C-22

A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22




ad/2001-08-20 — UML for EDOC Part Il

Healthcare Resources Composition

[ ]

MedicalMaterial

Druginfo

Info

Figure 22: Healthcare Resource Composition (Composition Viewpoint)

<<Entity>>

Healthcare Resources Component

<<Entity Data>>
Druginfo

<<Entity Data>>

MedicalMateria Info Healthcare Resources Key :

<<Ke'y>>

<<Key Attribute>>
HealthcareResources Code

Figure 23: Healthcare Resource Component (Entity Viewpoint)

2001-08-22

A UML Profile for Enterprise Distributed Object Computing — Part |1

C-23




ad/2001-08-20 — UML for EDOC Part |1

Dept Composition

Deptinfo

Figure 24: Dept Composition (Composition Viewpoint)

<<Entity>>
Dept Component
<<Entity Data>> <<Key>> C K<Key Attribute>>
Deptinfo Dept Key DeptCode

Figure 25: Dept Component (Entity Viewpoint)

C-24 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22




ad/2001-08-20 — UML for EDOC Part Il

Exam Composition

Equipinfo
Basiclnfo
A
RadParameters
Examlinfo

=
Filminto /I::

Figure 26: Exam Composition (Composition Viewpoint)

<<Entity Data>> <<Entity Data>>
Basiclnfo Equiplinfo
<<Entity Data>> S <<Entity>> ¢ <<Entity Data>>
Filminfo Exam Component RadParameters

<<Foreign Key>> C <<Entity Data>> <<Key>> c <<Key Attribute>>
Exam Order Key Examinfo Exam Key ExamNo

Figure 27: Exam Component (Entity Viewpoint)

2001-08-22

A UML Profile for Enterprise Distributed Object Computing — Part |1 C-25




ad/2001-08-20 — UML for EDOC Part |1

Interpret Composition

—

InterpretReport

=

Figure 28: Interpret Composition (Composition Viewpoint)

<<Foreign Key>>
Exam Order Key

<<Foreign Key>>
ImgNo

S <<Entity Data>>

<<Entity>>
Interpret Component

| nterpretReport

<<Key>> ¢ <<Key Attribute>>
Interpret Key Interpret No

<<Foreign Key>>
Patient Key

Figure 29: Interpret Component (Entity Viewpoint)

C-26

A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22




ad/2001-08-20 — UML for EDOC Part Il

Takes Xray Img Composition

1]

TakesXraylmg

Figure 30: Takes Xray Img Composition (Composition Viewpoint)

<<Entity>>
Takes Xray Img Component

<<Entity Data>>
TakesXraylmg

<<Key>>
TakesXray Key

<H

<<Key Attribute>>
ImgNo

Figure 31: Takes Xray Img Component (Entity Viewpoint)

2001-08-22

A UML Profile for Enterprise Distributed Object Computing — Part |1

C-27




ad/2001-08-20 — UML for EDOC Part |1

Modality Composition

Modality

Figure 32: Modality Composition (Composition Viewpoint)

<<Entity>>

Modality Component

<<Entity Data>>
Modality

<<Key>>
Modality Key

<> <<Key Attribute>>
ModalityNo

Figure 33: Modality Component (Entity Viewpoint)

7. Computational Viewpoint Specification

In the Computational Viewpoint Specification, computational objects are derived and
presented as CCA ProcessComponents, followed by PORT specifications asinterface
specifications for computational objects. And, Protocol specifications as interaction
specifications between computational objects are described. Component Collaboration
Architecture Profile (Part |11 @) isthe main Profile used.

7.1 |dentified set of ProcessComponents (computational objects)

From the Enterprise Viewpoint Specification and Information Viewpoint Specification, the
following components are identified as computational objects:

C-28 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22



ad/2001-08-20 — UML for EDOC Part Il

ScanlDCard (Component for scanning ID Card)

PatientCertification (Component for patient certification)

GetExamOrder (Component for obtaining examination order)
ExamCancelINotice (Component for examination cancellation notice)
EmgExamOrderNotice (Component for emergency examination order notice)
GetPfmExamL.ist (Component for obtaining alist of performed examinations)
GetPfmExam (Component for obtaining performed examinations)
GetExamlmg (Component for obtaining examination images)

ArchExamlmg (Component for examination images archiving)

Assignimg ( Component for assign image)

ArchExamlnfo (Component for examination information archiving)
ExamCompleteNotice (Component for completion of examination notice)
Getlnterpretlmg (Component for obtaining images for interpretation)
GetPrevimg (Component for obtaining previous images)

GetExamlinfo (Component for obtaining examination information)
GetPatientRec (Component for obtaining patient records)
ArchlnterpretReport (Component for interpretation report archiving)

I nterpretCompleteNotice (Component for completion of interpretation notice)

7.2 PORT (interface) specification

The following figures represent the PORT specifications for each ProcessComponent using

ScanlDCard

S anl DcardReceptionli
ScanlDcardbif
Scanl DcardReception

GetlDcardinfo
Getl DcardInfoRequesti GetlDcardinfoReceptionfi
GetlDeardinfolif Getl Dcardlnfoli
Getl Dcardl nfoRequest Getl DcardinfoReception

Figure 34: Component for scanning ID card

2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 C-29




ad/2001-08-20 — UML for EDOC Part |1

I dentifyPersonComponent

PatientCertification iPIDS]i

Patientl dentificationRequesti
Patientl dentificationf
Patientl dentificationRequest

PatientCertificationReceptionfi
PatientCertificationf
PatientCertificationReception

Patientl dentificationReceptionfi
Patientl dentification G
Patientl dentificationReception

T
v

v
1

IdentifyPersoninterface

Figure 35: Component for patient certification

ExamCompleteNotice ExamCompleteNotice

ExamCompleteNoticeReceptionbi ExamCompleteNoticeTransfer f ExamCompleteNoticeReceptionhi
ExamCompleteNotice B ExamCompleteNotice 6 ExamCompleteNotice b
ExamCompleteNoticeReception ExamCompleteNoticeTransfer ExamCompleteNoticeReception

Figure 36: Component for obtaining an examination order

GetExamOrder GetExamOrder

GetExamOrderReceptionfi GetExamOrderRequest GetExamOrderReceptionfi
GetExamOrder B GetExamOrder bl GetExamOrderil
GetExamOrderReception GetExamOrderRequest GetExamOrderReception

Figure 37: Component for completion of an examination notice

ArchinterpretReport ArchinterpretReport

ArchinterpretReporReceptionth ArchinterpretReportRequest B ArchinterpretReporReceptiont B
ArchinterpretReporff ArchinterpretReporti ArchinterpretReporbifi
ArchlnterpretReporReceptiont ArchlinterpretReportRequest ArchlnterpretReporReceptiont

Figure 38: Component for archiving an interpretation report

Note that the component for patient certification uses the IdentifyPersonComponent in the
PIDS (Person Identification Service) for the identification of the patients (reference: OMG
Healthcare DTF: Document Number: corbamed/98-02-29: Final adopted PIDS specification
including errata sheets). In such cases as obtaining or archiving information, get/archive
messages are sent to the system that stores the information.

C-30 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22




ad/2001-08-20 — UML for EDOC Part Il

7.3 Protocol (interaction) specification
The following figures represent protocol specifications for ProcessComponents (roles) using
CCA.
Getl Dcardinfo
IDcardInfo GetlDcardinfoRequest -
responderRole initiatorRole
GetlDcardInfoReceptic A Getl DcardinfoRequest
<<initiates>>
Getl DcardInfoRequest
<<responds>>
Figure 39: Protocol for getting ID card information
2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 C-31




ad/2001-08-20 — UML for EDOC Part |1

Patientldentification

PatientLists

Patientl dentificationlnfo -

responderRole
Patientl dentificationReception

initiatorRole
Patientl dentificationRequest

<<initiates>>
Patientl dentificationlnfo
<<responds>>
PatientLists

Figure 40: Protocol for patient identification

GetExamOrder

ExamOrder

GeﬁxamordaRaqueg -

responderRole
GetExamOrderReception

initiatorRole
GetExamOrderRequest

<<initiates>>
GetExamOrderRequest
<<responds>>
ExamOrder

Figure41: Protocol for getting examination order

C-32 A UML Profile for Enterprise Distributed Object Computing — Part |1

2001-08-22




ad/2001-08-20 — UML for EDOC Part Il

ExamCompleteNotice

CompletionExamnotice -

responderRole initiatorRole
ExamCompleteNoticeReception ExamCompleteNoticeTransfer

<<initiates>>
CompletionExamNotice

Figure 42: Protocol for completion of examination notice

ArchinterpretReport

InterprecReport -

responderRole initistorRole
Archl nterpret ReportReception Archlnterpret ReportRequest

<<initiates>>
InterpretReport

Figure 43: Protocol for archiving interpretation report

2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 C-33







ad/2001-08-20 — UML for EDOC Part Il

Annex D - Examples of Patterns

Contents
List of Figures 2
1. Simple Pattern Examples 2
2. Process Model Patterns
21 AACTIVITY oottt bbb R R R R
22 CompoundTask
23 ActivityPreCondition and ActivityPostCondition
24 THMEOUL ...ttt et
25 TOIMINGLE ...ttt ettt s e b bbbt bbb bbb
26 IS T o= oo o TP
27 While and Repeat/Until Loop
28 0 o] o IO
29 IVTUTEIEASK oottt s s s s e ee s e st s s s se s et nen s e et e ses et esnnsenns
200 PrOCUIEIMENT......c.eiiuiueeieeeeeeeee ettt £ e e ettt sttt ettt
211 Evauation

2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 D-1



ad/2001-08-20 — UML for EDOC Part |1

List of Figures

Figure 1 Parameterized COllADOIEIION. .......ccvureuirrieerrieeiereeser et 2

Figure 2 Order Process Pattern

Figure 3 Customer/ SUPPHTEr IMOTEL ...t e e 3
Figure 4 FUNAS TranSfEr PALtEIN .........ccoiieeeriiiriiesiiisisesisisess s sesss s ss s ss s ss s ss s s ssssss s s s s s ssssssssssssssssssssssssssssssnsnns 3

Figure5 Exchange Pattern

FIQUrE 6 PUICNAse MOEL ..ottt ettt s st es s st s e st s s s aet s s nnantas
Figure 7 Unfolded PUrChASE IMOOEL ...........cccririrrrieccssesie sttt sttt s et ss st sssnsssnssnnsnsas
Figure 8 ACLIVILY PatterN.......cocccerecee sttt ssssssenssssessens
Figure9 CompoundTaskFrame and CompoundTask Pattern ...........oveeneeeneeeneeenns

Figure 10 ActivityPreCondition and ActivityPostCondition Pattern

Figure 11 TimeEOUL PALtEIN.......cvvevieeeriereiereecireieesiesss et sssenans

Figure 12 Terminate Pattern

FIQUre 13 SIMPIE LOOP PAITEIN .......veececi ettt ettt st s s st s s nnaatas
Figure 14 Wil LOOP PAILEIN .......vececieeecctetse ettt sttt s et s st s s s st s nnnantas

Figure 15 For Loop Pattern

FIQUrE 16 IMUITITASK PALEEIN ...ttt s s e st s e s e e s s nennsnsesnes
FIiQUre 17 ProCUrEMENT PEITEIN .......c.cuieeeieeeticeet ettt eb bbb

Smple Pattern Examples

Figure 1 below represents the business process patternin ECA. An order process pattern is
applied to a customer/ supplier model.

,/<<BP Binding>>",
' )
_+Order Process .~

Buyer _-7 “~-o____- -~ Seller

~

/, -~
~

/Customer =~ “A| /supplier

Figure 1 Parameterized Collaboration

D-2

A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22




ad/2001-08-20 — UML for EDOC Part Il

<<BP Package>>
Order Process

Order

/Buyer

/Seller

Figure 2 Order Process Pattern

Figure 2 represents an order process pattern. It defines arelationship between a buyer and a

seller in the order process using a pattern to make it reusable model.

Order

/Customer

Buyer

Seller

/Supplier

Figure 3 Customer/ Supplier Model

Figure 3 represents the unfolded order process pattern. An association between a customer

and asupplier is expressed asrole, abuyer and aseller, in the business process modeling.

Figure 4 and Figure 5 are the funds transfer pattern and the exchange pattern. Each oneisa

simple pattern, but it’s possible to apply more than one pattern asFigure 6.

<<BP Package>>
Funds Transfer

[TransSender

Funds Transfer

/TransRept

Figure4 Funds Transfer Pattern

2001-08-22

A UML Profile for Enterprise Distributed Object Computing — Part |1

D-3




ad/2001-08-20 — UML for EDOC Part |1

<<BP Package>>
Exchange

) Exchange
</Dehit> </Credit>

Figure5 Exchange Pattern

7 <<BPBinding>>", _
Buyer _--_ Order Process_.* ~~--_ Seller

-
- - -~

- .

/Customer é ;\/ ISupplier
Debit et
+<<BPBindi ng>>"\ +<<BPBinding>>" i
“~Exchange_.-" '~ Exchange , .
Credit .-~ ™ Debit
/Customer Bank = /Supplier
T\J\'ransSender TransRept .-~

~ 4
N e
~ e ——— s
-

~ ~

™\~ <<BPBinding>>"“»"
{ 1
~. FundsTransfer .-

-

Figure 6 Purchase Model

Figure 6 represents collaboration by applying multiple patternsinto the model. Thereisan
order process pattern between a customer and a supplier, and an exchange process pattern
is also applied between a customer and its bank to express the process of payment from a
customer to itsbank. Furthermore, the fundstransfer pattern is applied between customer
bank and supplier bank to process the transaction between two. At last, asupplier
withdraws the payment from supplier bank. Figure 7 below represents the object model after
all patterns are unfolded.

D-4 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22



ad/2001-08-20 — UML for EDOC Part Il

Buyer Seller _

/Customer Y Order /Supplier
Debit Credit
Credit Debit

Funds Transfer -

/Customer /Supplier
Bank Bank
a Trans Sender Trans Rcpt an

Figure7 Unfolded Purchase Model

This example uses the patternsin one layer, but by applying patternsin several layers more
effective and reusable model models can be created.

2. Process Model Patterns

Section 5.5 of Part | titled Process Model Patterns describes various patterns of common
usage and associated special notion that may be useful when using the ECA Process Model.
In there, the pattern in terms of its normal notation possibly with parameterized parts are
described.

However, It is not sufficient to express the complexity required by these patterns, since they
usually consist of a CompoundTask parameterized by an Activity that will have some
unknown number of ProcessM ultiPorts and ProcessFlowPorts. When instantiating such a
template with respect to a particular Activity, the Compound Task needsto have
corresponding ProcessM ultiPorts and ProcessFlow Ports connected by Flowsto the
equivalent ports on the Activity argument to the template.

We show examples of describing the Process Model Patterns with the BP Package notation

2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 D-5




ad/2001-08-20 — UML for EDOC Part |1

2.1 Activity
Activity o |
<SIG> <P> <PR> <SOG>
\ /C><Ao(3>
o Activity> 40
<A|G>/
O <EOG>
<A> . R>
Note:
<SIG>: Sync InputGroup, <AIG>: Async InputGroup
<SOG>: Sync OutputGroup, <AOG>: Async OutputGroup
<EOG>: ExceptionGroup
<P>: Performer, <PR>:ProcessRole
<A>: Artifact, <R>: ResponsibleParty
Figure 8 Activity Pattern
2.2 CompoundTask

CompoundTaskFrame

<SIG1>
<Sl GZ><>
<SIG3>

<AIGJO'
<AIG2©

Q _____________________________________ O <SOG1>

O <S0G2>
O <SOG3>

Q <AOG1>
O <AOG2>

O_ 'Q ______ Q <AOG3>

<EOG1> <EOG2>

A UML Profile for Enterprise Distributed Object Computing — Part |1

2001-08-22




ad/2001-08-20 — UML for EDOC Part Il

CompoundTask N_-

CompoundTaskFrame T
Se R L e <o T <S0G>
C}R ,, \\\ \\\
e . N \\‘,
< « Activity> S <AOG>
N =)
<AIG> NP M
, e v .
LT icfl\.flfyﬂ‘r e N <EOG>
- . ~ .
o Vi Y §t>
<P> <A> . R>

Figure 9 CompoundTaskFrame and CompoundTask pattern

2.3 ActivityPreCondition and ActivityPostCondition
CompoundTask (G
“ Com undTaskFrame REN
<S> - ~E)(i‘______\— e <S0OG>
- ’ NN AR
Os SR
V\ /I * R \\\ L7
‘jx’: + Activity> NN <AOG>
S Ky
<AIG> . ,_4- o 7T =X
4 ! Act|V|ty e R
Cjz.-w—»"—-' SN S N <EOG>
g ) \\\ “‘»\“\ 3
4 Vi A\ SD
<pP> <A> c R>
PreCond:
SIG
AlIG
<OCL>
PostCond:
SOG
AOG
EOG
<OCL>
Activity : SIG, AIG-> SOG, AOG, EOG:
<OCL>
Figure 10 ActivityPreCondition and ActivityPostCondition Pattern
2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 D-7




ad/2001-08-20 — UML for EDOC Part |1

2.4 Timeout
Timeout - |
CompoundTaskFrame Fee
_______ ——e T S~ <S0G>
|
® . 7 g0ou>
g CompoundTa§<“ i \\
""""" - N <EOG>
O
;___i___ “Taou
f: CompoundTask_ }
<IU>  InputUsage
<OU>: OutputUsage
Figure 11 Timeout Pattern
2.5 Terminate
Terminate ¢ |
A Com undTaskFrame T
se> AT ~. <S0G>
/- ) ‘\\ S
Activity> Q—@
SIG7 ‘\ N 7hso6
cmm == < S,
,," t CompoundTask L N\
<AlG>  TTToos - .. <EOG>
CF S
L
Figure 12 Terminate Pattern
D-8 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22




ad/2001-08-20 — UML for EDOC Part Il

2.6 Simple Loop
<SOG>
AOG
]
Figure 13 Smple Loop Pattern
2.7 While and Repeat/Until Loop
Whileloop o
. CompoundTaskFramc; <!
<SIG> SG_ - ittt \\\\‘““‘~~~\,\_><SOG>
Q » While> B
N < ~ U
NN S0G SG
' ‘C(‘)mpoundTahsk o 1. Activity> @_O QAOG
————————— sic W N 7
‘ '—CompoundTask~ : \‘\,,\‘4____1/
------ \“i\ Whileloop >
Figure 14 While Loop Pattern

2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1

D-9



ad/2001-08-20 — UML for EDOC Part |1

2.8 For Loop
Forloop D
S CgmpoundTa§<Frarpe 2 _
<SIG> g5 -t T e <S0G>
<>é» > O . fnit> Q q \\) * Yhile> Activity> Q—O
R‘ N '/SOG SIG \\\ r\ A /// AOG
\*\ .~ ) . AN / /
\h_ e — o 7 AN \ / e
z L I S SR
r ‘?ompoundTask o . WhlIeI 0op 5
Figure15 For Loop Pattern
2.9 Multitask
Multi Task -
Figure 16 Multitask Pattern
D-10 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22




2.10 Procurement

ad/2001-08-20 — UML for EDOC Part Il

Procurement

FaREY

G  SIG . .. S0G SIG

,'( ~. SO
O ‘TDO Sourcing - O—POJ’Ev?I uati 0[1\ 10_’ Q

~ - , \

Reg uest //' ’
\
N, . Accountln
Source Frei ght depend

-;\ Request -

. —————

S|

Purchasing Officer Accountin Offlcer Order/Contract
<SIG1> SIG

I
o soe s ..

/ - S
—,'-PO\ Maintair],,‘O

SOG

AOG SIG

B Process Order . O_> QRecerprAbprove .

——— -l
},4

RREERERE AOG

Figure 17 Procurement Pattern

2001-08-22

A UML Profile for Enterprise Distributed Object Computing — Part |1

D-11




ad/2001-08-20 — UML for EDOC Part |1

2.11 Evaluation

_‘\/

Evaluation )
<SIG1> - ,«CompoundTaS&Frame,e:~-“__, . <EOG>
O L0 IO
& o "3
O—>O<-< Evaluation Loop z—->© O
<SIG2> SIG ) -~ S ‘\\ <SOG>
<N O NS
= / < Log to Reject DB )
L L H
<Request> IfWei htings>| | <RequestGrp> ."'
\eq—‘ gning SquesIP Reject DB

PreCond:

SIG1: SIU:Resource Requirements

SIG2: SIU1: Resource Requirements ,SIU2: Freight Info

<OCL>

PostCond:

EOG: EOU:Error

SOG: SOU:Contorol

<OCL>

Evaluation: SIU, SIG2:SIU1, SIG2:SIU2 -> EOU, SOU

<OCL>

Evaluation Loop ¢~

<EOG>

S@;’ TR i —

<SIG>

{:Weightings>| |<Requ0ﬂGfp>|

~—— . —

- -,--~~

_O Suppllers/ SUDP“e"S ’ . P~
s Maintain ~* A
g Suppllers ‘

T’ L/ <SOG1

o —~a \‘A

7 <S0G2>

D-12 A UML Profile for Enterprise Distributed Object Computing — Part |1

2001-08-22



ad/2001-08-20 — UML for EDOC Part Il

Annex E - Technology mappingsfrom EDOC to
Distributed Component and M essage Flow Platform
Specific Models

Contents

List of Figures 3

List of Tables 4

1. Introduction to EDOC and Platform Specific Models 4
11 (a1 To 8ot o i I (o 3 =I5 TSRS

12 EDOC and Platform Specific Models

2. Principa Platform Specific Models 8
21 Distributed components using a multi-tier architeCture MOEL...........coovverreirenserce e nenees 8
211 Implementation neutral technology model 9
22 Mapping to Distributed COMPONENE MOUEIS ..ot 10
221 Mapping to CORBA 3/ CCM 10
222 Mapping to J2EE/EJB 10
223 Mapping to Microsoft COM+ and .Net 10
23 Mapping t0 MESSAgE FIOW IMOUEIS ........ccuiccrcce sttt nae s s e 11
231 Mapping to the Flow Composition Model (FCM) 11
232 Mapping to Workflow Services 11
233 Mapping to Message Brokers 11
234 Mapping to ebXML 11
235 Mapping to Web Services 12
24 MBPPING BPPIOACNES .......cvreeeeiecireieireeeeti et reee s s st st e e e et b et bbb r e 12
3. Mapping from EDOC to J2EE/EJB 13
31 THEMOE] Of J2EE ...ttt bbb bbbttt 13
32 Model aNd UML Profil@ fOr EIB.......c.coieireeireeireeeireisiseiseseisessisess et s st 14
321 A basisin UML for EJB: JSR-26 14
322 EJB Design Model — External view 14
323 EJB Design Model — Internal view 15
324 EJB Implementation Model 16
33 Mapping from the EDOC CCA PIOfIlE........oiieiecireeiressesesee et ssss s ssssenaas 16
331 Mapping Process Components and Protocols 16
332 Mapping Composition 21
333 Mapping Choreography 24
334 Mapping Document Model 25
34 Mapping from the ENtItIES PrOfil€ ...ttt st snss s nnnnnns 27
35 Mapping from the RElatioNShip Profile ... 29

2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 E-1



ad/2001-08-20 — UML for EDOC Part |1

36 Mapping fromM the EVENE Profil@ ...t ss et st ssss s sns s nssnsssnssenssnsns
3.7 Mapping from the Business Process Profile
38 Mapping from the PatterNS ProOfilE.........coi e
4. Mapping from EDOC to CORBA/CCM
41 TheMOAel Of CORBA 3.......oieireeeireeeereuseseeseseesesese s sss st sess e ess b e st s s s es e s s ee s eE e b et e b s s e b ee bbb e bt e s et e st et seaesrenes
42 CCM — The CORBA Component Model 38
43 UML PrOfIE FOr COM ...ttt e bbb bbbttt 39
431 Some suggested Stereotypes 39
432 Tagged Values 40
44 Mapping from the EDOC CCA PIOfIl ...ttt res st sssssssaas a2
441 M apping Process Components and Protocols 12
442 Mapping Composition 46
443 Mapping Choreography 48
444 Mapping Document Model 48
45 Mapping from the ENtiti€@S PrOfil ..ot st nanea 49
46 Mapping from the Relationship Profile 50
47 Mapping fromM the EVENE Profil@ ...t sesssas et ssse e snsesnssnsssnsnenssnsns 51
48 Mapping from the BUSINESS ProCESS PrOfilE.........cciiieierirtiresre et 52
49 Mapping from the PatterNS ProOfilE.........ci e e %]
5. Mapping From EDOC Business Process to CORBA 4
51 Common Base Types for the BUuSiNess ProCeSS MOUEL ..........ccvicinennnssse s sssssssesesns 4
511 BusinessProcess 4
512 CompoundTask 55
513 Activity 55
514 ProcessRole 56
52 Notification-based Mapping for the BuSiness ProCesS MOGEL............cvcureeeineeininneinseieseeene e 57
521 CompoundTask (as represented by Activity) 57
522 ProcessFlowPort (represented by ProcessPortConnector) 53
523 Activity(representing a CompoundTask with a Composition) 58
524 ExceptionGroup 58
53 Interface-based Mapping for the Business Process MOEL............cccceensccecnssccssese st ssssens 59
531 Activity (representing CompoundTask instance) 59
532 ProcessM ulti Port 61
533 ProcessFlowPort 61
534 CompoundTask (instantiated to give Activities) 61
535 ExceptionGroup 62
536 BusinessProcess 62
6. Mapping from EDOC Business Processto FCM 62
6.1 OVEIVIEW OFf FCM CONCEPES ....cucveverrereeirecietetsesesststsesss et ssssssss s s e sss e sss s s s s s sssssesss s ssseses s sssessssssnsesassssssntasssssssesnsnssnsasaes 62
6.2 Mapping from the Business Process Profil@to the FCM ... ssssssssssesssnens 63
6.2.1 Mapping CompoundTask 63
6.2.2 Mapping Activity 63
6.2.3 M apping ProcessPortConnector 63
6.24 Mapping ProcessFlowPort 63
6.25 Mapping DataFlow 64
6.2.6 Mapping InputGroup 64
6.2.7 M apping OutputGroup 64
6.2.8 M apping BusinessProcess 64
6.29 Mapping ProcessRole 64
6.210  Mapping Performer 64
6.211  Mapping Artifact 65
6.212  Mapping ResponsibleParty 65
6.213  Procurement Example 65

E-2 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22



ad/2001-08-20 — UML for EDOC Part Il

List of Figures

Figure 1 EDOC related to RM -ODP VIEWPOINES. ......c.cuieeeiereiiresiressisess s ssesesessssessesessessssessssessssssesssessssessssssssssssessssesssses 6
Figure 2 EDOC & Technology mapping
Figure 3 Multi-tiered reference model for ENterpriSe SYSIEMS.......c.c e ssesesseaes 8
Figure 4 — Implementation neutral abstract technNology MOEL ... 9
Figure 5 Mapping to ebXML
Figure 6 — J2EE/EIB MOUEL........cccuieicicireccte st s sss e s st sttt s a ettt s st s s s s et s e st s
Figure 7 CCA Structural SpecCifiCation MOUEL.........coovereererrirse sttt s st sens
Figure 8 CCA Composition and usage MOE ..........ovreererereenerensesesesessssenesesssensnens

Figure 9 CCA ChOreogrPany ........ccueeeereerreerneuessesesseseesessessssessssesssssssssssessssesssssssssssnees

Figure 10 CCA Document Moddl..........
Figure 11 ECA Entity Model..................
Figure 12 ECA Relationshipmodel.......
Figure 13 EDOC EVENE IMOUE ...ttt ss bbb s ae sttt st st s st s st s
Figure 14 EDOC Business Processes
Figure 15 Pattern StrUCLUIES........cccuveeeeeereeeesiresesses s ssssessssss s st sssssssssssesssssesens
Figure 16— CORBA Technologies related to Abstract Architecture model
FIQUIE 17 CCM EXIEINE VIBW......cevuieeeeiseectreect ettt s st 3
Figure 18 Corba Component Model
Figure 19 ProCUreMENt EXAIMPIE ...ttt e s

2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 E-3



ad/2001-08-20 — UML for EDOC Part |1

List of Tables

Table 2: EJB Design Model — Externa View - UML SEEFEOLYPES ......c.veeieeeriereiiresinessiseieisese s s sesessssessssenns
Table 3: EJB Design Model - Externd View - UML Tagged Values
Table4: EJB Design Model — Internal View - UML StEF@OLYPES.......cvuerieeeiereieretineesineie e ssesessessssessssesseessesesssssssssenns
Table5: EJB Design Model — Internal View — Tagged VAIUES ... ssssssssssssssssans
Table 6: EJB Implementation Model — UML Stereotypes........cccocevveverrenensrerereseennns
Table 7: Stereotypes for Structural Specification (UML notation: Class Diagram)
Table 8: Stereotypes for Composition (UML notation: Collaboration Diagram at specification level) ........ccccovueeee. 23
Table 9: Stereotypes for DocumentModel (UML notation: Class Diagram)
Table 10 Element MappPingS.......coo e sesessesessessssssssssssessenes

Table 11 Mapping Events Concepts to Profile Elements..........ccoceveerennenncneneenee

Table 12 Mapping Of PrOCESS PrOTII ...
Table 13: UML Profilefor CCM — SUQQESLEU ProtOLYPES .....cccvieriereiinsssisssssssssssssssssssssssssssssssssssssssssssssssssssssssens
Table 13: UML Prafilefor CCM — Tagged ValUES ...

Table 14: Stereotypes for Structural Specification (UML notation: Class Diagram)
Table 15: Stereotypes for Composition (UML notation: Collaboration Diagram at specification level) ..........co........ a7
Table 17: Stereotypes for DocumentModel (UML notation: Class Diagram)
Table 18 Element MapPinNgS.......coo e sesessesessessssssssssssessenes

Table 19 Mapping Events ConceptS to Profile EIEMENLS.........ccv e ssesessssenns
Table 20 Mapping Of PrOCESS PrOTII.......ccuicrricrieriee e

1. Introduction to EDOC and Platform Specific
Models

1.1 Introduction to EDOC

The ECA — Enterprise Collaboration Architecture isamodel-driven architecture approach

for specifying Enterprise Distributed Object Computing systems.
A forthcoming RFP will address technology mappings for “ UML for EDOC” .

This annex is non-normative and illustrates technology mappings to Distributed
Component Models (in particular J2EE/EJB and CORBA/CCM) and a discussion on
forthcoming mappings to Message Flow Models (FCM (Flow Composition Model from
EDOC Part I), Workflow, MOM, WSDL, ...). Thisannex also contains a more detailed
description of mappings from the EDOC Business Process profile to CORBA and FCM.

The EDOC vision isto provide arecursive collaboration based modeling approach that can
be used at different levels of granularity, for both business and systems modeling. EDOC is

able to support the specification of both loosely and tightly connected systems, with
support for both synchronous and asynchronous communication in both container
managed and message-based architectures.

E-4 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22



ad/2001-08-20 — UML for EDOC Part Il

Thisisdone by providing akernel in the CCA — the Component Collaboration Architecture
with extensions for events, for entities, for relationships, and business processes and the
use of patterns.

Thefocus of the ECA is on enterprise, computational and information specifications for a
platform independent model of an EDOC system. These are transformed further to
engineering and technology specifications for platform specific models using technology
concepts from an appropriate Technology Specific Model.

Neither the business world, nor the computing world, applies only one paradigm to their
problem space. Businesses use a combination of loosely coupled and tightly coupled
processes, and computing solutions to deploy a combination of loosely coupled and tightly
coupled styles of communication and interaction between distributed components.

An ECA based business process can be defined as event driven for some of its steps and
workflow or request/response driven for others. Likewise, distributed componentsin the
ECA can be configured to communicate with each other in a mixture of event-driven publish-
and-subscribe, asynchronous peer-to-peer, and client-server remote invocation styles.

The EDOC Profile anticipates three level s of component coupling: linked, tightly coupled
and loosely coupled.

Linked coupling refers to components that are co-located in the same address space. These
components interact with each other directly, without communicating over anetwork. As
such, they can interact without being identifiable over the network. Messaging will generally
be synchronous, within the scope of a single transaction.

Tightly coupled components are distributed across multiple servers. These componentswill
also interact with synchronous messaging, but messaging will occur over anetwork. While
some messaging between the components may be asynchronous for performance and
recoverability considerations, components are tightly coupled if any interactions between
them are synchronous.

Loosely coupled components are distributed and only communi cate asynchronously,
through a messaging infrastructure. Communication isthrough messages and events. A
message or event isissued in the scope of one transaction and accepted by one or more
recipientsin independent transactions. Messages and events are stored and forwarded. A
message is a communicated with a defined recipient, and an event is a communicated
(published) with self-declaring recipients (subscribers) unknown to the publisher.

Thelevel of coupling between components has important performance and system flexibility
implications. Generally, components should be designed in alevel-of-coupling hierarchy so
that components that are linked are within components that are tightly coupled, and tightly
coupled components are then loosely coupled with each other. This coupling hierarchy
should be reflected in the network accessibility property of components and the
synchronous vs. asynchronous property of their ports.

With a consistent mapping to a particular technology, implementations of independently
devel oped specifications should be operationally interoperable. Furthermore, components
implemented with different technologies should be operationally interoperable if the
technology mappings are consistent with the transformations provided by bridges between
the technol ogies.

An EDOC computational specification can specify ProcessComponents at a number of
different levels. These levels correspond to four general categories of ProcessComponent:

2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 E-5



ad/2001-08-20 — UML for EDOC Part |1

E-Business Components
Application Components
Distributed Components
Program Components

In thisannex we only discuss a mapping of Process Components at the Distributed
Component level, through mappingsto EJB and CCM, even if the EDOC approach will be
suitablefor all levels. A wider scope for mapping is anticipated for aforthcoming RFP on
technology mappings.

1.2 EDOC and Platform Specific Models

EDOC based specifications can be mapped down to various technology choices, and in
particular both contai ner-managed components and message-based services. Two Platform
Specific Models are defined aspart of the EDOC Profile, for Enterprise Java Beans and Java
enterprise computing architectures, and for the Flow Composition Model (FCM).

The EJB metamodel captures the concepts that will be used to design an Enterprise
JavaBean-based application down to the Javaimplementation classes. The metamodel
includes the assembly and deployment descriptor

FCM isageneral-purpose model that supports creating flow compositions of components
and defining behaviors of those compositions using wiring diagrams. It provides a common
set of technology abstractions across a variety of flow model types used in message
brokering. FCM isrelated to the principal model in MQ-Series but it has more general
applicability and is positioned as alayer of abstraction just above middleware technology,in
contrast to the EDOC Business Processes profile which is intended technol ogy neutral and
intended for use in an analysis level model.

Enterpriseviewpoint
(CCA, Business Processes, Entities, Relationships, Events)

Information viewpoint —— — Computational viewpoint

(Entities, Relatlonsm\ (CCA, Events)

Engineering viewpoint
(FCM — Flow Composition Model)

Technology viewpoint
(UML for 2EE/EJB/IMS, CORBA 3/CCM, COM, SOARDXML, ...)

(Patterns - applied to al viewpoints)
Figurel EDOC related to RM-ODP viewpoints

E-6 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22




ad/2001-08-20 — UML for EDOC Part Il

The focus of the main ECDOC partsis on implementation neutral enterprise, computation
and information specifications. Thisis transformed further to platform specific technologies
in the technology viewpoint, potentially with common platform abstractionsin an
engineering viewpoint, for instance with FCM — for message based platforms, and asimilar
abstraction for distributed component platforms.

Neither the business world, nor the computing world, applies only one paradigm to their
problem space. Businesses use a combination of loosely coupled and tightly coupled
processes and computing solutions deploy a combination of loosely coupled and tightly
coupled styles of communication and interaction between distributed components.

The group of distributed component model s includes technol ogies for contai ner-manged
components, such as EJB, CCM and COM+. The broader context for these technol ogies with
J2EE, CORBA 3 and MS DNA/.Net also contains support for more asynchrounous and
message-based services. EDOC based specifications can be mapped down to various
technology choices, and in particular both container-managed components and message-
based services.

EDOC & Technology Mapping

nterprise Collaboratio
Architecture

Relationship
|

ebXML BP

Lallals

€ottaboration Component Architecture

.

ECM

— W@E\\

Message Model Mapping Distributed Component Model Mapping

|_ebxmL | _com+ | com || EB |

Figure2 EDOC & Technology mapping

2001-08-22

An EDOC based business process can be defined as event driven for some of its steps and
workflow or request/response driven for others. Likewise, distributed componentsin the
CCA profile can be configured to communicate with each other in amixture of event-driven
publish-and-subscribe, asynchronous peer-to-peer, and client-server remote invocation
styles. The Event Model describes the purely event driven approach

The EDOC approach unifies specification for both Distributed Component and Message
Oriented platform specific models. It includes a possibility for specifying both operations
(request-response messages) and one-way messages and events. This might be mapped to
Distributed Component technol ogies using traditional operations and one-way
operations or event/notification services, and to Message Oriented technologies using
composed messages (request-response pairs) and traditional messages. In broader

A UML Profile for Enterprise Distributed Object Computing — Part |1 E-7




ad/2001-08-20 — UML for EDOC Part |1

platform environments, such as CORBA 3 or J2EE, thereis support for both technologies,
and a combination of distributed components and messaging might be used in one system.

2. Principal Platform Specific Models

2.1 Distributed components using a multi-tier architecture model

To support flexible Enterprise systems, I T architectures can be structured as multi-tiered
distributed architectures. As areference model, alogical 4-tier architectureis presented .

Human Interaction

services
User processing Workflow/Task
services services
System
Shared processing Management serv
Services

Model/Information
Management serv

Figure 3 Multi-tiered reference model for Enterprise systems

Thefigure above showsthe various parts of a multi-tiered reference model for enterprise
systems:

The Human Interaction servicetier isresponsible for physical interaction with the user,
through display and input media, and an appropriate dialogue.

The Communication services are responsible for connecting the various tiers together
(although not labelled in the figure, the communication services are present as
connections between the other service tiers).

The User processing servicetier isapart of the processing services responsible for the
functionality required by the user

The Business processing servicetier is part of the processing services responsible for
common services (both domain specific and general) that can be used by multiple users.

The Model/Information Management service tier is responsible for physical data
storage and data management.

E-8 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22




ad/2001-08-20 — UML for EDOC Part Il

The Workfiow/Task servicesis a set of servicesthat can be viewed as a specialised
processing service, supporting sequencing of actions and tools.

The System Management servicestier is orthogonal to the multi-tiered architecture, and
might be introduced in multipletiers.

Thelogica architecture can be mapped to multiple physical architectures. All tiers could be
mapped into one monolithic application, or through different client-server architectures. The
communication within and between the tiers can be inter- and/or intra- enterprise, and be
both synchronous and asynchronous.

2.1.1 Implementation neutral technology model

E—— Abstract Technology Model s Tnisrfacs
request Communication Document model
services Web interaction
Deferred ;
Human Interaction
Synch request e XML
Message Workflow/TasK
User_processing SEIVICES
Streaming services : System
Management serv
Event - publish & | ] Server
SUlo=Eias Shared processing [ Components
Services N
Concurrency
Naming service / service
Model/Information -
) Management serv Transaction
Security service

Trading service | service

Figure 4 — Implementation neutral abstract technology model

The figure above shows an implementation neutral and abstract technology model of
various services available in atypical target environment, such as CORBA 3 or J2EE.

The abstract technology model isrelated to typical service support for amulti-tiered service
model, with the following services

Human Interaction Services are supported by various user interface mechanisms, including
web-browsers.

Communication Services are supported by a principal set of 3+2 interaction modes:
operations (synchronous or deferred synchronous requests), signals (event
publish/subscribe or asynchronous messaging) and flows (with streaming). Associated with
thisis general naming and trading services.

2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 E-9




ad/2001-08-20 — UML for EDOC Part |1

2.2

E-10

In the context of UML for EDOC, it isimportant to note the need to support different
communication mechanisms, in particular both synchronous and asynchronous
communication, and both request/reply and notification oriented interaction.

Wor kflow/Task Services are supported by a set of workflow/task services.

System Management Services are supported by various kinds of user, application and
security management services.

Processing Services are separated into user and shared services, where user services
typically are supported in asingle user mode, while shared services adds functionality for
server-side and multi-user support with concurrency and transactions.

Model/Infor mation Management Services are supported through data storage, persistence
and manipulation services— potentially including various legacy system/format integration
services.

The target infrastructure for the technology mapping of enterprise systems, will typicall
consist of parts that supports the services described above.

In this document however, the focus for technology mapping is only on the container-
managed shared processing services of J2EE/EJB and CORBA/CCM, thus addressing only
a subset of a total system architecture. It is expected that a wider range of technol ogies
will betargeted in a future RFP on technology mappings for EDOC.

Mapping to Distributed Component Models

221

2.2.2

2.2.3

EDOC and CCA supports both synchronous and asynchronous message specification. The
current EJB, DCOM and CCM specifications are mostly tuned towards synchronous
interactions. The current trend is, however, to integrate asynchronous message support also
for such managed components. The overall platform infrastructures already provides
supports for asynchronous messaging through IMS, MSMQ and the CORBA Message
service.

Mapping to CORBA 3/ CCM

This document contains a possible mapping from EDOC to the CCM — CORBA
ComponentModel part of CORBA 3. A normative extension to thisis expected to be
submitted for afuture RFP on EDOC technol ogy mappings.

Mapping to J2EE/EJB

This document contains a possible mapping from EDOC to the EJB —Enterprise Java Beans
part of J2EE. A normative extension to thisis expected to be submitted for afuture RFP on
EDOC technology mappings.

Mapping to Microsoft COM+ and .Net

Future work could include a mapping to Microsoft COM+ and/or .Net.

A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22



2.3

2001-08-22

ad/2001-08-20 — UML for EDOC Part Il

Mapping to Message Flow Models

23.1

2.3.2

2.3.3

2.3.4

Mapping to the Flow Composition Model (FCM)

The FCM isaFlow Composition Model (FCM) that can describe the interactions and flows
of information between application components

Further mapping from FCM to various message flow models will be addressed by the
forthcoming “UML for EAI —Enterprise Application Integration” submission, and is thus not
detailed further here.

Mapping to Workflow Services

Workflow is a possible service to support business processes. In the CORBA/CCM
mapping it is shown how it is possible to map the EDOC Business Process profile to the
CORBA Workflow service.

Mapping to Message Brokers

Message services are typically provided by Message Broker products, addressing the needs
of business and application integration through management of information flow. It provides
servicesthat alow you to:

Route a message to several destinations, using rules that act on the contents of one or
more of the fields in the message or message header.

Transform amessage, so that applications using different formats can exchange
messages in their own formats.

Store and retrieve amessage, or part of amessage, in adatabase.

Modify the contents of a message (for example, by adding data extracted from a
database).

Publish a message to make it available to other applications. Other applications can
choose to receive publications that relate to specific topics, or that have specific
content, or both.

In particular in the EAI, Enterprise Application Integration, areait has been atrend towads
the use of message brokers. A goal of EDOC has been to specify models that can provide a
basisfor EAl modeling, targeting infrastructure support from message brokers.

It is expected that the forthcoming RFP submission on UML for EAI will be able to make use
of the base EDOC models.

Mapping to ebXML

The development of the concepts for EDOC and CCA has been developed in close contact
with the development of the modeling approach for ebXML (ref. www.ebxml.org).

A UML Profile for Enterprise Distributed Object Computing — Part |1 E-11



ad/2001-08-20 — UML for EDOC Part |1

In particular the modeling approach has been tuned to meet the requirements for
asynchronous messaging and business protocol specifications emerging in that
environment.

<<BT>>
OrderBT

<<BusinessServicelnterface>> =
BuyerC <<BusinessServicelnterface>>
SellerC

<<ProtocolRole>> <<CPP>>

<<CPP>> <<ProtocolRole>>

SalesProtocol buyRoleOrder sellRoleOrder SalesProtocolS

+ orderConfirmed() : orderConfBD
+ orderDenied() : orderDenBD

/ <<connection>>

<<ProtocolPort>>

order(OrderBD)

<<ProtocolPort>

v

buy

sell

\
\
\

<<CPA>>
MessageAg

<<BusinessDocument>>
Order

CPP: Collaboration Protocol Profile
CPA: Coallaboration Protocol Agreement
BT: Business Transaction

BD: Business Document

Figure 5 Mapping to ebXML

The ebXML message-based infrastructuresis a potential target for EDOC-based
specifications. The figure shows the mapping from the EDOC Buyer-Seller example to
some of the related ebXML model concepts.

2.3.5 Mapping to Web Services

The emergence of Web Services, with specication languages such as WSDL (Web
Services Definition Language) is a suitable target for EDOC based models. It is expected
that Web Services will be atarget for afuture RFP for EDOC technology mappings.

2.4 Mapping approaches

A mapping to atechnical platform can use one of two basic approaches:

Type 1. It can describe how to transform amodel to a set of declarations expressed in the
native declarative language of the chosen technical platform. Thiskind of transformation
targeted to the CORBA platform generates declarations expressed in CORBA IDL, i.e.
CORBA interfaces, valuetypes, etc. If targeted to the Java platform, it generates declarative
Javacode, i.e. Javainterfaces and abstract classes. If targeted to XML, it generatesan XML
DTD or XML Schema, both of which are essentially declarative code.

Type 2. It can describe how transform a model to another UML model expressed in terms of a
UML profile targeted to the chosen technical platform, such asthe UML Profile for CORBA*

' [UML-CORBA]

E-12 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22




3.

Mappi

ad/2001-08-20 — UML for EDOC Part ||
or the UML Profilefor EJB®. Such UML profiles support expression via UML of declarative
semantics in terms of the concepts native to the chosen technical platform.
This document discusses the mapping from EDOC to J2EE/EJB and CORBA/CCM using a

Type 2 approach with a discussion on mapping from UML for EDOC model elementsto
elements of the JSR-26 UML for EJB profile, and to an early draft UML for CCM profile.

ng from EDOC to J2EE/EJB

3.1 The Model of J2EE
Java IDL . JZ E E/EJ B Servlets &
(IMI) Communication Java Server
services Pages + XSL
(Servlets +JSP)
| Rer?ote 'F\z/ll\e/ltlhcl)lo(le Human Interaction
nvocation (RMI, ) services
Java Messaging XML
Service (JMS) .
User processing
Java Mail & e Res _
Java Activation T Enterprise
Framework (JMI + JAF) Java Beans
Shared processing| | (EJB)
Naming and services
. Connectors
D'reCt?J% ||3n|;erface / / (CICS, SAP, ERP)
Model/Information |
, Management serv [
5 \ Database
i JINI (Trading) i Connectivity
Transaction (JDBC+)
API (JTA, JTS)
Figure 6 — J2EE/EJB model
Human Interaction Services are supported by the Java windowing system and through
support for web-browsers, typically with web-server support such as Java Server Pages
(JSP) and increased support for XML and XSLT.
Communication Services are supported by Java RMI, as well as with the Java messaging
service and event& notification through the messaging service. Further support for
communication of XM L-structures will be provided by the Java XML-API.
Wor kflow/Task Services are not supported directly.
System Management Services are supported by Java Security and associated user services.
2[JSR-26]
2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 E-13




ad/2001-08-20 — UML for EDOC Part |1

Processing Services are supported by server-side Enterprise Java Beans (EJB) and the
associated concurrency and transaction service.

Model/Infor mation Management Services are supported by the JDBC and aforthcoming
Java persistence service, aswell asthe current Java serialisation.

In the forhcoming mapping presented here we are only focusing on the mapping of shared
processing services, using the EJB technol ogy.

3.2 Model and UML Profile for EJB

3.2.1 A basis in UML for EJB: JSR-26
The EJB and Java Metamodel used hereis based on the public version of the “UML for EJB”
profile, JSR-26, emerging from the Java Community Process. Some input to discussions on
thisis described in the part | of this submission, UML for EDOC Part | — Chapter 5 section 1.
3.2.2 EJB Design Model — External view
3.221 UML Stereotypes
Ster eotype Appliesto Definition
<<EJBCreateM ethod>> Operation Specializes «<EJBHomeM ethod. Indicates that the Operation
represents an EJB Create Method.
<<EJBFinderMethod>> Operation Specializes «<EJBHomeM ethod. |ndicates that the Operation
represents an EJB Finder Method.
<<EJBRemoteM ethod>> Operation Indicates that the Operation represents an EJB Remote Method.
<<EJBRemotel nterface>> Class Specializes the standard UML Stereotype «type». Indicates that
the UML Class represents an EJB Remote Interface.
<<EJBHomel nterface>> Class An abstract Stereotype indicating that the UML Class represents
an EJB Home Interface. Specializes the standard UML Stereotype
«type».
<<EJB SessionHomel nterface>> Class Indicates that the Class represents an EJB Session Home.
Specializes the Stereotype «Homel nterface».
<<EJBEntityHomel nterface>> Class Indicates that the Class represents an EJB Entity Home.
Specializes the Stereotype «<Homel nterface».
<<EBPrimaryKey>> Usage Indicates that the supplier of the Usage represents the EJB
Primary Key Classfor the EJB Entity Home represented by the
client.
Table 1: EJB Design Model — External View - UML Sereotypes
3.2.2.2 UML Tagged Values
Tagged Value AppliesTo Definition
EJBSessionType Class Stateful or Stateless. Indicates whether or not the EJB
<<EJBSessionHomelnterface>> | Session Bean maintains state.
Table 2: EJB Design Model - External View - UML Tagged Values
E-14 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22




ad/2001-08-20 — UML for EDOC Part Il

3.2.3 EJB Design Model — Internal view
3.23.1 UML Stereotypes

Ster eotype Appliesto Definition

<<EBCmpFidd>> Attribute Indicates that the Attribute represents a container-managed field for an
EJB Entity Bean with contai ner-managed persistence

<<EBPrimaryKeyField>> Attribute Specializes «<EJBCmpField». |ndicates that the Attribute is the primary
key field for an EJB Entity Bean with container-managed persistence.

<<EJBRedizeHome>> Abstraction Indicates that the supplier of the Abstraction represents an EJB Home
Interface for the EJB Implementation Class represented by the client.

<<EJBRdizeRemote>> Abstraction Indicates that the supplier of the Abstraction represents an EJB Remote
Interface for the EJB Implementation Class represented by the client.

<<EBImplementation>> Class Specializes the standard UML Stereotype «implementationClass».
Indicates that the Class describes an EJB Implementation Class,
distinguishing it from other Classes that may appear withina UML
Subsystem that represents an EJB Enterprise Bean.

<<EJBEnterpriseBean>> Subsystem An abstract Stereotype indicating that the Subsystem represents an
EB
Enterprise Bean.

<<EJBSessionBean>> Subsystem Indicates that the Subsystem represents an EJB Session Bean.
Specializes «EJBEnterpriseBean».

<<EJBEntityBean>> Subsystem Indicates that the Subsystem represents an EJB Entity Bean. Specializes
«EJBEnterpriseBean».

<<EJBReference>> Association A Stereotype indicating that the navigable end of the UML Association

represents areferenced EJB Enterprise Bean.

<<EJBAccess>> Association A Stereotype indicating that the UML Association defines a security

role name relationship between aUML Actor and an
«EJBEnterpriseBean».
Table 3: EJB Design Model — Internal View - UML Stereotypes
3.2.3.2 UML Tagged Values

Tagged value Appliesto Definition

EJBRoleNames Operation A comma-delimited list of Strings, designating the security roles
that may invoke the Operation.

EJBTransAttribute Operation An enumeration with values Not Supported, Supports, Required,
RequiresNew, Mandatory, or Never. Defines the transaction
management policy for the Operation.

EJBEnvENtries Subsystem A comma-delimited list of tuples, designating the environment

<<EJBEnterpriseBean>> entries used by the EJB Enterprise Bean, of the form <name, type,
value>.

EJBNamelnJAR Subssytem The name used for the EJB Enterprise Bean in the EJB-JAR.

<<EJBEnterpriseBean>> Defaults to the name of the EJB Remote Interface.

EJBReferences Subssytem A comma-delimited list of tuples, designating the other EJB

<<EJBEnterpriseBean>> Enterprise Beans referenced by the EJB Enterprise Bean, of the
form <name, type, home, remote>.

EJBResources Subssytem A comma-delimited list of tuples, designating the resource

<<EJBEnterpriseBean>> factories used by the EJB Enterprise Bean, of the form <name,
type,auth>.

EJB SecurityRoles Subssytem A comma-delimited list of tuples, designating the role names that

<<EJBEnterpriseBean>> may invoke ALL operations on the EJB Enterprise Bean, of the
form <name, link>.

2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 E-15




ad/2001-08-20 — UML for EDOC Part |1

Tagged value Appliesto Definition
EJBTransType Subssytem An enumeration with values Bean or Container. Indicates whether
<<EJBSessionBean>> the transactions of the EJB Session Bean are managed by the EJB
Session Bean or by its container, respectively.
EJBPersistenceType | Subssytem An enumeration with values Bean or Container. Indicates whether
<<EBENtityBean>> the persistence of the EJB Entity Bean is managed by the EJB
Entity Bean or by its container, respectively.
EJBReentrant Subssytem A Boolean value indicating whether or not the EJB Entity Bean
<<EJBEntityBean>> can be called reentrantly.
Table 4: EJB Design Maodel — Internal View — Tagged values
3.2.4  EJB Implementation Model
3.24.1 UML Stereotypes
Stereotype Appliesto Definition
<<BEB-JAR>> Package Specializes the Stereotype «JavaArchiveFile». Indicates that the Package
represents an EJB-JAR.
<<EJBDescriptor>> Component Specializes the standard Stereotype «filex». Indicates that the Component
represents an EJB Deployment Descriptor.
<<EJBClientJAR>> Usage Indicates that the client of the Usage represents an ejb-client-jar for the
EJB-JAR represented by the supplier of the Usage.

3.3

3.3.1

E-16

Table 5: EJB Implementation Model — UML Stereotypes

Mapping from the EDOC CCA Profile

This section detail s the mappings from the EDOC Part | CCA, Component Collaboration

Architecture.

Mapping Process Components and Protocols

Part of acomponent’s specification isthe set of protocols it implements, a protocol specifies
what messages the component sends and receives whenit collaborates with another
component and the choreography of those messages— when they can be sent and received.
Each protocol the component supportsis provided viaa*“port”, the connection point

between components.

Protocols, ports and choreography comprise the contract on the outside of the component.
Protocols are also used for large-grain interactions, such as for B2B components.

A UML Profile for Enterprise Distributed Object Computing — Part |1

2001-08-22




ad/2001-08-20 — UML for EDOC Part Il

Choreography +supertype
0..
n -
Generalization
+subtypes
IsChorepgraphy
PortOwner
Composition || UsageContext
+owner 0 1 Z%
Parts IsComposition
Protocol
+initiator | 1 tparts
— -1 <<boundary>>
InitiatingRole Port ProcessComponent
- name : String 1 1 - name : String - _granulgrity : Qranularity_Kind
- isSynchronous : Boolean - |s|_3e_r§|ste_nt : Boo_lean = false
+uses - isTransactional : Boolean| |- PrimitiveKind : String =
- direction : DirectionType - primitiveSpec : String
+responder /0.1 - tCondition : Status
- ProtocglType pos :
RespondingRole +component ¥ 1
- name : String
Interface Properties
/ +properties | N
DynType PropertyDefinition
MultiPort | | <<boundary>>| | <<boundary>> <<boundary>>| .pn  +typeProperty name : String
OperationPort ProtocolPort FlowPort - - initial : Expression
+eonstrains g 1 |_jsLocked : Boolean
n
FlowType
<<Enumeration>> : yp PropertyType
GranularityKind <<Enumeration>>
irecti 0.1
~program _D.l_rectlonType +type 1 [, +type
- owned - Initiates DataElement
- shared - EEFATES (from DocumentModel)

Figure 7 CCA Structural Specification Model

A UML Profile for Enterprise Distributed Object Computing — Part |1

In mapping to Distributed Component technol ogies, such as CCM, EJB, COM+ the most
significant specification aspect are the interfaces. In CCA interfaces are specified implicitly
through the protocol messages being sent from a Process Component and the messages
being received asreplies. If the interaction is taking place through a synchronous
interaction, the operations of the interface can be derived through combining the request
and corresponding reply messages into the signature of an operation of the required
interface.

In mapping ProcessComponents and associated Ports with interactions according to
Protocolsto an Interface-oriented technology, there is an issue of how to map FlowPorts
and OperationPorts, and how to combine these into interfaces. The EDOC Protocol
structure specification specifies messages being sent both ways between the protocol
initiator and the responder. In an interface-oriented mapping of thisit is necessary to
analyse the direction of messages with respect to being sent from initiator or responder. The

E-17




ad/2001-08-20 — UML for EDOC Part |1

E-18

rolename of the protocol can be used to give a default name for the interface to be provided
at each side, if the protocol represents adual interface situation. The interface will be
populated by the operationport and flowports (operations without result) going in the
respective directions.

The EDOC model allows for ProcessComponents with multiple ports, and thereby both using
and providing multiple interfaces. Since some models, i.e. EJB alowsfor only oneinterface
per component (Bean) the interfaces related to multiple ports need to be merged, with a
potential for name-clashes and name-conflicts.

In the Composition model it is possible to delegate (connect) message flow from one
component to another, but still provide the message reply back to the initiator. Thisrequires
that areference to the reply-to object isincluded in the argument of amessage, or that the

infrastructure provides for some means to identify the caller.

Subprotocols can beinitiated by providing areference to an object with an interface
according to itsrolein the subprotocol.

Metamodel eement
name

Map comment

EJB

ProcessComponent A ProcessComponent representsthe | Mapsto an <<EnterpriseBean>> (in
contract for acomponent that this description) but can also naturally
performs actions— it “ does map to higher (Business Process) or
something”. A ProcessComponent lower (Object) level concepts.
may realize a set of Portsfor (One of EJBSessionBean, or
interaction with other EJBEntityBean)

ProcessComponents and it may be
configured with properties

| sPersistent default=false, if true stores session If true, EJBSessionType = Stateful. If

(Property of specific state across interactions false EJBSessionType = Stateless

ProcessComponent) (default)

Isawaystrue for EJBEntity.
Port A port realizes a simple or complex Mapping depends on kind of port. See

conversation for a
ProcessComponent or protocol. Each
port is connected with collaborative
components that speak the same
protocol

All interactionswith a
ProcessComponent are done viaone
of itsports Each port provides a
connection point for interaction with
other components or services and
realizes a specific protocol. The
protocol may be simple and use a
“FlowPort” or the protocol may be
complex and use a*“ Protocol Port” or
an “OperationPort”. If allowed by its
protocol, aport may send and receive
information.

below.

External view :
<<EJBRemotel nterface>>

Internal view :
<<EJBImplementation>> with
<<EJBRealizeRemote>> and
<<EJBRealizéHome>>

IsTransactional
(Property of port)

interactions with the component are
transactional & atomic

IsTransacational = true means a
mapping to an EJBTransAttribute of
one of supports, required, requiresNew,
mandatory

IsTransacational = false meansa
mapping to EJBTransAttribute of one

A UML Profile for Enterprise Distributed Object Computing — Part |1

2001-08-22



ad/2001-08-20 — UML for EDOC Part Il

Metamodel element
name

Map comment

EJB

of notSupporte or Never

IsSynchronous A port may interact synchronously or | IsSynchronous = true means mapping
(Property of port) asynchronously. A portthatis to operations,

marked as synchronousisrequired to | 1sSynchronous = false (default) means

interact using synchronous messages | mapping to amessage (JMS) or an

and return values event notification mechanism
Direction Indicates that the port will either The direction of the port iswith respect
(Property of port) initiate or respond to the related type. | to the protocoal, it isonly implicitly
Initiates or Aninitiating port will send thefirst mapped to EJB (See below)
Responds message. Note that by using

Protocol Ports a port may be the

initiator of some protocols and the

responder to others.
FlowPort A Flow Port isaport which definesa | Direction Initiates:

dataflow in or out of the port on
behalf of the owning component or
protocol.

directionin is one way operation or
outisaoneway call

Mapsto a
message being sent.

Direction Responds.

Maps to amessage being received. In
the synchrounous case thisisa
mapping to an operation without return
valuesin an interface, In the
asynchrounous case this is a mapping
to an event being received.

Pr otocol Port

A protocol port is used for potentially
complex two-way interactions
between components

Maps to the I nterface and/or
M essage/Event being used and/or
provided for atwo-way interaction

MultiPort

Each port owned by the MultiPort will
“buffer” information sent to that port
until all the ports within the MultiPort
have received data, at thistime all the
portswill send their data

Direction Responds Mapsto an
implementation where a set of
messages (events) need to be received
by the port before it is sent further.

OperationPort

An operation port represents the
typical call/return pattern of an
operation. The OperationPort isa
PortOwner which is constrained to
contain only flow ports, exactly one
of which must have its direction set to
“initiates’.

Direction Initiates:

This mapsto theinvoker of an
operation, which is not explicitly
represented in EJB.

Direction Responds

This maps to an operation to be
implemented. (an operation in an
interface) (EJBRemotel nterface).

2001-08-22

A UML Profile for Enterprise Distributed Object Computing — Part |1

E-19



ad/2001-08-20 — UML for EDOC Part |1

Metamodel element Map comment EJB

name

Protocol A protocol defines atype of Maps to adescription of the messages
conversation between two parties, the | and operation interactionsin a
initiator and responder. One protocol | conversation. Only the responding side
roleistheinitiator of the conversation | isexplicitly represented in EJB.
and the other the responder.
However, after the conversation has
been initiated, individual messages
and sub-protocols may by initiated by
either party.

Interface Aninterfaceisaprotocol constrained | An EDOC interface represents a
to match the capabilities of thetypical | protocol that mapsdirectly toaUML
object interface. It isconstrained to interface that again is mapped to a Java
only contain OperationPorts and (EJB) interface. Depending on the
FlowPorts and all of its ports must direction (initiates or responds) the
respond to the interaction (making Interfaceis either used or provided
interfaces one-way) (responds).
Each OperationPort or FlowPort in the
Interface will map to amethod. A
Protocol Port which initiates the
Interface will call theinterface. A
Protocol Port which Responds will
implement the interface
Existing interface

InitiatingRole Therole of the protocol which will Represents the EJB Bean that isthe
send the first message initiator of a protocol
Default Interface name

RespondingRole Therolein the protocol which will Represents the EJB Bean that isthe
receive the first message receiver of thefirst messagein a
Default Interface name protocol

PropertyDefinition PropertyDefinition defines name and | Propertieson the EJB Bean. Can be
type for properties which may beset | mapped to EJBEnvEntries
when the ProcessComponent is used

E-20

A UML Profile for Enterprise Distributed Object Computing — Part |1

Table 6: Stereotypes for Sructural Specification (UML notation: Class Diagram)

A protocol specifies the conversation between two ProcessComponents (viatheir ports).
Each component that is using that protocol must use it from the perspective of the “initiating
role” or the “responding role”. Each of these components will use every portinthe
protocol, but in complementary directions.

Each port is connected with collaborative components that speak the same protocol. Multi-
party conversions are defined by components using multiple ports, one for each kind of

party.

Components interact with their environment through ports. A port has a defined interaction
protocol. Ports may send messages, receive messages, or both. A port may be implemented
as an object interface, e.g., CORBA or Javainterface.

Ports are synchronous or asynchronous. A synchronous port communicates within the
context of atransaction. An asynchronous port communicatesin a store-and-forward
manner so that sending a message occursin the context of one transaction and receipt of the
message then occurs in the context of another transaction.

2001-08-22



2001-08-22

3.3.2

ad/2001-08-20 — UML for EDOC Part Il

Ports may communicate with messages or event notices. A message is directed to a specific
destination. An event noticeis published to the communication infrastructure to be
delivered to subscribers—destinations that have expressed interest. The messages and
event notices may be communicated synchronously or asynchronously .

All DataManagers will have a synchronous interface port that represents the typical object
interface. A DataManager may have other ports, such asto send messages to other Data
Managers, and to send and receive asynchronous messages and events.

Mapping Composition

Components may be abstract (having only an outside) or concrete (having an inside and
outside). Frequently a concrete component inheritsits external contract from an abstract
component — implementing that component.

There may be any number of implementations for an abstract component and various ways
to “bind” the correct implementation when a component is used.

Thetwo basic kinds of concrete components are:

Primitive components — those that are built with programming languages or by
wrapping legacy systems.

Composed components — Components that are built from other components; these use
other components to implement the new components functionality. Composed
components are defined using a composition.

Compositions define how components are used. Inside of acomposition components are
used, configured and connected. This connected set of component usage’ s implementsthe
behavior of the composition in terms of these other components— which may be primitive,
composed or abstract components.

Compositions can a so include a chor eogr aphy of how the components used work together,
which should execute when.

Compositions are used to build composed components out of other components and to
describe community processes— how a set of large grain components works together for
some purpose.

Central to compositions are the connections between components, values for configuration
properties and the ability to bind concrete components to a component usage.

A UML Profile for Enterprise Distributed Object Computing — Part |1 E-21



ad/2001-08-20 — UML for EDOC Part |1

Connections - nnectians.
Choreography - AbstractTransition
|
| +supertype n
-7 0..1 A
Y n | A
7 +subtypes | I
IsCho/reo/graphy _} |
e 7 “Generalization |
. I
Composition Connection
¢, /) '
+owner ’Il 1 f
i L . UsageContext I
I +owner I |
______ | - A "
CommunityProcess 1 dextent ’
ComponentUsages Portsages |
IsComposition :
|'
Bindi
indings n 'I
+uses |
Uses 1 +p8rtsUsed i
ComponentUsage
& - J ProcessComponent PortUsage condects
name : String n +use: |
1 \\ II
| 1?+owﬁer~\ ) \ |
+illd 1 | \\\\ +hindsfo \\ /J
~. e
| C\rémeé creﬁes 7
| ~
Fills i Y \
n | +configuration T~ \.,
. | Z Represents
PropertyValue
- PortConnector
- value : Expression
_— +represents
+bindings] n n \
\\ . Port
ContextualBinding n o\ BindsTo “hame : String
- isSynchronous : Boolean
ValueFd{ - isTransactional : Boolean
\ Dependencies - direction : DirectionType
+Hily 1 are informative, - postCondition : Status
PropertyDefinition not normative.
- name : String
- initial : Expression
- isLocked : Boolean
Figure 8 CCA Compostion and usage model

E-22

A UML Profile for Enterprise Distributed Object Computing — Part |1

2001-08-22



ad/2001-08-20 — UML for EDOC Part Il

Metamodd eement name

M apping description

EJB

configuration properties—which are
defined by a PropertyDefinition.
When the component isusedin a
ComponentUsage those properties
values may be set using a
PropertyValue.

Composition Compositions describe how Maps to the structur e of interacting
instances of ProcessComponents components (beans), and how they
(called ComponentUsages) are are configured and connected. Not
configured (with PropertyVaues explicitly represented in EJB.
and Contextual Bindings) and
connected (with Connections) to
implement the composed
ProcessComponent or
CommunityProcess.

ComponentUsage A ComponentUsage will cause a Maps to the use of one component by
ProcessComponent instance to be another.
created at runtime (this instantiation
may bereal or virtual).

PortConnector PortConnector provides a Mapsto the realisation of ports. EJB
“connection point” for interfaces represents responding
ComponentUsages within a ports. Initiating ports are not
composition and exposes the represented in EJB.
defined ports within the
composition. The connections
between PortConnectors are made
with Connections.

Connection A Connection connectstwo Thisisthe representation of the
PortConnectors within a communication between two
composition. Each port can PortConnectors, either the
produce and/or consume message communication link for operation
events. The connection logically invocations, or amechanism for
registers each port connector asa message event handling. (Event
listener to the other, effectively handling is not directly supported in
making them collaborators. EB 11)

PropertyValue a ProcessComponent may have The values of propertiesdefined by

nameltype, e.g as
EJBEnvENtries

ContextualBinding

Contextual Binding allowsthe
substitution of a more concrete
ProcessComponent for acompatible
abstract ProcessComponent when
an abstract composed
ProcessComponent is used.

Interface conformance allows for
multiple implementations of abean.

CommunityProcess

Community Process may be thought
of asthe “top level composition” in
aCCA specification, itisa
specification of acomposition of
ProcessComponents that work
together for some purpose other
than specifying another
ProcessComponent.

Highest level of component
interaction

Table 7: Stereotypes for Composition (UML notation: Collaboration Diagram at specification level)

2001-08-22

A UML Profile for Enterprise Distributed Object Computing — Part |1

E-23



ad/2001-08-20 — UML for EDOC Part |1

Specifications of composition can be used to automatically create components that use
existing components, and support thisdynamically or through code generation.

3.3.3  Mapping Choreography

+supertype

Choreography 0.1

A Choreography uses
transitions to order n Generalization
usages of ports. +subtypes
Nodles
Connections
+nodes i
n target Target +incoming n | +connections
Mgsie 1 s n| AbstractTransition
- name : Stringgsource Ource+0utgoing
n
1
- Transition
Connection =
- preCondition : Status
PseudoState
- kind : PseudostateKind UsageContext -
<<Enumeration>>
I Status
+extent - success
- timeoutFailure
<<Enumeration>> PortUsages - tEChnicaIFa?Iure
PseudostateKind - businessFailure
_ dhaie PortUsage | n - anyFailure
~fork +portsUsed - anyStatus
- |.n|.t|al n
- join
- success Represents
- failure +represents
1
» <<boundary>>
PortActivity Port

- name : String

- isSynchronous : Boolean
- isTransactional : Boolean
- direction : DirectionType

- postCondition : Status

Figure 9 CCA Choreogrpahy

A Choreography specifies how messages will flow between PortUsages. The choreography
may be externally oriented, specifying the contract a component will have with other

E-24 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22




2001-08-22

3.3.4

ad/2001-08-20 — UML for EDOC Part Il

components or, it may beinternally oriented, specifying the flow of messageswithin a
composition. External choreographies are shown as an activity graph while internal
choreography is shown as part of a collaboration. An external choreography may be defined
for aprotocol or a ProcessComponent.

A Choreography uses Connections and transitions to order port messages as a state
machine. Each “node” in the choreography must refer to a state or a port usage.

Choreography is an abstract capability that isinherited by ProcessComponents and
protocols.

Choreography may be used at multiple levels;

A protocol Choreography specifies the sequencing of messages and sub-protocols
between protocol roles. Thisis much like a sequence diagram.

A process component Choreography specifies the sequencing of multiple messages
and sub-protocols of portsand is part of the external contract of the component.

The use of choreography at all of these levelsis not always required, as sufficient
specification may be determined from the other layers.

Specifications of choreography can be used to automatically create
executable code, or to support the execution of a workflow engine, in the case
of a mapping to a coordinating workflow system.

Mapping Document Model

The information that flows between components is described in a Document Model, the
structure of information exchanged. The document model also formsthe basisfor
information entities and a generic infor mation model. The information model is acted on by
CCA process components.

A UML Profile for Enterprise Distributed Object Computing — Part |1 E-25



ad/2001-08-20 — UML for EDOC Part |1

Datalnvariant ] 1
B expression : String |_tconstraints DataElement
ronCommit : Boolean| n +constrainedElement
1 | +type
n
Emumeration DataType AT
*tsupertyp _ 1 Efobyvalue : Boolean
o CompositeData = +feature(@required : Boolean
.1 ] .
+enumeration +owner Eimany : Boolean

]

finitialValue : Expression
N | +subtypes & P

+values
n
Enumeration ExternalDocument
Value mimeType : String
Bname : String| |specURL : String
externalName : String

+initial

Figure 10 CCA Document Model

A data element represents atype of datawhich may either be primitive DataTypesor
composite. CompositeData has named attributes which reference other types. Any type
may have a Datal nvariant expression.

Attributes may be isByValue, which are strongly contained or may simply reference
other data elements provided by some external service. Attributes may also be marked as
required and/or many to indicate cardinality. DataTypes define local data— these types
are defined outside of CCA. ExternalDocument defines a document defined in an
external type system. Anenumeration defines atype with afixed set of values

Metamode eement name | Mapping Comment EJB
CompositeData A datatype composed of other Maps to a data representation as
typesin the form of attributes being used for a set of actual

arguments in a message/operation
or in ageneric data structure

Exter nalDocument A large, self contained document Mapping to an external

defined in an external type system datastructure to be interpreted.
such as XML, Cobol or Javathat
may or may not map to the ECA
document model

E-26 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22




ad/2001-08-20 — UML for EDOC Part Il

M etamodd element name | Mapping Comment EJB

Datal nvariant A constraint on thelegal values of a | Constraint that could be checked by
data element. generated code.

DataType Datatypes may have their structure | Mapsto the basic datatypesof Java

and semantics defined outside of and EJB. The definition of the
CCA. Thefollowing datatypesare | EDOC platform independent basic

defined for all specializations of datatypes and the rules for mapping
CCA: String, Integer, Float, Decimal, | to Java/EJB will be done according
Boolean. to the rules being defined by MOF
1.4 currently in progress.
Enumeration An enumeration defines atypethat | Mapsaccordingto MOF 1.4 as
may have afixed set of values. above.
Attribute Definesone “slot” of acomposite Maps to the definition of one
type that may befilled by adata attributein CompositeData.

element of “type”.

Table 8: Sereotypesfor DocumentModel (UML notation: Class Diagram)

Specifications of data elements from the document model are used for creating val ue objects
for messages, and for defining data representations.

3.4 Mapping from the Entities Profile

<<stereotype>> <<stereotype>>
Port Process Component <<stereotype>>
CompositeData
(from CCA) (from CCA)
(from CCA)
<<Steregtype>>
<<stereotype>> <<Assocjdtion>> <<Class Fpature>>
Multi Port <<Stereotype>>
<<Stelgotype>>
(omICCA) <<Stereptype>>
A <<stereotype>>
Key
SsStereqype>> <<stereotype>> <<tagDefinition>> - primeKey : Boolean
DataManager
<<tagDefinition>> - NetworkAccess : Boolean
<<stereotype>> <<tagDefinition>> - Sharable : Boolean
DataProbe
<<tagDefinition>> - ExtentProbe A <<Tagged Attribute
KeyEldments (from UML)

<<Taggefl Value>>

gged Value>> <<Stereotype>>

<<Steyedtype>>

<<stereotype>>
<<stereqtype>> <<stereotype>> Key Element
Entity Entity Data <<Tagged Yalue>>
<<tagDefinition>> - Managed = Boolean AttributeName

— N
<<Agglegation>>

<<Stereftype>>
<<Aggreggtion>> <<Class Fpature>>
<<Steredtype>> Cortext <<Stergotype>>
RolgOf o
..n
<<stereotype>> <<Tagged Value>> <<stereotype>>
0.n EntityRole Relationship 99 <<sterg0type>> Key Att:{lfute

- — (from UML) KeyS gRoretnIKeY

- virtualEntity : bool

Figure 11 ECA Entity Model

2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 E-27




ad/2001-08-20 — UML for EDOC Part |1

E-28

Data Manager s are components which manages a given type of data. Entities are

identifiable elements in an information model which are managed by Entity Managers. Keys

provide theidentity for entities.

Metamode Element

M apping comment

EJB

Data M anager

Data Manager isafunctional
component that provides access to
and may perform operations on its
associated Composite Data (i.e., its
state). The Data Manager defines
ports for access to operations on the
state data

Maps typically to an EJBEntityBean,
but might sometimes be handled by a
stateful EJBSessionBean.

If not network-addressabl e (see bel ow)
this might be handled by a dependent
object.

Networ k-addr essable

A Boolean value which indicatesiif
the Data Manager isintended to be
accessible over the network.

If true, mapsthe
DataManager to an EJBSessionBean
or EJBEntityBean.

Shareable

Boolean value which indicates if the
Data Manager can be shared by
multiple transactions/sessions. A
Data Manager that is not sharableis
either transient or depends on a
sharable Data Manager that contains
it for persistence.

If true, maps the DataM anager to an
EJBEnNtityBean.

Entity

Entity is an object representing
something in the real world of the
application domain. It incorporates
Entity Datathat represents the state
of the real world thing, and it provides
the functionality to encapsulate the
Entity Data and provide associated
businesslogic.

Maps to an EJBEntityBean (if
Shareable and/or Network-
addressable, or Managed) if not toa
dependent object.

Managed (Entity
Property)

Boolean value that indicatesif the
Entity type ismanaged. Ifitis
managed, then the implementation
provides a mechanism for accessing
the extent of all instances

If trueimpliesthe declaration of an
EJBHomel nterface.

Entity Data

Entity Datais the data structure that
represents a concept in the business
domain. Itisequivalent to an entity
in datamodelling or arelationina
relational database. InaData
Manager or its specializations, such
as Entity, it represents the state of an
object.

Maps to the data representation part of
an EJB EntityBean.

Entity Role

Entity Role extends its parent Entity
for participation in aparticul ar
context. An Entity may have a
number of associated Entity Roles
reflecting participation in multiple
contexts

Maps to another associated
EJBEntityBean or dependent object

Virtual Entity

Boolean value that indicatesif the
Entity Role incorporates and extends
the primary interface of the parent
Entity it represents, i.e., it can be used
in place of the primary Entity

Maps to another associated
EJBEnNtityBean or dependent object,
extending the primary interface.

A UML Profile for Enterprise Distributed Object Computing — Part |1

2001-08-22



ad/2001-08-20 — UML for EDOC Part Il

Metamode Element M apping comment EJB

Key Key is composed of key elements Maps to an EJBPrimaryKey.
which may be selected attribute
values of the associated Entity Data
or Foreign Keys

Foreign Key A Foreign Key isthekey of arelated | Maps to EJBPrimaryKey for another
Entity Data. EJBEntityBean
Data Probe Data Probe port is associated with an | Maps to aninterface for requesting

Entity that accepts requeststo detect | and managing change detection.
changesin theinternal state of the
Entity and forwards messages or
events when the states of interest
becometrue.

Table 9 Element Mappings

3.5 Mapping from the Relationship Profile

Relationship
(from UMLCore

i

Association Dependency
(from UMLCore (from UMLCore
<<steregtype>>
<<stereotypg>>
<<stereotype>> <<stereotype>>
Aggregation AbstractReference

D T

{overlapping}

<<stereotype>> <<stereotype>> <<stereotype>> <<stereotype>> <<stereotype>>
Packet Assembly Subordination Reference ReferenceForCreate

{incomplgte} {incomplete}

<<stereotype>>
List

Figure 12 ECA Relationship model

The congtraints specified for the different kinds of relationships can be mapped into
code that executes to check and manage the constraints.

2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 E-29




ad/2001-08-20 — UML for EDOC Part |1

The relationship section of part | states that mapping algorithms should ignore all of the
specific aggregation stereotypes defined in this profile that modify the a binary or non-
binary aggregation (Assembly, Subordination, List, and Packet). These specific stereotypes
are merely constraints on the multiplicities of the association ends. Any mapping of
standard UML 1.4 aggregation associations would have to have rules for how the
transformation is affected by these multiplicities.

The presence of the stereotypes does not mean that these multiplicities are missing.
Therefore the multiplicities can drive the transformation and the stereotypes are redundant.

3.6 Mapping from the Event Profile

EventCondition

NotificationRule

U TT
+requiredBy

CompositeData
(from CCA)

1..n

+subscribed

PubSubNotice

EventNotice
(from Event)

+describes

triggeredB
0..n 0..n
0..1 !
+describedBy +triggers

BusinessEvent

— - 0..n +guardedBy — -
condition : Expression <@ condition : Expression
+guards 0..n

+requires
0..n

Subscription

0..1

+governs

+subscribesTo

subscriptionClause : expression| Choreography
domain : String EventbasedProcess {> (from CCA)
+g§\<rlnedBy
.2
‘ A/ —
Subscriber (from CCA)
+reflectgdin
1.2
DataManager
Publisher EventbasedDat .Q
< aManager {> (from Entity)
0..n T
+offers —
offeredBy
0.n ) lifeCyclp
Publication lifeCycle
publicationClause : expression
domain : String 0..n
DataEvent
0 +reflects
-n 0..n
ProcessEvent

entry : Boolean

exposes alist of publications, and
produces PubSubNotices

mapped to specific event
listener/provider interfacesfor the

—~ success : Boolean
Figure 13 EDOC Event Model
Metamodel element M apping comment EJB
Publisher publisher is a component that No inherent suppor for events. Can be

accordingly listener/provider.
Publication Publication is a declaration of No inherent support in EJB.

capability and intent to produce a

PubSubNotice

E-30 A UML Profile for Enterprise Distributed Object Computing — Part |1

2001-08-22




ad/2001-08-20 — UML for EDOC Part Il

M etamodel element

M apping comment

EJB

Subscriber

subscriber isarole or component
that exposes alist of subscriptions,
and consumes PubSubNotices
accordingly

No inherent support in EJB. Can be
mapped to implementation of event
listener interfaces.

Subscription

Subscription is the expression of
interest in receiving and capability
to receive a PubSubNotice

No inherent support in EJB. An EJB
Bean can declare a subscription by
implementing a event listener interface.

PubSubNotice

PubSubNotice is any data structure
that isannouncedBY a publication
and/or subscribedTo by a
subscription. Instances of
PubSubNotice are communicated as
DataFlows from publishers to
subscribers based on the
subscriptions

No inherent support. Can be mapped to
an EventObject instance that is sent from
an EJB provider to alistener.

BusinessEvent

business event is any event of
business interest that happens
within an enterprise.
BusinessEvents are either
ProcessEvents or DataEvents

No inherent support in EJB. Can be
mapped to an instance of (a subtype of)
EventObject.

ProcessEvent

process event is any business event
that reflects a state change within a
process, i.e. entry into or exit from
Nodes in a Choreography

(same as above)

DataEvent

data event is any business event
that reflects a changesin data
managed by a DataM anager

(same as above)

EventNotice

event notice is any PubSubNotice
that istriggered by a business
event.

No inherent support. Can be mapped to
an EventObject instance that is sent from
an EJB provider to alistener.

EventBasedProcess

EventBasedProcess is a subtype of
Choreography (CCA profile). Itisa
Subscriber and has
NotificationRules associated with
its Subscriptions. It isaPublisher
and publishes ProcessEvents.
ProcessEvents describe the life
cycle of the EventBasedProcess

No inherent support in EJB. Can be
mapped to an EJB Bean that publishes
java events.

EventBasedDataM anager

EventBasedDataManager isa
DataManager. It is also a Publisher
and publishes DataEvents when its
datachanges. It may also bea
subscriber, typically subscribing to
PubSubNotices relating to the
maintenance of its data

No inherent support in EJB.

NotificationRule

NotificationRule is a rule associated
with a subscription which
determines what should happen
within the EventBasedProcess
holding the subscription when a
qualifying PubSubNoticeis
delivered

No inherent support in EJB.

2001-08-22

A UML Profile for Enterprise Distributed Object Computing — Part |1

E-31



ad/2001-08-20 — UML for EDOC Part |1

E-32

M etamode dement

M apping comment

EJB

EventCondition

EventCondition identifies a

to satisfy this condition

subscription and specifies a
PubSubNotice instance subset of
which one must have been received

No inherent support in EJB.

Table 10 Mapping Events Concepts to Profile Elements

Event Publication and Event Subscription is mapped into Publication and Subscription as

supported by the platform, or by event-natification in different messaging services.

An Event Notice is composite data that is being submitted through aflow port. It isalso
possible to map these to static callback interfaces.

A UML Profile for Enterprise Distributed Object Computing — Part |1

2001-08-22



ad/2001-08-20 — UML for EDOC Part Il

3.7 Mapping from the Business Process Profile

UsageContext 1
(from CCA)
4 +extent
I
. ComponentUsage
Composition | +owner +uses (from CCA)
(from CCA) [@> = -
1 n |E=name : String
A
+USE;
Entity ProctfsssCoCrgpl)-\onent 1
(from Entity) - - (fom - )
Q‘"Managed . Boolean !’granulanty : String = "Program”
3 : E-isPersistent : Boolean = false |
!ﬁ:primitiveKind : String ; d
A !’:primiliveSpec : String ProcessRole Bpelr ormedBy o Activity
selectionRule : string| +usesArtifact
creationRule : string [ o 0..n
+responsibleFor
0..n 0..n
BusinessProcess i
Artifact Performer ResponsibleParty
BusinessProcessEntity CompoundTask +outgoing +source T
AbstractTransition | 1 NNode
(from CCA) +incoming +target name : String
n
<<boundary>> A 1
Port
(from CCA)
name : String
hsynchronous : Boolean +represents PortUsage
ransactional : Boolean (from CCA)
2 direction : DirectionType 1 n
-!‘épostCondilion : Status
1
<<boundary>>
MultiPort FlowPort
(from CCA) (from CCA) Connection —
(from CCA) PortConnector PortActivity
Z% connects (from CCA) (from CCA)
ProcessMultiPort ProcessFlowPort
multiplicity_Ib : short
4 multiplicity_ub : short
InputGroup OutputGroup
DataFlow ProcessPortConnector

ExceptionGroup

Figure 14 EDOC Business Processes

2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 E-33



ad/2001-08-20 — UML for EDOC Part |1

E-34

This model is organized with three main model elementsto describe a business process:
BusinessProcess, CompoundTask and Activity as shown in Figure 14 where the derivation
from the CCA is shown. BusinessProccess is the outermost layer of composition
representing a compl ete process specification. It is a ProcessComponent for the purpose of
its usage inside other CCA Compositions, but its Composition is constrainedin the same
way as a CompoubdTask.In other words, BusinessProcesses are the entry point from CCAto
aprocess definition. CompoundTasks areal sospecializations of CCA ProcessComponents,
but their Ports are constrained specializations of CCA Ports whichrepresent the data
required to initiate an enactment itsComposition,which defines how itexecutes. The only
ComponentUsages CompoundTasks and BusinessProcesses may contain are Activities,
whichare specializations of CCA ComponentUsages. Activities are the pieces of work
reguired to complete a Process, and CompoundTasks are the containers for alogical set of
Activities and the DataFlows that define the temporal and data dependencies between them.
DataFlows are specializationsof CCA Flows that connect the PortConnectors on the
Activities. Activities are always usages of a CompoundTask definition, which definesthe
Port types and their correlation semantics. CompoundTasks defining an Activity either
compose additional Activities and DataFlows to show how this Activity is performed, or the
Activity also refersto a Performer ProcessRole viathe performedBy association, which is
abinding to aProcessComponent that fulfils the requirements of the ProcessRole. Performer
ProcessRoles are the exit point from a process defintion which allowsit to invoke
ProcessComponents (and their specializations, such as Entities). Many Activities may be
usages of the same CompoundTask definition, and many activitiesin the same
CompoundTask may be performed by the same ProcessRole.

Process models capture information at alevel of abstraction which is complimentary to the
information captured in Capsule/Port models such as CCA. Capsule/Port models define
component composition and collaboration— the configuration/wiring of signals, data, and
interactions between components. The Process profile, using information that describes
enterprise processes, specifieswhat to wire and compose from the enterprise perspective.

The process model s describes a higher level usage model for components. Thisinformation
can be used by aworkflow engine for sequencing the use of components. Mapping of the
process profile to atechnology must utilise available services on the target platform, e.g.
CORBA workflow management facility on CORBA/CCM, IBMs web services flow language
or possibly forthcoming process/workflow support for the J2EE-platform. The mapping
below gives a possible mapping to the CCM and CORBA Workflow Management Facility.

Metamode element name | Mapping Comment Mapping to a CORBA-likeWor kflow

M anagement Facility

CompoundTask CompoundTasks have only atype | WorkflowModel : WfProcessMgr and
nature. WorkflowMode! :
WfProcessObject
Activity WorkflowModel : WfActivity
Activity : : usesArtifact The usesArtifact association Each link of thisassociation kind is

between Activity and ProcessRole | mapped asthe existence of a

isaway of defining access NameV aue member of the
requirements of Activitiesto entities | process_context attribute of the
residing outside the process model. | WfExecutionObject which implements

this Activity
Activity::performedBy The performedBYy association The association isimplemented as a
specifies the ProcessRole which WorkflowModel::WfAssignment. The
represents the behaviour to be ProcessRole with which it is associated
executed by this Activity. must support the type

WorkflowM odel ::WfResource.

A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22



ad/2001-08-20 — UML for EDOC Part Il

Metamodd dement name

M apping Comment

Mapping to a CORBA-like Wor kflow
M anagement Facility

Activity::responsibleFor

The responsibleFor association
between Activity and ProcessRole
isaway of defining a party,
represented by an object, which is
responsible for the actions
undertaken by this Activity.

Each link of this association kind is
mapped as the existence of a
NameVaue member of the
process_context attribute of the
WfExecutionObject which implements
this Activity

ProcessRole

ProcessRole

A set of CORBA object referencesin
use from the context of a CORBA
object.

BusinessProcess

A BusinessProcessisthe
implementation of aroot
CompoundTask in atree of
composed CompoundTask usages

CCM component

BusinessProcessEntity

BusinessProcessEntity

CORBAEtity

ProcessFlowPort ProcessFlowPort Maps to the creation and transmission
of an event from an CCM event
publisher/emitter.

ProcessPortConnector ProcessPortConnector Mapped to the representation of a
logical link between anevent sink and
event publisher/emitter.

DataFlow DataFlow Dataflows of type source is mapped to
CCM event publishers/emitters.
Dataflows of types sink of mapped to
CCM event sinks.

ProcessM ultiPort ProcessM ultiPort Mapsto a CCM emitter of events.

InputGroup InputGroup Mapsto

OutputGroup OutputGroup

ExceptionGroup ExceptionGroup

Performer Performer Mapsto a CCM component that
excetutes responsible a task.

Artifact Artifact Mapsto a CCM component (e.g.
CORBAEntity) representing the artifact.

ResponsibleParty ResponsibleParty Map to a CCM component responsible

for the task.

2001-08-22

Table 11 Mapping of process profile

A UML Profile for Enterprise Distributed Object Computing — Part |1

E-35



ad/2001-08-20 — UML for EDOC Part |1

3.8 Mapping from the Patterns Profile

1 1 1
Simple Pattern Pattern Inheritance Pattern Composition
Figure 15 Pattern structures

The Patterns profile describes and examplifies the use of patternsfo rmodel specification.

These are used in the other modeling profiles, but the patterns are typically unfolded before
mapping to the platform specific models.

s

Mapping from EDOC to CORBA/CCM

This section describes a non-normative mapping from EDOC to the CORBA Component
Model (CCM).

The mapping from EDOC to CCM is based on the same principles as the mapping from
EDOC to EJB, asCCM can be considered a superset of EJB.

E-36 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22




ad/2001-08-20 — UML for EDOC Part Il

4.1 The Model of CORBA 3

Trading servicg | service

CORBA + real-time/min. CORBA
CORBA ORB o , + Firewall + QoS + ...
w/IDL Communication
services
D COR.B'AAPI Human Interaction : il I.IOP
yhamic services [T
Corba Messaging
Service - Workflow
User processing service
Event & w & PR RPR
Notification I Corba
service : Components
Shared processing| | (CCM) ________
services N
Naming service Concurrency
/ service
Model/Information Transaction
. Management serv )
Security service

Persistence servicg

Figure 16 — CORBA Technol ogies related to Abstract Architecture model

Human Interaction Services are not directly supported.
Communication Services are supported by the CORBA ORB and dynamic API, aswell as

with the CORBA messaging service and event& notification service. Further support for
communication of XM L-structures will be provided by the CORBA XM L-value mapping.

Wor kflow/Task Services are supported by the CORBA workflow service.

System Management Services are supported by CORBA Security and associated user
Sservices.

Processing Services are supported by server-side CORBA -objects and the concurrency and
transaction service. In CORBA 2 the Corba Components Model will provide further services
for server-side objects.

Model/Information Management Services are supported by the CORBA persistence service

2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 E-37




ad/2001-08-20 — UML for EDOC Part |1

4.2 CCM — The CORBA Component Model

sink

atirisute

[/}

Figure 17 CCM External view

The CORBA Component Model (CCM) extendsfrom the J2EE/EJB concepts, by describing a
component with multiple outgoing (facets) and incoming (receptacles) interfaces, outgoing
(source) and incoming (sink) event, and attributes for configuration.

E-38 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22




ad/2001-08-20 — UML for EDOC Part Il

+supports  0..*

InterfaceDef
(from BaselDL)

P
1 7 A 1IN\ +uses
+provide:

OperationDef
(from BaselDL)

i

0.*
. .
- UsesDef
ProvidesDef + multiple : boolean FactoryDef FinderDef
+facet +receptacle 0.F 0..*\ Hactory 0.* /+finder
1 \1\ 1
0x ComponentDef | manages 1 HomeDef
—tisBasic : bool +isBasic : boolean
0..* +home
1 1
y 1 0 1 +home
+emits 0% /Home_Key
+publishes| Y- 0.*
0.* .

+consumes

PublishesDef

1

0.

1 [ +type 1

ValueDef +type
(from BaselDL)

ConsumesDef

PrimaryKeyDef
1

Figure 18 Corba Component Model

4.3 UML Profile for CCM
Thereis currently now formalised UML Profile for CCM, athough an initial draft has
been done, in principal similar to the UM L Profilefor EJB.
4.3.1 Some suggested Stereotypes

Stereotype AppliesTo Definition

<<CORBA Service>> Subsystem (Design) Indicates the Subsystem
represents a CORBA service
component.

<<CORBA Session>> Subsystem (Design) Indicates the Subsystem
represents a CORBA session
component.

<<CORBAProcess>> Subsystem (Design) Indicates the Subsystem
represents a CORBA process
component.

<<CORBAEntity>> Subsystem (Design) Indicates the Subsystem
represents a CORBA service
component.

<<CORBAHome>> Class (Design) Indicates the class represents a
CORBA homeinterface

2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1

The UML diagram in the figure above illustrates the main concepts used for defining a

CORBA Component.

E-39




ad/2001-08-20 — UML for EDOC Part |1

Ster eotype AppliesTo Definition
<<CORBAFinder>> Class (Design) Indicates the class represents a
CORBA finder interface
<<CORBAEvent>> Operation Indicates the Operation
represents a CORBA Event
<<CORBA Constant>> Class (Design) Indicates that the class
represents a CORBA constant.
<<CORBAEnum>> Class (Design) Indicates that the class
represents a CORBA Enum.
<<CORBA Exception>> Class (Design) Indicates that the class
representsa CORBA Exception.
<<CORBAModule>> Package (Design) Indicates a package is a CORBA
Module, as opposed to alogical
abstraction.
<<CORBANg@tive>> Class (Design) Indicates that the class
represents a CORBA Native.
<<CORBA Struct>> Class (Design) Indicates that the class
represents a CORBA Struct.
<<CORBATypedef>> Class (Design) Indicates that the class
represents a CORBA Typedef.
<<CORBAUnion>> Class (Design) Indicates that the class
represents a CORBA Union.
<<CORBA Facet>> Component (Design) Indicates the component
represents a CORBA facet

4.3.2 Tagged Values

Table 12: UML Profilefor CCM — Suggested Prototypes

Tagged Value AppliesTo Definition

ContainerType Subsystem Usageis:
<<CORBAService>> Transient
<<CORBA Session>> Persistent
<<CORBAProcess>>
<<CORBAEntity>>

Containerlmplementation | Subsystem Usageis:

Type <<CORBASarvice>> Stateless
<<CORBA Session>> Conversational
<<CORBAProcess>> Durable
<<CORBAEntity>>

ServantLifetimePolicy Subsystem Usageis:
<<CORBA Service>> Method
<<CORBA Session>> Transaction
<<CORBA Process>> Component
<<CORBAEntity>> Container

TransactionPolicy Subsystem Usageis:
<<CORBAService>> NOT_SUPPORTED
<<CORBA Session>> REQUIRED
<<CORBAProcess>> SUPPORTS
<<CORBAEntity>> REQUIRES NEW

MANDATORY
NEVER

E-40 A UML Profile for Enterprise Distributed Object Computing — Part |1

2001-08-22



Tagged Value AppliesTo Definition
SecurityPolicy Subsystem TBD
<<CORBAService>>
<<CORBA Session>>
<<CORBAProcess>>
<<CORBAEntity>>
EventPolicy Subsystem Usageis:
<<CORBA Service>> Normal
<<CORBA Session>> Default
<<CORBAProcess>> Transaction
<<CORBAEntity>>
PersistenceM echanism Subsystem Usageis:
<<CORBAService>> CORBA
<<CORBA Session>> User
<<CORBAProcess>>
<<CORBAEntity>>
PersistenceSupport Subsystem Usageis:
<<CORBAService>> Container Managed
<<CORBA Session>> Component Managed
<<CORBAProcess>>
<<CORBAEntity>>
ImplementationType Class Usage is dependent on the class
<<CORBA Constant>> stereotype:
Class CORBA Constant — the type of
<<CORBATypedef>> the constant
Class CORBATYpedef or
<<CORBA Sequence>> CORBA Seguence —the
Class type of the typedef or
<<CORBAUnion>> sequence if thereisno
dependency relationship
CORBAUnion —the switch type
ConstValue Class Used only if the stereotype of
<<CORBA Constant>> theclassis
CORBA Constant.
Represents the val ue of
the constant.
ArrayDimensions Class If non-blank, indicates that the
<<CORBATypedef>> declarator isan array and
defines the array
dimension(s) portion of the
declarator.
CaseSpecifier Attribute Used only when the stereotype
<<CORBAUnion>> of theclassis
Role CORBAUnion. Case
<<CORBAUnion>> expression. Should be
equal to 'default’ for the
default case.
IsReadOnly Attribute Indicates whether or not the
Role attributeis readonly.
BOOLEAN = FALSE
2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1

ad/2001-08-20 — UML for EDOC Part Il

E-41



ad/2001-08-20 — UML for EDOC Part |1

Tagged Value AppliesTo Definition
Order Attribute Integer which definesthe
ordering of the attributes.
ArrayDimensions Attribute Used only if the attribute's class
<<CORBAException>> represents an exception,
<<CORBAStruct>> struct, or union. If non-
<<CORBAUnion>> blank, indicates that the

declarator isan array and
defines the array
dimension(s) portion of the
declarator.
BoundedRoleType Role Whether to use an array or
sequence to represent a
relationship with bounded
cardinality. Unbounded
cardinality always
generates an unbounded
sequence. The cardinality
of the relationship defines
the size of the array or
seguence.
ENUMERATION (Seguence,

Array) = Seguence
Table 13: UML Profilefor CCM — Tagged Values

4.4 Mapping from the EDOC CCA Profile

This section details the mappings from the EDOC Part | CCA, Component Collaboration
Architecture.

4.4.1  Mapping Process Components and Protocols

Part of acomponent’ s specification isthe set of protocols it implements, aprotocol specifies
what messages the component sends and receives when it collaborates with another
component and the chor eogr aphy of those messages— when they can be sent and received.
Each protocol the component supportsis provided viaa“port”, the connection point
between components.

Metamode eement name | Map comment CCM

ProcessComponent A ProcessComponent represents Maps to a<<CORBA
the contract for a component that Component>> (in this
performs actions— it “does description) but can also
something”. A ProcessComponent | naturally map to higher
may realize a set of Portsfor (Business Process) or lower
interaction with other (Object) level concepts.
ProcessComponentsand it may be | (One of CORBAService, COR
configured with properties BASession, CORBAProcess or

CORBAE-tity)

E-42 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22



ad/2001-08-20 — UML for EDOC Part Il

Metamodd eement name

Map comment

CCM

speak the same protocol

All interactionswith a
ProcessComponent are donevia
one of its ports. Each port provides
aconnection point for interaction
with other components or services
and realizes a specific protocol. The
protocol may be simple and use a
“FlowPort” or the protocol may be
complex and use a*“ Protocol Port” or
an “OperationPort”. If allowed by
its protocol, a port may send and
receiveinformation.

| sPersistent default=false, if true stores session | If true, Component =
(Property of specific state across interactions CORBASession. If false
ProcessComponent) Component = CORBA Service
(default).
Isawaystruefor
CORBAProcess and
CORBA Entity
Port A port realizes asimple or complex M apping depends on kind of
conversation for a port. See below.
ProcessComponent or protocol.
Each port is connected with CORBAFacet and
collaborative components that CORBAReceptacle or

EventSour ce or EventSink

IsTransactional

interactions with the component are

IsTransacational = true means a

using Protocol Ports a port may be
theinitiator of some protocols and
the responder to others.

(Property of port) transactional & atomic mapping to an
CCM TransactionSupportKind of
one of supported, required,
requiresNew, mandatory,
selfManaged
IsTransacational = falsemeansa
mapping to
CCM TransactionSupportKind of
one of notSupported or Never
IsSynchronous A port may interact synchronously | 1sSynchronous = true means
(Property of port) or asynchronously. A port thatis mapping to operations,
marked as synchronousisrequired | IsSynchronous = false(default)
to interact using synchronous means mapping to a one-way
messages and return values operation if thisisan initiator
port or to event source or sink
Direction Indicates that the port will either Thedirection of the port iswith
(Property of port) initiate or respond to the related respect to the protocol, it isonly
Initiates or type. Aninitiating port will send implicitly mapped to CCM (See
Responds the first message. Note that by below)

2001-08-22

A UML Profile for Enterprise Distributed Object Computing — Part |1

E-43



ad/2001-08-20 — UML for EDOC Part |1

E-44

Metamodel lement name | Map comment CCM
FlowPort A Flow Port isaport which defines | Direction Initiates:
adataflow inor out of theport on | Mapstoa

behalf of the owning component or
protocol.

direction inisone way operation or
outisaoneway call

one-way operation being
invoked, or to a CCM event
source.

Direction

Responds

Maps to amessage being
received. In the synchrounous
case thisisamapping to an
operation without return values
in aninterface, Inthe
asynchrounous case thisisa
mapping to an CCM event sink.

Protocol Port

A protocol port isused for
potentially complex two-way
interactions between components

Maps to the CORBAReceptacle
and/or CCM Event sink being
used and/or provided for atwo-
way interaction

MultiPort

Each port owned by the MultiPort

will “buffer” information sent to that

port until all the ports within the

MultiPort have received data, at this
time all the portswill send their data

Direction

Responds

Mapsto an implementation
where a set of messages
(events) need to be received by
the port before it is sent further.

OperationPort

An operation port represents the
typical call/return pattern of an
operation. The OperationPortisa
PortOwner which is constrained to
contain only flow ports, exactly one
of which must have its direction set
to “initiates’.

Direction Initiates:
This maps to the operation to be
invoked, in a CORBA Receptacle.

Direction Responds
This maps to an operation to be
implementedin a CORBAFacet.

A UML Profile for Enterprise Distributed Object Computing — Part |1

2001-08-22



ad/2001-08-20 — UML for EDOC Part Il

M etamodd element name | Map comment CCM
A protocol defines atype of Maps to adescription of the
conversation between two parties, messages and oper ation
theinitiator and responder. One interactionsin a conver sation.
protocol roleistheinitiator of the This can be described through
conversation and the other the the operations in receptacles
responder. However, after the and facets that are involved, and
conversation has been initiated, the event sources and sinks that
individual messages and sub- areinvolved.
protocols may by initiated by either
party.
Aninterfaceisaprotocol An EDOC interface represents a
constrained to match the protocol that maps directly to a
capabilities of the typical object UML interfacethat againis
interface. Itisconstrained to only mapped to corresponding CCM
contain OperationPorts and facet and receptacle.

FlowPorts and all of its ports must
respond to the interaction (making
interfaces one-way)

Each OperationPort or FlowPort in
the Interface will map to a method.
A Protocol Port which initiates the
Interface will call theinterface. A
Protocol Port which Responds will
implement the interface

Existing interface

InitiatingRole Therole of the protocol which will Represents the CCM component
send the first message that istheinitiator of aprotocol
Default Interface name

RespondingRole Therolein the protocol which will Represents the CCM component
receive the first message that isthe receiver of the first
Default Interface name message in a protocol

PropertyDefinition

PropertyDefinition defines name Properties on the CCM
and type for properties which may component.

be set when the ProcessComponent
isused

Table 14: Stereotypes for Structural Specification (UML notation: Class Diagram)

A protocol specifies the conversation between two ProcessComponents (viatheir ports).
Each component that is using that protocol must use it from the perspective of the “initiating
role” or the “responding role”. Each of these components will use every port in the

protocol, but in complementary directions.

Each port is connected with collaborative components that speak the same protocol. Multi-
party conversions are defined by components using multiple ports, one for each kind of

party.

Componentsinteract with their environment through ports. A port has a defined interaction
protocol. Ports may send messages, receive messages, or both. A port may be implemented
as an object interface, e.g., CORBA or Javainterface.

Ports are synchronous or asynchronous. A synchronous port communicates within the
context of atransaction. An asynchronous port communicates in a store-and-forward

A UML Profile for Enterprise Distributed Object Computing — Part |1 E-45



ad/2001-08-20 — UML for EDOC Part |1

E-46

4.4.2

manner so that sending a message occursin the context of one transaction and receipt of the
message then occurs in the context of another transaction.

Ports may communicate with messages or event notices. A message is directed to a specific
destination. An event notice is published to the communication infrastructure to be
delivered to subscribers—destinations that have expressed interest. The messages and
event notices may be communicated synchronously or asynchronously.

All DataManagers will have a synchronous interface port that represents the typical object
interface. A DataManager may have other ports, such as to send messages to other Data
Managers, and to send and receive asynchronous messages and events.

Mapping Composition

Components may be abstract (having only an outside) or concrete (having an inside and
outside). Frequently a concrete component inheritsits external contract from an abstract
component — implementing that component.

There may be any number of implementations for an abstract component and various ways
to “bind” the correct implementation when a component is used.

Thetwo basic kinds of concrete components are:

Primitive components — those that are built with programming languages or by
wrapping legacy systems.

Composaed components — Components that are built from other components; these use
other components to implement the new components functionality. Composed
components are defined using a composition.

Compositions define how components are used. Inside of acomposition components are
used, configured and connected. This connected set of component usage’ s implementsthe
behavior of the composition in terms of these other components— which may be primitive,
composed or abstract components.

Compositions can also include a chor eography of how the components used work together,
which should execute when.

Compositions are used to build composed components out of other components and to
describe community processes— how aset of large grain components works together for
some purpose.

A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22



ad/2001-08-20 — UML for EDOC Part Il

Central to compositions are the connections between components, values for configuration
properties and the ability to bind concrete components to a component usage.

Metamodd dement name

M apping description

CCM

configuration properties—which are
defined by a PropertyDefinition.
When the component isused in a
ComponentUsage those properties
values may be set using a
PropertyValue.

Composition Compositions describe how Maps to the structure of interacting
instances of ProcessComponents components and how they are
(called ComponentUsages) are configured and connected. Through
configured (with PropertyValues the configuration and connection
and Contextual Bindings) and between receptacles and facets, and
connected (with Connections) to event sources and sinks.
implement the composed
ProcessComponent or
CommunityProcess.

ComponentUsage A ComponentUsage will cause a Maps to theuse of one component by
ProcessComponent instance to be another.
created at runtime (this instantiation
may bereal or virtual).

PortConnector PortConnector provides a Mapsto therealisation of ports. The
“connection point” for runtime representation of CORBA
ComponentUsages within a Receptacle represents initiating ports.
composition and exposes the For receiving portsthisisthe
defined ports within the representation of a CORBA facet.
composition. The connections The mapping can also be done to
between PortConnectors are made CCM event publisher and emitters.
with Connections.

Connection A Connection connects two Thisisthe representation of the
PortConnectorswithin a communication between two
composition. Each port can PortConnectors, either the
produce and/or consume message receptacle/facet link or the event
events. The connection logically publisher/emitter link.
registers each port connector asa
listener to the other, effectively
making them collaborators.

PropertyValue a ProcessComponent may have Thevalue of CORBA Component

attributes.

ContextualBinding

Contextual Binding allowsthe
substitution of amore concrete
ProcessComponent for acompatible
abstract ProcessComponent when
an abstract composed
ProcessComponent is used.

Interface conformance allows for
multipleimplementations of a
CORBA Component.

CommunityProcess

CommunityProcess may be thought
of asthe “top level composition” in
aCCA specification, itisa
specification of acomposition of
ProcessComponents that work
together for some purpose other
than specifying another
ProcessComponent.

Highest level of component
interaction

Table 15: Stereotypes for Composition (UML notation: Collaboration Diagram at specification level)

2001-08-22

A UML Profile for Enterprise Distributed Object Computing — Part |1

E-47



ad/2001-08-20 — UML for EDOC Part |1

4.4.3

4.4.4

E-48

Specifications of composition can be used to automatically create components that use
existing components, and support this dynamically or through code generation.

Mapping Choreography

A Choreography specifies how messages will flow between PortUsages. The choreography
may be externally oriented, specifying the contract a component will have with other
components or, it may beinternally oriented, specifying the flow of messageswithin a
composition. External choreographies are shown as an activity graph while internal
choreography is shown as part of a collaboration. An external choreography may be defined
for aprotocol or a ProcessComponent.

A Choreography uses Connections and transitions to order port messages as a state
machine. Each “node” in the choreography must refer to a state or a port usage.

Choreography is an abstract capability that isinherited by ProcessComponents and
protocols.

Choreography may be used at multiple levels;

A protocol Choreography specifies the sequencing of messages and sub-protocols
between protocol roles. Thisis much like a sequence diagram.

A process component Choreography specifies the sequencing of multiple messages
and sub-protocols of portsand is part of the external contract of the component.

The use of choreography at all of these levelsis not always required, as sufficient
specification may be determined from the other layers.

Specifications of choreography can be used to automatically create executable code, or to
support the execution of aworkflow engine, in the case of a mapping to a coordinating
workflow system.

Mapping Document Model

The information that flows between componentsis described in a Document M odel, the
structure of information exchanged. The document model also formsthe basis for
information entities and a generic information model. The information model is acted on by
CCA process components.

A data element represents a type of datawhich may either be primitive DataTypesor
composite. CompositeData has named attributes which reference other types. Any type
may have a Datal nvariant expression.

Attributes may be isByValue, which are strongly contained or may simply reference other
data elements provided by some external service. Attributes may also be marked asrequired
and/or many to indicate cardinality. DataTypesdefinelocal data— these types are defined
outside of CCA. ExternalDocument defines adocument defined in an external type system.
An enumeration defines atype with afixed set of values

A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22



ad/2001-08-20 — UML for EDOC Part Il

M etamodel element Mapping Comment CCM

name

CompositeData A datatype composed of other typesin | Mapsto adatarepresentation as being used
the form of attributes for a set of actual argumentsina

message/operation or in ageneric data
structure

ExternalDocument A large, self contained document Mapping to an external datastructure to be
defined in an external type system such | interpreted.
as XML, Cobol or Javathat may or may
not map to the ECA document model

Datal nvariant A constraint on the legal values of a Constraint that could be checked by
data element. generated code.

DataType Datatypes may have their structure Maps to the basic datatypesof CORBA IDL.
and semantics defined outside of CCA.
Thefollowing data types are defined
for all specializations of CCA: String,
Integer, Float, Decimal, Boolean.

Enumeration An enumeration defines a type that Mapsto CORBA |IDL enumeration.
may have afixed set of values.

Attribute Defines one “slot” of acompositetype | Mapsto the definition of oneattributein
that may befilled by a data element of CompositeData.
“type”.

Table 16: Stereotypes for DocumentModel (UML notation:; Class Diagram)

Specifications of data elements from the document model are used for creating value objects
for messages, and for defining data representations.

4.5 Mapping from the Entities Profile
Data M anager s are components which manages agiven type of data. Entities are
identifiable elementsin an information model which are managed by Entity Managers. Keys
provide the identity for entities.
Metamode Element M apping comment CCM
Data M anager Data Manager is afunctional Maps typically to an CORBAERtity,
component that provides accessto and | but might sometimes be handled by a
may perform operations on its CORBAProcess or a CORBA Session.
associated Composite Data (i.e., its If not network-addressable (see
state). The Data Manager defines ports | below) this might be handled by a
for access to operations on the state dependent object.
data
Network-addressable | A Boolean value which indicatesif If true, mapsthe
the Data Manager isintended to be DataManager to an CORBA Session,
accessible over the network. CORBAProcessor CORBAENtity.
Shareable Boolean value which indicatesif the | If true, mapsthe DataManager to a
Data Manager can be shared by CORBAProcessor CORBAERtity.
multiple transactions/sessions. A
Data Manager that is not sharableis
either transient or dependson a
sharable Data Manager that contains
it for persistence.
2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1

E-49




ad/2001-08-20 — UML for EDOC Part |1

4.6

E-50

Metamodd Element

M apping comment

CCM

Entity

Entity is an object representing
something in the real world of the
application domain. It incorporates
Entity Data that represents the state
of thereal world thing, and it
provides the functionality to
encapsulate the Entity Data and
provide associated businesslogic.

Maps to an CORBAPr ocess or
CORBAEnRtity (if Shareable and/or
Networ k-addressable, or Managed) if
not to a dependent object.

Managed (Entity
Property)

Boolean value that indicatesiif the
Entity type ismanaged. If itis
managed, then the implementation
provides a mechanism for accessing
the extent of all instances

If trueimpliesthe declaration of an
CORBAFactorylnterface.

Entity Data

Entity Datais the data structure that
represents a concept in the business
domain. Itisequivalent to an entity
in datamodelling or arelationina
relational database. InaData
Manager or its specializations, such
as Entity, it represents the state of an
object.

Maps to the data representation part of
a CORBAEnRtity.

Entity Role

Entity Role extends its parent Entity
for participation in aparticular
context. An Entity may havea
number of associated Entity Roles
reflecting participation in multiple
contexts

Maps to another associated
CORBAEntity or dependent object

Virtual Entity

Boolean value that indicatesif the
Entity Role incorporates and extends
the primary interface of the parent
Entity it represents, i.e., it can be
used in place of the primary Entity

Maps to another associated
CORBAERtity or dependent object,
extending the primary interface.

Key Key is composed of key elements Mapsto a CORBAPrimaryKey.
which may be selected attribute
values of the associated Entity Data
or Foreign Keys
Foreign Key A Foreign Key isthekey of arelated | Mapsto CORBAPrimaryKey for
Entity Data. another CORBAERNtity
Data Probe Data Probe port is associated with an | Maps to aninterface for requesting and

Entity that accepts requests to detect
changesin theinternal state of the
Entity and forwards messages or
events when the states of interest
become true.

managing change detection.

Table 17 Element Mappings

Mapping from the Relationship Profile

The congtraints specified for the different kinds of relationships can be mapped nto
code that executes to check and manage the constraints.

A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22



ad/2001-08-20 — UML for EDOC Part Il

Therelationship section of part | states that mapping algorithms should ignore all of the
specific aggregation stereotypes defined in this profile that modify the abinary or non-
binary aggregation (Assembly, Subordination, List, and Packet). These specific stereotypes
are merely constraints on the multiplicities of the association ends. Any mapping of
standard UML 1.4 aggregation associations would have to have rules for how the
transformation is affected by these multiplicities.

The presence of the stereotypes does not mean that these multiplicities are missing.
Therefore the multiplicities can drive the transformation and the stereotypes are redundant.

4.7 Mapping from the Event Profile

M etamode element Mapping comment CCM

Publisher publisher is a component that Maps to a CORBA component that
exposes alist of publications, and publishes events (CCM
produces PubSubNotices publisher/emitter).
accordingly

Publication Publication is adeclaration of A publication is declared by
capability and intent to produce a publishing/emitting CCM components.
PubSubNotice

Subscriber subscriber isarole or component Mapped to CCM event sink.
that exposes alist of subscriptions,
and consumes PubSubNotices
accordingly

Subscription Subscription is the expression of A subscription is declared by a CCM
interest in receiving and capability to | event sink.
receive a PubSubNotice

PubSubNotice PubSubNotice is any data structure The notification of a CCM event sent
that isannouncedBy a publication from aCCM event publisher/emitter.
and/or subscribedTo by a
subscription. Instances of
PubSubNotice are communicated as
DataFlows from publishersto
subscribers based on the
subscriptions

BusinessEvent business event is any event of CCM event.
business interest that happens within
an enterprise. BusinessEvents are
either ProcessEvents or DataEvents

ProcessEvent process event is any businessevent | CCM event.
that reflects a state change within a
process, i.e. entry into or exit from
Nodes in a Choreography

DataEvent data event is any business event that | CCM event.
reflects a changes in data managed
by a DataM anager

EventNotice event notice isany PubSubNotice The notification of aCCM event sent
that istriggered by abusiness event. | from aCCM event publisher/emitter.

2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 E-51



ad/2001-08-20 — UML for EDOC Part |1

and publishes DataEvents when its
datachanges. It may also bea
subscriber, typically subscribing to
PubSubNotices relating to the
maintenance of its data

Metamodel element M apping comment CCM
EventBasedProcess EventBasedProcess is a subtype of Mapsto a CCM component that isa
Choreography (CCA profile). Itisa publisher/emitter of CCM process
Subscriber and has NotificationRules | events.
associated with its Subscriptions. It
is a Publisher and publishes
ProcessEvents. ProcessEvents
describe thelife cycle of the
EventBasedProcess
EventBasedDataMan | EventBasedDataManager isa Mapsto CCM componentsthat isa
ager DataManager. It is also a Publisher Maps to CCM event sink.

NotificationRule

NotificationRule is arule associated
with a subscription which determines
what should happen within the
EventBasedProcess holding the
subscription when a qualifying
PubSubNoticeis delivered

Mapsto the logic provided by a CCM
event sink for handling incoming
notifications.

EventCondition

EventCondition identifies a
subscription and specifies a
PubSubNotice instance subset of
which one must have been received
to satisfy this condition

Table 18 Mapping Events Conceptsto Profile Elements

Event Publication and Event Subscription is mapped into Publication and Subscription as
supported by the DCP, or by event-notification in different messaging services.

An Event Notice is composite data that is being submitted through a flow port. It is also
possible to map these to static callback interfaces.

4.8

Mapping from the Business Process Profile

Thismapping is described in more detail in Chapter 5.

Thismodel is organized with three main model elements to describe a business process:
BusinessProcess, CompoundTask and Activity as shown in Figure 14 where the derivation
from the CCA is shown. BusinessProccess is the outermost layer of composition
representing a compl ete process specification. It is a ProcessComponent for the purpose of
its usage inside other CCA Compositions, but its Composition is constrainedin the same
way as a CompoubdTask.In other words, BusinessProcesses are the entry point from CCAto
a process definition. CompoundT asks areal sospecializations of CCA ProcessComponents,
but their Ports are constrained specializations of CCA Ports whichrepresent the data
required to initiate an enactment itsComposition,which defines how itexecutes. The only
ComponentUsages CompoundTasks and BusinessProcesses may contain are Activities,
whichare specializations of CCA ComponentUsages. Activities are the pieces of work
required to complete a Process, and CompoundTasks are the containers for alogical set of
Activities and the DataFlows that define the temporal and data dependencies between them.
DataFlows are specializations of CCA Flows that connect the PortConnectors on the
Activities. Activities are always usages of a CompoundTask definition, which defines the

E-52

A UML Profile for Enterprise Distributed Object Computing — Part |1

2001-08-22



ad/2001-08-20 — UML for EDOC Part Il

Port types and their correlation semantics. CompoundTasks defining an Activity either
compose additional Activities and DataFlows to show how this Activity is performed, or the
Activity also refersto a Performer ProcessRole viathe performedBy association, which is
abinding to aProcessComponent that fulfils the requirements of the ProcessRole. Performer
ProcessRoles are the exit point from a process defintion which allowsit to invoke
ProcessComponents (and their specializations, such as Entities). Many Activities may be
usages of the same CompoundTask definition, and many activitiesin the same
CompoundTask may be performed by the same ProcessRole.

Process models capture information at alevel of abstraction which is complimentary to the
information captured in Capsule/Port models such as CCA. Capsule/Port models define
component composition and collaboration — the configuration/wiring of signals, data, and
interactions between components. The Process profile, using information that describes
enterprise processes, specifieswhat to wire and compose from the enterprise perspective.

The process models describes a higher level usage model for components. This information
can be used by aworkflow engine for sequencing the use of components. Mapping of the
process profile to atechnology must utilise available services on the target platform, e.g.
CORBA workflow management facility on CORBA/CCM, IBMs web services flow language
or possibly forthcoming process/workflow support for the J2EE-platform. The mapping
below gives a possible mapping to the CCM and CORBA Workflow Management Facility.

Metamodd element name | Mapping Comment CCM/ CORBA Workflow
M anagement Facility
CompoundTask CompoundTasks have only atype | WorkflowModel : WfProcessMgr and
nature. WorkflowModel :
WfProcessObject
Activity Activity WorkflowModel : WfActivity
Activity : : usesArtifact The usesArtifact association Each link of this association kind is
between Activity and ProcessRole | mapped asthe existence of a
isaway of defining access NameV aue member of the
requirements of Activitiesto entities | process_context attribute of the
residing outside the process model. | WfExecutionObject which implements
this Activity
Activity::performedBy The performedBYy association The association isimplemented as a
specifies the ProcessRole which WorkflowModel::WfAssignment. The
represents the behaviour to be ProcessRole with which it is associated
executed by this Activity. must support the type
WorkflowM odel::WfResource.
Activity::responsibleFor | The responsibleFor association Each link of thisassociation kind is
between Activity and ProcessRole | mapped as the existence of a
isaway of defining a party, NameV aue member of the
represented by an object, whichis process_context attribute of the
responsible for the actions WfExecutionObject which implements
undertaken by this Activity. this Activity
ProcessRole ProcessRole A set of CORBA object referencesin
use from the context of a CORBA
object.
BusinessProcess A BusinessProcessisthe CCM component
implementation of aroot
CompoundTask in atree of
composed CompoundTask usages
BusinessProcessEntity BusinessProcesskntity CORBAERtity

2001-08-22

A UML Profile for Enterprise Distributed Object Computing — Part |1 E-53



ad/2001-08-20 — UML for EDOC Part |1

Metamodd eement name

Mapping Comment

CCM/CORBA Workflow
Management Facility

ProcessFlowPort

ProcessFlowPort

Maps to the creation and transmission
of an event from an CCM event
publisher/emitter.

ProcessPortConnector ProcessPortConnector Mapped to the representation of a
logical link between an event sink and
event publisher/emitter.

DataFlow DataFlow Dataflows of type source is mapped to

CCM event publishers/emitters.
Dataflows of types sink of mapped to
CCM event sinks.

ProcessM ulti Port

ProcessM ultiPort

Mapsto aCCM emitter of events.

InputGroup InputGroup Mapsto

OutputGroup OutputGroup

ExceptionGroup ExceptionGroup

Performer Performer Mapsto a CCM component that
excetutes responsible atask.

Artifact Artifact Mapsto a CCM component (e.g.
CORBAERNtity) representing the artifact.

ResponsibleParty ResponsibleParty Map to aCCM component responsible

for the task.

Table 19 Mapping of process profile

4.9 Mapping from the Patterns Profile

The Patterns profile describes and examplifies the use of patterns fo rmodel specification.
These are used in the other modeling profiles, but the patterns are typically unfolded before
mapping to the platform specific models.

5. Mapping From EDOC Business Process to
CORBA

5.1 Common Base Types for the Business Process Model

The Workflow Management Facility defines anumber of interfaces for the execution,
monitoring and meta-data query of what we have modeled as Activities, CompoundTasks
and Business Processes. These are used as acommon basis for the alternative mappings of
the Business Process Model.

51.1 BusinessProcess

A BusinessProcessis the implementation of aroot CompoundTask in atree of composed
CompoundTask usages, and as such, it isimplemented by a
WorkflowM odel::WfProcessMgr object, as defined in the mapping of CompoundTask.

E-54 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22



ad/2001-08-20 — UML for EDOC Part Il

5.1.2 CompoundTask

CompoundTasks have only atype nature. CompoundTask is therefore mapped to atype
manager, which in the Workflow Management facility are WorkflowM odel ::WfProcessMgr
objects.

5.1.3  Activity

Activities are mapped to WorkflowM odel ::WfActivity objects. Through the mapping of the
Activity's InputGroups and usesArtifact and repsonsibleFor associations, it will be able to
pass I nput values and references to bound entities.

During execution the enabling of an Activity whose ports and their contracts are defined by
a CompoundTask causes an Activity instance to be created. The external contract nature of
thisinstance is mapped as a WorkflowM odel::WfProcess object. The key attribute of the
WfProcess must be an instance identifier. Thisidentifier isused (asaparent Task Id) inthe
mappings of the DataGroups and DataFlows in the following sections.

When the WfProcess implementing the Activity isrun, it must also create instances of
WorkflowModel::WfActivity for each Activity that is defined by its CompoundTask's
Composition.

The complete mapping of an Activity depends on whether it has a performedBy association
to a ProcessRole or whether its execution is defined by the Composition of its
CompoundTask definition; Activities that represent a Composition are mapped to objects
that also implement the WorkflowM odel::WfRequester interface.

Associations

usesArtifact

The usesArtifact association between Activity and ProcessRole isaway of defining
access requirements of Activities to entities residing outside the process model. Each
link of this association kind is mapped as the existence of a NameV alue member of the
process_context attribute of the WfExecutionObject which implements this Activity;
the_namein the NameValue is given the ProcessRol€'s name, and the valueisan
object reference of the same type as the ProcessRole. At runtime the object referred
to will be chosen (using the type association and the SelectionRule or CreationRule
Expressions). See the mapping of ProcessRole in Section 5.1.4 for details.

performedBy

The performedBYy association specifies the ProcessRole which represents the
behaviour to be executed by this Activity. The nominated ProcessRole may represent
the interface to a person or group of people, or it may be afully automated program
that processes the Activity's inputs and produces some outputs. The association is
implemented as a WorkflowModel::WfAssignment. The ProcessRole with whichitis
associated must support the type WorkflowM odel ::WfResource.

The WfResource's resource_key and resource_name attributes may be used by the
ProcessRole to locate and bind an entity of the appropriate application type to
perform the Activity. Often this entity will represent awork list that will use the
Activity's name, inputs, and the ProcessRoles participating in usesAtrifact and

2001-08-22 A UML Profile for Enterprise Distributed Object Computing — Part |1 E-55



ad/2001-08-20 — UML for EDOC Part |1

E-56

5.1.4

repsonsiblefFor associations with this Activity, to create awork item which is sent to
aperson, or group of people for processing.

repsonsibleFor

The repsonsibleFor association between Activity and ProcessRole isaway of
defining a party, represented by an object, which is responsible for the actions
undertaken by this Activity. Each link of this association kind is mapped as the
existence of aNameVaue member of the process_context attribute of the
WfExecutionObject which implements this Activity; the_nameinthe NameValueis
given the ProcessRol€'s name, and the_value is an object reference of the sametype
asthe ProcessRole. At runtime the object referred to will be chosen (using the type
association and the SelectionRule or CreationRule Expressions). See the mapping of
ProcessRole in Section 5.1.4 for details.

ProcessRole

A ProcessRoleis mapped in CORBA as a set of object reference variablesin usein some
context. Thisisanovel modeling concept in the OMA, as specifications of clients of
CORBA objects, and the binding process by which client code comes to refer to the "right”
objects, has been impossible until now.

The ProcessRole concept recognizes that interface type compatibility is not sufficient to
ensure that an object implementing the correct behavioral semanticsisinvoked by aclient.
ProcessRoleis akind of abstract behavior, with both an interface type slot, and two kinds of
criteriafor selection of object instancesto fill therole:

Its SelectionRule attribute - which allows the behaviour specification to express criteria
by which objects that may fill the ProcessRole may be selected.

Its CreationRul e attribute - which allows creation of objects which may then fill the
ProcessRole.

5.14.1 Binding

The mapping for filling a ProcessRole is as follows. For each ProcessRole, an instance of a
business entity (a CORBA Object) must be located. The model elements provide a number of
options to model ersto specify their binding constraints. Here are some of them:

The SelectionRule expression of the ProcessRole may provide:

akey for use with afactory/finder (type manager) in order to locate an appropriate
object;

an Interoperable Naming iiopname or iioploc URL which nominates a specific object;
aNaming Context or hierarchy of Contexts which contain appropriate objects;

aTrader Service Type and Constraint expression which will match appropriate objectsin
the Business Domain's Trader.

The CreationRule expression of the ProcessRole may provide:

A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22



ad/2001-08-20 — UML for EDOC Part Il

akey for use with afactory/finder (type manager) in order to create an appropriate
object;

appropriate parameters for passing to a Factory to construct a new object.

All of these options are available as mechanisms for Tool Vendorsto allow modelers to
expose the requirements for the objectsfilling their ProcessRoles in the Model, and allow
code to be generated that satisfies these requirements, rather than having programmers write
magi ¢ bootstrapping code.

5.2 Notification-based Mapping for the Business Process Model

5.2.1

2001-08-22

In addition to the base interfaces defined in Section 5.1, the following implementations must
be provided for the elements in a Business Process Model. We envisage that they will
eventually be implemented as CORBA Components with a separate facet for each of the
interfaces required to be supported. However, in the absence of a Component-based ORB,
they will usually be implemented by a number of cooperating servantsin the same address
space that each expose one or more object references. The desire to avoid name mangling of
element names from the model to avoid operation and attribute name clashes means that
multiple inheritance isimpossible in some cases.

In this mapping, a number of model elements are subsuned into behaviors of the mappings
of other model elements. The general approach isthat DataFlows between Ports are
implemented as Structured Event transmissions between Activities. As any ProcessF owPort
usage may be asource or asink for aDataFlow, all the mapping is done at the level of the
abstract model elements ProcessMultiPort (represented by a PortUsage in the Activity
which instantiatesit) and ProcessFlowPort (represented by ProcessPortConnector). The
conditions under which DataFlows are transmi tted, and the semantics of the arrival of a
DataFlow are well defined in the Business Process Model, and this mapping (as well asthe

I nterface-based mapping in Section 5.3) concentrates only on the method of transmission of
DataFlows.

CompoundTask (as represented by Activity)

5211 DataFlow source

Each Activity which directly contains DataFlow sources must implement the
CosNotifyComm:: StructuredPushSupplier interface and connect to a Notification Channel
created for the use of this BusinessProcess instance. The mapping of a DataFlow source's
ProcessFlowPort (represented by a ProcessPortConnector) (Section 5.2.2) prescribes the
events types to be emitted by the Activity to represent the DataFlows that these ports are
sourcesfor.

5212 DataFlow sink

Each Activity which directly contains DataFlow sinks must implement the

CosNotifyComm:: StructuredPushConsumer interface and connect to a Notification Channel
created for the use of this BusinessProcess instance. It mu st create and attach a Filter to the
ProxySupplier of the Event Channel to which it is attached. The mappings of a DataFlow
sink's ProcessF owPort (represented by a ProcessPortConnector) (Section 5.2.2) provides
constraints to be added to the Filter to ensure that the events representing DataFlows will be
consumed at these sink elements.

A UML Profile for Enterprise Distributed Object Computing — Part |1 E-57



ad/2001-08-20 — UML for EDOC Part |1

E-58

5.2.2

5.2.3

524

ProcessFlowPort (represented by
ProcessPortConnector)

5221 DataFlow source

Any ProcessPortConnector, representing a ProcessFlowPort, that is the source of a
DataFlow, will create and transmit a Structured Event of the following type using the Event
Channel to which its containing Activity is connected.

domain = "EDOC"

name = "data_flow"

properties =
flow_id : string // contains the data flow's fully qualified name
source : string // contains <FlowPort's fully qualified Name>
parent : string // contains <Containing Activity's Instance ID>
payload : any // contains the value(s) of the DataElement

Note that the flow_id for an ordinary flow isfixed in the model, and in the event it is scoped
by the source property.

5222 DataFlow sink

Any ProcessPortConnector, representing a ProcessFlowPort, that isthe sink of a DataFlow,
must create a subscription to add to its containing Activity's Filter which subscribesto the
event type EDOC/data_flow, and has a constraint which selects events with the right
flow_id, and source name. The parent property must also be the same as the parent of the
Activity containing this ProcessPortConnector.

Activity(representing a CompoundTask with a
Composition)

5.2.3.1 ExceptionGroup handling

An Activity representing a CompoundTask with a Composition has responsibilitiesin
addition to those of |eaf node Activities. Each such Activity must have a subscription to
Events of the EDOC/exception type. The only constraint isthat the exception event was
emitted by a Activity instance contained directly by this Activity. This can be expressed as:

"parent == <My Instance Id>"

Upon receipt of such an event the Activity must terminate all its contained Activities, and
then pass the payload of the event to the ProcessPortConnector in its PortUsage
representing its CompoundTask's system ExceptionGroup.

ExceptionGroup

PortUsages representing ExceptionGroups are special OutputGroups that indicate afailurein
the Activity that containsthem. An Activity's ExceptionGroup may either be handled, or the
datavalues from its Outputs must be propagated to its containing Activity's system
ExceptionGroup.

A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22



5.3

2001-08-22

ad/2001-08-20 — UML for EDOC Part Il

If an ExceptionGroup is unhandled, that isits ProcessFlowPorts are not sources for any
DataFlows, then the following event type, which will be subscribed to by the containing
Activity, must be emitted when the PortUsage representing the ExceptionGroup is enabled:

domain ="EDOC"
name = "exception”
properties =
source : string // contains <ExceptionGroup's fully qualifiedName>
parent : string // contains <Parent's Instance ID>
payload : CosNotification::PropertySeq // contains name/value
/I corresponding to its Outputs

If an ExceptionGroup ishandled (any of its Outputs are the source of a DataFlow), then it
only emits ordinary EDOC/data_flow events as specified in Section5.2.2.1.

Interface-based Mapping for the Business Process Model

53.1

This section is an alternative to the mappings provided in Section 5.2, but it still requiresthe
mappings in Section 5.1 as abasis.

The approach taken in this mapping isto implement all DataFlows as invocations on
operations representing DataFl ow sinks. The source of the DataFlow thereforeis
represented as an object reference to the PortUsage representing the ProcessM ulti Port
containing these sink points. To facilitate design (and mapped implementation) re-use, every
potential DataFlow sink (i.e. every ProcessMultiPort) will be represented as an interface, so
that the only runtime configuration required is the finding of object references to the objects
implementing PortUsages instantiating these ProcessM ultiPort interfaces. The
ProcessFlowPort usages in the ProcessM ulti Port instances then contain operations
represent the sinks to the actual DataFlows in the Business Process Model.

Activity (representing CompoundTask instance)

A CompoundTask's external port contract is represented by an IDL interface type, and an
Activity isimplemented as an instance of thistype, including the inherited Workflow
interfaces defined in Section 5.1, and an object reference for a PortUsage representing the
ProcessM ultiPorts contained by the Activity's defining CompoundTask.

A UML Profile for Enterprise Distributed Object Computing — Part |1 E-59



ad/2001-08-20 — UML for EDOC Part |1

5311 Containment

An Activity may need to be aware of its parent:

module EDOC {
interface TaskNavigation {
TaskNavigation my_container();
j$
j$

Therole of an Activity in thismapping is to provide aNameSpace for the objectsit contains.

As before, CompoundTasks are the IDL types we define, and Activities will the object
instances at runtime. In a CORBA interface mapping thisis done viamodules:

module <CompoundTask Name> {
interface <CompoundTask Name>Navigation : EDOC::TaskNavigation;
/I interface definitions for contained DataGroups go here
/l statically generated DataFlow sources interface goes here

/I interface containing attributes pointing to contained
/I Activities go here

b
53.1.2 DataFlow source

All CompoundTasks support a generic interface that allows their runtime Containersto
provide them with the object references that they require to send out their DataFlows.

module EDOC {
interface TaskDataFlowSource {
add_data_flow_sink(
in string source_data_element_name,
in Object sink_obj_ref,
in string sink_data_element_name);

This allows a DataFlow to be described in terms of the source name (of the form

ProcessM ulti PortName:: ProcessH owPortName), and the object which definesits sink
ProcessH owPort, aswell as the name of the method to be called on that object. The method
to beinvoked is named the same as the sink ProcessFlowPort, and it always has asingle
parameter called "values', which is of the same type as the source DataElement.

E-60 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22



2001-08-22

5.3.2

5.3.3

5.3.4

ad/2001-08-20 — UML for EDOC Part Il

In addition, the mapping may generate static interfaces of the form:

interface <CompoundTaskName>Sources {
add_<ProcessFlowPortName>_sink(
in <CompoundTask Module>::<sink ProcessFlowPort Name> sink);
I/l etc...

|3
There will be an operation per DataFlow for which this CompoundTask isasource. The

generated code will be able to statically invoke the right operation on the sink object
reference passed in to each of these operations.

ProcessMultiPort

5321 ProcessFlowPort Container

A ProcessMultiPort contains afixed (possibly empty) set of ProcessF owPorts, each with a
unique name. The following interface is generated to map the ProcessMultiPort:

interface <ProcessMultiPort Name> {
/I Contained ProcessFlowPort Mappings go here
|3

Thereis no distinction in the interfaces between synchronous and asynchronous
DataGroups; the objects implementing the interfaces must provide the appropriate
semantics.

ProcessFlowPort

Each ProcessFlowPort is represented as an operation of theform:
void <ProcessFlowPort Name> (in values <type attribute mapping>);

Thetype of the "values" parameter should be a collection type (i.e., a sequence) to support
ProcessFlowPort multiplicities other than {1,1} .

CompoundTask (instantiated to give Activities)

5341 DataFlow Container

A CompoundTask contains all the DataFlows that connect the Activitieswhich it contains.
This meansthat the Activity instantiating the CompoundTask interface is responsible for
passing object references of the ProcessM ulti Port interface instances (which are sinks of
DataFlows) to the Activity containing the PortUsages representing the ProcessM ultiPorts
that are the sources of these DataFlows.

It may do this by making calls to the generic TaskSource interface (assuming that Activities
making calls can use the DII), or to the statically typed generated

A UML Profile for Enterprise Distributed Object Computing — Part |1 E-61



ad/2001-08-20 — UML for EDOC Part |1

< CompoundTaskName> Sources interfaces that may be generated after this
CompoundTask's usage context in the Model is known.

5.34.2 Exception Catcher
All CompoundTasks support an interface derived from:
module EDOC {
interface CompoundTask {
void system_exception(
in payload CosNotification::PropertySeq);
|3
|3

Theinterface is defined as;

interface <CompoundTask Name>Compound :
EDOC::CompoundTask;

The payload contains a Property for each ProcessFl owPort in the ExceptionGroup.
5.3.5  ExceptionGroup

Unhandled ExceptionGroups must call the system_exception() operation on their Container's
CompoundTask interface. Handled ExceptionGroups (ones with DataFlows proceeding from
their Outputs) behave the same as ordinary OutputGroups.

5.3.6 BusinessProcess

5.3.6.1 Containment

In this mapping a Business Process indicates which Task Containment level (indicated by its
realizes association with a CompoundTask) is significant enough to give an outer-level
modul e scope to.

module <BusinessProcess Name> {

/I realized CompoundTask declarations go here

6. Mapping from EDOC Business Process to FCM

6.1 Overview of FCM Concepts

The Flow Composition Model (FCM) ispresented in part |, chapter 5 section 2.

E-62 A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22



ad/2001-08-20 — UML for EDOC Part Il

6.2 Mapping from the Business Process Profile to the FCM

6.2.1

6.2.2

6.2.3

6.2.4

2001-08-22

This section describes mappings from the Business Process Profile to the FCM Profile. This
is shown by means of

A mapping for each of the concrete EDOC elements

adiagram demonstrating the use of FCM conceptsto draw the procurement example
introduced in the business process profile section.

Mapping CompoundTask

A CompoundTask is mapped to an FCM Composition, allowing it to compose the
FCMNodes and FCM Connections that result from the mapping of the CompoundTask’s
Activities, ProcessPortConnectors, DataFlows, and ProcessRol es.

If an Activity ‘uses’ a CompoundTask, then it maps to an FCM Function that is
‘performed_by’ adummy FCM Component whose sole purpose isto bind to the

FCM Composition mapped by the CompoundTask. Alternateively, if the Activity is
‘performed by’ a PerfomerRole, it is mapped to an FCM Command that is‘ performed by’ the
FCM component mapped to by the PerformerRole.

Mapping Activity

An Activity is mapped to an FCMFunction, allowing it to have asitsinterfaces the
FCMTerminals that result from the mapping of the Activity’'s ProcessPortConnectors, and to
be performed by the FCM Components that result from the mapping of its ProcessRoles and
the CompoundTask that it uses.

Mapping ProcessPortConnector

A ProcessPortConnector is mapped to an FCM Terminal, unless the ProcessFH owPort to
which it refersis aProcessMultiPort. If thisis the case, the ProcessPortConnector is not
mapped, although it does have implications as detailed in the mapping for the various
concrete subtypes of ProcessMultiPort.

If a ProcessPortConnector is attached to an Activity, then the FCM Terminal that it mapsto
will be attached to an FCM Function. If a ProcessPortConnector is attached to a
CompoundTask, then the FCM Terminal that it maps to will be attached to either an

FCM Source or an FCM Sink, depending on whether the direction attribute of the
ProcessPortConnector’ s represented ProcessFHlowPort is ‘responds’ or ‘initiates’
respectively.

Mapping ProcessFlowPort

The mapping of a ProcessFlowPort depends on its direction attribute. If the directionis
‘responds’, then the ProcessFHl owPort maps to an FCM Source, if the directionis‘initiates’,
the ProcessFlowPort maps to an FCM Sink.

A UML Profile for Enterprise Distributed Object Computing — Part |1 E-63



ad/2001-08-20 — UML for EDOC Part |1

6.2.5

6.2.6

6.2.7

6.2.8

6.2.9

6.2.10

E-64

Mapping DataFlow

A DataFlow mapsto an FCMControlLink and an FCM DataL ink. The source and target of the
FCMDataL ink arethe FCM Terminals that result from the mapping of the DataFlow’ s source
and target ProcessPortConnectors. The source of the ControlLink isthe FCM Terminal that
results from the mapping of the DataFlow’ s source ProcessPortConnector. The target of the
ControlLink isthe FCMNode that holds the FCM Terminal that results from the mapping of
the DataFlow’ s target ProcessPortConnector, unlessindicated otherwise by the mapping for
InputGroup, OutputGroup, and ExceptionGroup.

If more than one DataFlows emerge from a single PPC, then thisis mapped to asingle
FCMControlLink, which leads into an FCM BranchNode, from which will emanate the newly -
mapped FCM ControlLinks.

Mapping InputGroup

The AND semantics over the ProcessPortConnectors of the InputGroup is expressed by
inserting an (FCM JoinNode,FCM ControlLink) pair on a path between the incoming
FCM ControlLinks and the FCMNode which holds the target FCM Terminals.

Asynchronous I nputGroups can be mapped on a specia kind of FCMTermina — that reflects
asynchronous behaviour semantics. However, since thereis no explicit inclusion of such an

FCMTerminal, we leave this unspecified. In the exampl e attached, these are shown with
separate rounded symbols, in asimilar manner asin the EDOC Business Process notation.

Mapping OutputGroup

The AND semantics over the ProcessPortConnectors of the OutputGroup is expressed by
inserting an (FCM ControlLink, FCMBranchNode) pair on a path between the

FCM ControlLinks emanating fromthe FCM Terminals mapped from the OutputGroup’s
ProcessPortConnectors, and the target FCM Node.

Asynchronous OutputGroups can be mapped on a special kind of FCM Terminal — that
reflects asynchronous behaviour semantics. However, since thereis no explicit inclusion of
such an FCMTerminal, we leave this unspecified. In the exampl e attached, these are shown

with separate rounded symbols, in asimilar manner asin the EDOC Business Process
notation.

Mapping BusinessProcess

A BusinessProcess is mapped as an FCM Composition.

Mapping ProcessRole

A ProcessRoleis mapped as an FCM Command and a corresponding FCM Component.
Mapping Performer

A Performer is mapped as an FCM Command and a corresponding FCM Component.

A UML Profile for Enterprise Distributed Object Computing — Part |1 2001-08-22



6.2.11

6.2.12

6.2.13

ad/2001-08-20 — UML for EDOC Part Il

Mapping Artifact

An Artifact is mapped as an FCM Command and a corresponding FCM Component.

Mapping ResponsibleParty

A ResponsibleParty is mapped as an FCM Command and a corresponding FCM Component.

Procurement Example

Procurement

Resource

Resource
Requiremengs=~~ =~
7

/

Resource
RequirementsData

Resource
Requirements

Freight No

RequirementsData

PurchasingOfficer
- doPurchase

purchasingOfficer

authorising Officer

Authorising Officer
-doAuthorise

ListofSourcesData

Evaluation

AccountingArtifact
- update()

orderContract

OrderArtifact

- update()
-,
;o
;N
"~ ,
Award \
]
| Ny by
%\::; Release

N—
\/

AN

-

Maintain

qgG

CostingArtifact

Monitor

~

accounts Payable

]
1
]
i
]
. II
accounting ~update() :
’ |
accountmgCosting
Source I|
Frieight-dependent f [ LY
Request 1
[ ! o “'\ |
| -
s ]
\ . Process Receipt |
~
Order Approve
; PP »)
Supplier -~ ST T
- doProcessOrder / |
InventoryArtifact PayableArtifact
supplier - update( ) - update()

inventory

Figure 19 Procurement example

2001-08-22

A UML Profile for Enterprise Distributed Object Computing — Part |1

E-65



