
A UML Profile for Enterprise Distributed Object
Computing

Joint Final Submission

Part II Supporting Annexes

Version 1.0

Revised 22 August 2001

OMG Document Number: ad/2001-08-20

Submitted by:

CBOP
Data Access Technologies
DSTC
EDS
Fujitsu
IBM
Iona Technologies
Open-IT
Sun Microsystems
Unisys

Supported by:

Hitachi
SINTEF
NetAccount

ad/2001-08-20 – UML for EDOC Part II

ii A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

©Copyright 2001, CBOP, Data Access Technologies, DSTC, EDS, Fujitsu, IBM, Iona Technologies, Open-IT, Sun
Microsystems, Unisys.

CBOP, Data Access Technologies, DSTC, EDS, Fujitsu, IBM, Iona Technologies, Open-IT, Sun Microsystems, Unisys
hereby grant to the Object Management Group, Inc. a nonexclusive, royalty-free, paid up, worldwide license to copy and
distribute this document and to modify this document and distribute copies of the modified version.

Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in
the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

NOTICE

The information contained in this document is subject to change without notice.

The material in this document details an Object Management Group specification in accordance with the license and
notices set forth on this page. This document does not represent a commitment to implement any portion of this
specification in any companies' products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT
MANAGEMENT GROUP, CBOP, DATA ACCESS TECHNOLOGIES, DSTC, EDS, FUJITSU, IBM, IONA
TECHNOLOGIES, OPEN-IT, SUN MICROSYSTEMS AND UNISYS MAKE NO WARRANTY OF ANY KIND WITH
REGARDS TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. The aforementioned copyright holders shall not
be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.
This document contains information which is protected by copyright. All Rights Reserved. No part of this work covered
by copyright herein may be reproduced or used in any form or by any means—graphic, electronic or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems —without permission of the
copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013.

OMG and Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker,
OMG IDL, ORB CORBA, CORBAfacilities, and CORBAservices are trademarks of the Object Management Group.

The UML logo is a trademark of Rational Software Corp.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by sending email to issues@omg.org. Please
reference precise page and section numbers, and state the specification name, version number, and revision date as they
appear on the front page, along with a brief description of the problem. You will not receive any reply, but your report will
be referred to the OMG Revision Task Force responsible for the maintenance of the specification. If you wish to be
consulted or informed during the resolution of the submitted issue, indicate this in your email. Please note that issues
appear eventually in the issues database, which is publicly accessible.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II iii

Contents

Part II – Supporting Material 1
1. Introduction...1

Annex A – Procurement Process and Buyer/ Seller Example 1

List of Figures 2
1. Introduction...3
2. The Procurement System Example ...3
3. The Sales example...8

Annex B – The Meeting Room Example 1

List of Figures 2

Annex C - Example - Hospital Information System 1

List of Figures 2
4. Introduction...3
5. Enterprise Viewpoint Specification..4
6. Information Viewpoint ...19
7. Computational Viewpoint Specification..28

Annex D - Examples of Patterns 1

List of Figures 2
1. Simple Pattern Examples ..2
2. Process Model Patterns...5

Annex E - Technology mappings from EDOC to Distributed Component and Message Flow Platform Specific Models 1

List of Figures 3

List of Tables 4
1. Introduction to EDOC and Platform Specific Models ...4
2. Principal Platform Specific Models ..8
3. Mapping from EDOC to J2EE/EJB..13
4. Mapping from EDOC to CORBA/CCM ...36
5. Mapping From EDOC Business Process to CORBA ..54
6. Mapping from EDOC Business Process to FCM...62

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II 1

Part II – Supporting Material

1. Introduction

This part of the Joint UML for EDOC submission contains the following non-normative
Annexes:

• Annex A - Procurement, Buyer/Seller example

• Annex B - Meeting Room example

• Annex C - Hospital example

• Annex D - Examples of Patterns

• Annex E - Technology mappings from EDOC to Distributed Component and Message
Flow Platform Specific Models

In addition, XMI and DTD data files for the metamodels in the EJB/Java/FCM profiles are
included in the zip file containing this Part of the submission, in the folder named “XMI and
DTDs”.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II A-1

Annex A – Procurement Process and Buyer/ Seller
Example

Contents

List of Figures 2

1. Introduction 3

2. The Procurement System Example 3
2.1 An Informal Description..3
2.2 The Business Process Model...3
2.3 Detailed Task Description...4

2.3.1 Sourcing and Sourcing Freight-Dependent Request Processes 5
2.3.2 Evaluation 5
2.3.3 Award 6
2.3.4 Maintain 6
2.3.5 Release 6
2.3.6 Monitor 7
2.3.7 Process Order 7
2.3.8 Receipt and Approve 7

3. The Sales example 8
3.1 Performer for the ProcessOrder Activity of the Procurement System example...8
3.2 BuySell Community Process...8
3.3 Protocols ..9

3.3.1 Sales Protocol 9
3.3.2 QuoteBT Protocol 11
3.3.3 OrderBT Protocol 11
3.3.4 ShippingNoticeBT Protocol 12
3.3.5 PaymentNoticeBT Protocol 12
3.3.6 ShipBT Protocol 13
3.3.7 DeliveryBT Protocol 13

3.4 Components ..14
3.4.1 Buyer ProcessComponent 14
3.4.2 Seller ProcessComponent 15
3.4.3 Seller ProcessComponent – internal composition 17
3.4.4 QuoteCalculator ProcessComponent 18
3.4.5 Seller_Orders ProcessComponent 18
3.4.6 Warehouse ProcessComponent 19
3.4.7 AccountsReceivable ProcessComponent 19
3.4.8 Logistics ProcessComponent 20

ad/2001-08-20 – UML for EDOC Part II

A-2 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

List of Figures

Figure 1 Procurement Business Process...4
Figure 2 Evaluation CompoundTask...5
Figure 3 The SellerRole Performer Role ...7
Figure 4 BuySell CommunityProcess...9
Figure 5 Sales Protocol structure and choreography..10
Figure 6 QuoteBT Protocol structure and choreography...11
Figure 7 OrderBT Protocol structure and choreography..11
Figure 8 ShippingNoticeBT Protocol structure and choreography..12
Figure 9 PaymentNoticeBT Protocol structure and choreography...12
Figure 10 ShipBT Protoco structure and choreography l...13
Figure 11 DeliveryBT Protocol structure and choreography...13
Figure 12 Buyer ProcessComponent structure and choreography...14
Figure 13 Seller ProcessComponent structure and choreography...15
Figure 14 Seller ProcessComponent : internal composition...17
Figure 15 Seller_Orders ProcessComponent structure and choreography ..18
Figure 16 Warehouse ProcessComponent structure and choreography..19
Figure 17 AccountsReceivable ProcessComponent structure and choreography ...19
Figure 18 Logistics ProcessComponent structure and choreography...20

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II A-3

1. Introduction

This Annex contains two linked examples. The first, in Section 2, is a specification of a
system for describing and supporting the processes for procuring goods or services,
modeled using the Business Processes profile (Part I, Chapter 3, Section 5). This calls up the
second example, which uses the CCA Profile (Part I, Chapter 3, Section 2) to model in detail
the BuySell process.

2. The Procurement System Example

This section contains a specification of a system for describing and supporting the
processes for procuring goods or services for an organization. An informal textual
description of the system is given followed by specifications of the business processes,
business entities, rules and events involved in this system.

This example has been developed in collaboration with Mincom Limited and represents the
expression of the business processes used by the company for sourcing goods. We thank
Mincom for their assistance.

2.1 An Informal Description

The procurement system is concerned with the procurement of goods or services by an
organization. The process for acquiring some resource (or service) can be started in either of
two ways. In both cases, a request listing the resource requirements is received. In one case
this is sufficient, however in the second case, the request is accompanied by additional
information about the preferred freight options for delivery.

In both cases, the resource requirements are used as a basis for sourcing a number of
potential suppliers of the goods. This list of potential suppliers (and for the second case, a
corresponding list of freight sources) is then evaluated. The evaluation is a sophisticated
process involving ranking and checking of potential suppliers. As a result of the evaluation,
a supplier is awarded the contract to supply the required goods. Both the sourcing of
potential suppliers and the evaluation process are the responsibility of the Purchasing
Officer.

After the Authorizing Officer has awarded the contract to a particular supplier, the order is
released to that supplier for processing. While the order is being processed, it is monitored
to ensure that progress is made and the contract is fulfilled. Finally, after the resources are
received, the receipt of the goods is approved, and any claims for payment are fulfilled.

2.2 The Business Process Model

The Procurement Business Process as shown in Figure 1 provides for Resource
Requirements to be satisfied from various sources for a given request.

ad/2001-08-20 – UML for EDOC Part II

A-4 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

SellerRole

Officer

Authorising

Terminates when
Order/Contract
is complete

Role assignment not
depicted at this level
of abstraction. Inventory

Payable
Accounts

Accounting

Order

RequestGrp

Procurement

Request

Sourcing Award

Process Order

Monitor

Receipt Approve

Release
Evaluation

Source
Freight-dependent
Request

Purchasing

Officer

Costing
Acc'ting/

Maintain

Resouce
Requirements

Resouce
Requirements List of Sources

Resouce
Requirements

Freight Info

Resouce
Requirements

Freight Info

Control

List of Sources

List of Freight
Sources

List of Sources

Error
List of Sources

List of Freight
Sources

Evaluated
Source(s)

Evaluated
Source(s)

Order/Contract
Reference

Order/Contract
Reference

Control

Order/
Contract

Expedite
Receipt of
Requested Resource

Approval of Claim
Approval of Claim

Receipt of
Requested Resource

Control

ExpediteOrder/
Contract

Control

ControlControl

Order/Contract
Reference

Error

Order

responsiblePartyresponsibleParty

ProcurementBP

start_procuremen
t

S

start_freight_proc

S

S.f

S.r

S.r

start_procurement(ResourceRequirements r)

start_freight_proc(ResourceRequirements r, FreightInfo f)

responsibleParty

uses

uses

uses uses

uses

uses
uses

uses

uses

uses

uses

performedBy

Figure 1 Procurement Business Process

The Procurement Business Process can be initiated in one of two ways by the invocation of
one of its two operations. The input parameters are then used to enable one of the two
alternative input sets on the Activity (and its in-line CompoundTask definition) specifying:

• Resource Requirements, or

• Resource Requirements plus Freight Requirements information if the request includes
freight requirements.

The process completes successfully once sources for satisfying the Resource and Freight
Requirements have been identified and evaluated, a contract has been awarded, released and
processed, and finally the goods have been received and paid for.

Where no valid source can be found to satisfy the resource or freight requirements, the
process will throw an appropriate user-exception indicating this and the process will
terminate unsuccessfully.

The Procurement Business Process is modeled as being comprised of a number of Activities
and CompoundTask definitions. These are discussed in detail in the following sections.

2.3 Detailed Task Description

Unless otherwise mentioned, all the following sections will refer to Figure 1.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II A-5

2.3.1 Sourcing and Sourcing Freight-Dependent Request
Processes

Both the Sourcing and the Sourcing Freight-Dependent Request processes fulfill the task of
determining a list of potential sources for satisfying the Resource Request. Both processes
will reference sourcing policies applicable to the request as well as referencing the Request
itself. The association to the Request ProcessRole is shown as a usesArtifact relation - that
is, the request is referenced as an artifact role. This relation is annotated with an ‘R’ to
indicate that the access is a read-only operation.

The only distinction between the two tasks is that the Sourcing Freight-Dependent Request
process has the additional work of considering the freight-requirements specified in the
additional input to the task. Correspondingly it produces a list of sources for freight in
addition to the list of sources for satisfying the resource request.

2.3.2 Evaluation

Having identified appropriate potential sources of supply, an evaluation is performed in
accordance with the sourcing policy. This evaluation process completes successfully with
output of the recommended preferred sources in a list ordered by the priority ranking of each
source. The task can terminate with an exception when no valid sources can be found.

The CompoundTask definition for the Evaluation Activity has been elided from the
Procurement process model for clarity of expression. It presents more fine-grained detail than
the rest of the Procurement processes and rather than show this extra detail in the
Procurement process, it is removed to the separate diagram Figure 2.

DB

RequestGrpWeightingsRequest

Evaluation Loop

Evaluation

Reject

must be a normalised ranking
If only 1 supplier then there

Sources

Check SuppliersRank Suppliers

Sources

Freight
Sources

Sources
Maintain Suppliers

Log to Reject DB

Sources

No valid
sources

Ranked
sources

Checked
sources

Discarded sources
with reasion code

Ranked and
prioritised sources

Checked
sources

Discarded sources
with reasion code

Ranked and
prioritised sources

Discarded sources
with reason code

Ranked and
prioritised sources

Ranked
sources

No valid
sources

No valid
sources

No valid
sources

Sources

Freight
Sources

Sources

Freight
Sources

uses

usesuses uses

Figure 2 Evaluation CompoundTask

The Evaluation process is modeled as comprising an Evaluation Loop that iterates over a list
of potential sources until either a prioritized list is produced, or the process is unable to find
any valid sources and terminates with an exception.

ad/2001-08-20 – UML for EDOC Part II

A-6 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

The Evaluation Loop has three InputGroups. Two are for inputting the list of sources, and
the list of sources accompanied by the list of freight sources. The third InputGroup has an
Input that is a list of maintained and evaluated sources that will be subject to further
evaluation.

The Evaluation Loop has two OutputGroups. The first has two output ProcessFlowPorts - a
list of ranked sources and a list of discarded sources. The list of discarded sources is passed
to an input ProcessFlowPort of the Log to Reject DB process that records details regarding
the rejection of sources. The second OutputGroup of the Evaluation Loop has a single
ProcessFlowPort that is a list of maintained or altered and evaluated sources that will be
subject to further evaluation. This ProcessFlowPort is connected by a DataFlow back to one
of the InputGroups allowing for re-iteration over the list of sources.

The Evaluation Loop makes use of a number of Artifact roles. It uses the Request,
Weightings of the sources, and possibly the Request Group that is related to a specific
request to assist in the evaluation. The Evaluation Loop terminates when all of the potential
Sources have either been ranked and prioritized, or added to the list of discarded sources.

2.3.3 Award

The Award process takes as input the list of Evaluated Sources. From this list, the selected
supplier is assigned to the Request and an order, contract or contract release is created as an
Artifact ProcessRole. The Activity produces as output a reference to the Artifact role
representing either the order, the contract, or the contract release.

The Award Activity is performed by the Authorizing Officer ProcessRole.

Commitment details about the order, contract or contract release are passed to the
Accounting artifact ProcessRole.

Both the Maintain and the Release Activities may start concurrently after the Award
Activity has enabled its output as they are both connected by DataFlows from the output
ProcessFlowPort of this Activity.

2.3.4 Maintain

The Maintain Activity supports the maintenance of the Orders, Contracts or Contract
Releases. It takes as input an identifier for an Order, Contract or Contract Release and uses
this reference to read and possibly modify the actual data. The Maintain process uses the
identified Order, Contract or Contract Release as an Artifact ProcessRole. Basically this
process exists in recognition that Order, Contract or Contract Release are not completely
static or stable and will need modification due to unforeseen circumstances.

This process has no output ProcessFlowPorts.

2.3.5 Release

The Order/Contract or Contract Release is forwarded to the selected supplier as part of the
Release Activity. The Activity takes an identifier for an Order, Contract or Contract Release
as input and passes this identifier on as output.

The termination of the Release Activity enables a Timer Task to start when it receives a
signal via a Connection from the OutputGroup of the Release Activity. The Timer Task is
used to enforce a delay on the enabling of the Monitor Activity.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II A-7

2.3.6 Monitor

The Monitor Activity provides mechanisms to monitor supplier performance for timely
delivery of the goods or services. It also monitors compliance with the terms of the Order,
Contract or Contract Release.

The process has a single Asynchronous OutputGroup that will produce some notification to
the supplier to expedite delivery.

2.3.7 Process Order

The BuySellCp ProcessRole performs the Process Order Activity. The Process Order
Activity represents the actual supply of the goods or services to satis fy the order.

SellerRole

selectionRule:
 BuySell CP.Seller.name = Order.supplier

BuySell CP.Seller

type

Figure 3 The SellerRole Performer Role

The BuySell CommunityProcess is specified in Section 3 of this Annex. The three Roles in
the Community Process are played by the identity of the invoker of the Procurement
BusinessProcess (self), and by the selected Supplier and freightSupplier. The only other
input required to initiate the BuySell protocol between these Roles is the Order itself. Not
shown here or in Figure 1 are the represents associations between the PortConnectors and
the ProtocolPorts of the BuySell CommunityProcess. For example, the PortConnector of the
Process Order Activity, labeled Order, to the ProtocolPort of the SalesProtocol, labeled
OrderBT.

Asynchronously, the Supplier will supply goods to satisfy the order and will also generate
notification of invoices that require payment for the delivery of the goods.

2.3.8 Receipt and Approve

The Receipt and Approve Activity handles the receiving goods, updating the inventory to
reflect this, and the payment of invoices for the goods.

This process has an InputGroup comprising of a details relating to the receipt of the
requested resource, and a request for approval of a claim for payments from the supplier.

ad/2001-08-20 – UML for EDOC Part II

A-8 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

3. The Sales example

This example illustrates the specification of a system of collaborating parties, involved in a
commercial Sale.

The Sales example defines the collaboration between the parties involved.

The focus is on the boundaries between the parties – ComponentUsages, their specification
– ProcessComponents, their connectable point – Ports, and the externally observable
contract of candidate interactions – Protocols .

Each party may be further specified as an internal composition of collaborating sub-
components, onto which the external contract is delegated.

3.1 Performer for the ProcessOrder Activity of the Procurement
System example

The Sales example is referenced as part of the Procurement Process of the Buyer, as the
Performer for the ProcessOrder Activity..

Please refer to the Procurement System example of the Business Processes Profile (Section 2
above), for the specification of the Business Process of the Buyer, where this Sales example
is used and initiated, to fulfill the ProcessOrder Activity.

In the context of the Buyer Business Process :

(copied from the Procurement System example (Section 2))

"… After the Authorizing Officer has awarded the contract to a particular supplier, the order
is released to that supplier for processing. …"

The organization performing the Procurement Process plays the role of Buyer, and the
awarded supplier plays the role of Seller, in the BuySellCommunity CommunityProcess.

The Award Activity will determine the identity of the actual Seller instance, corresponding
to a ProcessComponent type of Seller, that plays the Seller role in the BuySell
CommunityProcess.

3.2 BuySell Community Process

The BuySell CommunityProcess specifies how a Buyer, a Seller and a Logistics collaborate
to complete a business. Each role is played by a ComponentUsage of the same name. The
specifications for the used ProcessComponent can be found under headers below.

The Buyer collaborates directly with the Seller, through the Buy and Sell ProtocolPorts,
according to the Sales Protocol.

The Seller and the Buyer collaborate with the Logistics, through the Ship and Delivery
ProtocolPorts, according to Protocol of the same names. The specification for the Protocols
can be found under headers below.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II A-9

Buyer Seller

BuySell CommunityProcess

Buy Sell

Logistics

ShipDelivery

ShipDelivery

Figure 4 BuySell CommunityProcess

The activities in the BuySell Community Process start by the Buyer initiating the interactions
on its Buy ProtocolPort, according to the Sales Protocol.

The Seller is connected through its Sell ProtocolPort, to the Buy ProtocolPort of the Buyer.
Therefore, the Seller will respond to the Sales Protocol, as initiated from the Buyer.

The Seller will follow the Sales Protocol, and eventually initiate the Ship Protocol with the
Logistics role. The Logistics role will respond to the Ship Protocol, and initiate the Delivery
Protocol on the Buyer. The Buyer will then be able to proceed with the Sales Protocol, and
complete the overall collaboration.

3.3 Protocols

3.3.1 Sales Protocol

The interactions between the ComponentUsage in the BuySell CommunityProcess, above,
occur according to Protocols, as specified below.

ad/2001-08-20 – UML for EDOC Part II

A-10 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

Protocol Sales

ShippingNoticeBT

responderRole
Seller

initiatorRole
Buyer

QuoteBT

OrderBT

PaymentNoticeBT

<<initiates>> Quote

<<initiates>> OrderBT

<<responds>> ShippingNoticeBT

<<initiates>> PaymentNoticeBT

Success

[OrderDenied]

[OrderConfirmation]

Figure 5 Sales Protocol structure and choreography

Structure

The Sales Protocol is an integration of four simpler Protocols : QuoteBT, OrderBT and
PaymentNoticeBT. The Sales Protocol has a ProtocolPort using each of these simpler
Protocols. The specification for these Protocols can be found under headers below.

Interactions in the ProtocolPorts QuoteBT, OrderBT and PaymentNoticeBT will be initiated
by the initiatorRole of the Sales Protocol.

The initiatorRole of the Sales Protocol will respond to interactions in the ShippingNoticeBT
ProtocolPort.

Choreography

Interactions in the Sales Protocol will begin by the initiatorRole of the Sales Protocol,
initiating and fully performing the interactions of the QuoteBT ProtocolPort.

After this, the initiatorRole will initiate and fully perform the interactions of the OrderBT
ProtocolPort.

If during performance of the interaction of the OrderBT ProtocolPort, an OrderDenied has
flown between initiatorRole and responderRole, then the Protocol ends with a Failure
condition.

Else, if an OrderConfirmation has flown, then the initiatorRole of the Sales Protocol will
respond and fully perform the interactions of the ShippingNoticeBT ProtocolPort.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II A-11

After this, the initiatorRole will initiate and fully perform the interactions in the
PaymentNoticeBT ProtocolPort.

3.3.2 QuoteBT Protocol

Protocol QuoteBT

Quote QuoteRequest

responderRole
Seller

initiatorRole
Buyer

<<initiates>> QuoteRequest

<<responds>> Quote

Figure 6 QuoteBT Protocol structure and choreography1

QuoteBT is a Protocol in the form of a Request-Reply, where the initiatorRole will send a
QuoteRequest, and receive a Quote as response. QuoteRequest and Quote are FlowPort of
the QuoteBT Protocol, typed to CompositeData of the same name.

3.3.3 OrderBT Protocol

Protocol OrderBT

OrderDenied

OrderConfirmation Order

responderRole
Seller

initiatorRole
Buyer

<<initiates>> Order

<<responds>> OrderDenied <<responds>> OrderConfirmation

Failure Success

Figure 7 OrderBT Protocol structure and choreography2

QuoteBT is a Protocol in the form of a Request-Multiple_Candidate_Reply, where the
initiatorRole will send an Order, and receive as response an OrderConfirmation or an
OrderDenied. Order, OrderConfirmation and OrderDenied are FlowPort of the OrderBT
Protocol, typed to CompositeData of the same name.

1 The direction of the ports is incorrect in Figures 6 to 11. In all these diagrams, <<responds>> should read <<initiates>>,
and vice versa .
2 See footnote to Figure 6

ad/2001-08-20 – UML for EDOC Part II

A-12 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

An OrderConfirmation leads to a successful termination of the Protocol, while an
OrderDenied is a Failure condition.

3.3.4 ShippingNoticeBT Protocol

Protocol ShippingNoticeBT

ShippingNotice

responderRole
Buyer

initiatorRole
Seller

<<initiates>> ShippingNotice

Figure 8 ShippingNoticeBT Protocol structure and choreography3

ShippingNoticeBT is a Protocol with a single FlowPort, corresponding to the sending of a
ShippingNotice by the initiatorRole of the Protocol.

To declare a Protocol for a single flow may be redundant, as the unique FlowPort could be
included wherever the Protocol is used, like in the Sales Protocol of our example. In this case,
ShippingNoticeBT has been defined, for symmetry, and to illustrate the benefit of this
approach, encapsulating as a Protocol the single flow nature of the interaction.

3.3.5 PaymentNoticeBT Protocol

Protocol PaymentNoticeBT

PaymentNotice

responderRole
Seller

initiatorRole
Buyer

<<initiates>> PaymentNotice

Figure 9 PaymentNoticeBT Protocol structure and choreography4

PaymentNoticeBT is a Protocol with a single FlowPort, corresponding to the sending of a
PaymentNotice by the initiatorRole of the Protocol.

3 See footnote to Figure 6
4 See footnote to Figure 6

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II A-13

3.3.6 ShipBT Protocol

Protocol ShipBT

ShippingRequest

responderRole
Logistics

initiatorRole
Shipper

PickupReceipt

<<initiates>> ShippingRequest

<<responds>> PickupReceipt

Figure 10 ShipBT Protoco structure and choreography5

ShipBT is a Protocol in the form of a Request-Reply, where the initiatorRole will send a
ShippingRequest, and receive a PickupReceipt as response. ShippingRequest and
PickupReceipt are FlowPort of the ShipBT Protocol, typed to CompositeData of the same
name.

3.3.7 DeliveryBT Protocol

Protocol DeliveryBT

DeliveryReceipt

responderRole
Adressee

initiatorRole
Logistics

DeliveryAcceptance

<<initiates>> DeliveryReceipt

<<responds>> DeliveryAcceptance

Figure 11 DeliveryBT Protocol structure and choreography6

DeliveryBT is a Protocol in the form of a Request-Reply, where the initiatorRole will send a
DeliveryReceipt, and receive a DeliveryAcceptance as response. DeliveryReceipt and
DeliveryAcceptance are FlowPort of the DeliveryBT Protocol, typed to CompositeData of
the same name.

5 See footnote to Figure 6
6 See footnote to Figure 6

ad/2001-08-20 – UML for EDOC Part II

A-14 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

3.4 Components

3.4.1 Buyer ProcessComponent

Buyer

BuyDelivery

Failure

Success

<<initiates>> Buy

<<responds>> Delivery

[OrderConfirmation][OrderDenied]

Figure 12 Buyer ProcessComponent structure and choreography

Buyer ProcessComponent is used in the BuySell CommunityProcess, as ComponentUsage
of the same name.

Buyer has two ProtocolPort named Buy and Delivery.

The Buyer initiates interactions through the Buy ProtocolPort according to the Sales
Protocol. The Delivery ProtocolPort responds to the DeliveryBT Protocol.

The activities of the Buyer ProcessComponent will begin by initiating and fully performing
the interactions through the Buy Port, according to the used Sales Protocol.

After this, if during performance of the interaction of the Sales Protocol through the Buy
ProtocolPort, an OrderDenied has flown, then the choreography ends with a Failure
condition.

Else, if an OrderConfirmation has flown, then the Buyer ProcessComponent will respond to
interactions through the Delivery ProtocolPort, and complete successfully.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II A-15

3.4.2 Seller ProcessComponent

Seller

Sales

Quote

Order

Shipping

Payment

Ship

<<initiates>> Ship

<<responds>> Quote

<<responds>> Order

<<initiates>> ShippingNotice

<<responds>> PaymentNotice

Failure

Success

[OrderDenied] [OrderConfirmation]

Sales

Ship

Figure 13 Seller ProcessComponent structure and choreography

Seller ProcessComponent is used in the BuySell CommunityProcess, as ComponentUsage
of the same name.

Seller has two ProtocolPort named Sell and Ship.

The Seller responds to interactions through the Sell ProtocolPort according to the Sales
Protocol. The Ship ProtocolPort initiates interactions in the Delivery Protocol.

The activity of the Seller ProcessComponent will begin when responding and fully
performing the interactions through the Buy Port, according to the used Sales Protocol.

ad/2001-08-20 – UML for EDOC Part II

A-16 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

The Failure termination condition of the Sales Protocol is als o a Failure termination condition
of the choreography of the Seller ProcessComponent.

In the choreography for the Seller ProcessComponent, the interactions through the Ship
ProtocolPort, according to the ShipBT Protocol, are inserted as a whole in between two
consecutive states of the Sales Protocol in the Sell ProtocolPort.

The choreography of the Seller ProcessComponent is an integration of the choreographies
of the Sales and ShipBT Protocols, of the Sell and Ship ProtocolPort. The integration is
safely achieved by insertion, as a refinement of a Transition in the Sales Protocol, as two
Transitions to and from the inserted Ship PortActivity.

The interactions through the Sell ProtocolPort are integrated with the Ship ProtocolPort, by
insertion of the whole ShipBT Protocol, interleaved between two activities of the Sales
Protocol. This is a case of safe synthesis, where the constraints and partial ordering of each
Protocol are still valid in the synthesized protocol.

The successful termination of the choreography of the Sales Protocol in the Sell
ProtocolPort, is also the successful termination of the Seller ProcessComponent.

This structure and choreography fully specify the external contractual obligations and
expectations of the Seller ProcessComponent.

No details have been offered, about how the Seller ProcessComponent actually performs its
duties, in compliance with the externally observable structure and behavior specified above.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II A-17

3.4.3 Seller ProcessComponent – internal composition

Seller

Sales

Quote

Order

ShippingNotice

PaymentNotice

QuoteCalculator

Quote

Seller_Orders

Order

Accounts Receivable

Warehouse

OrderConfirmation

OrderConfirmation Shipping

OrderConfirmation

Payment

Ship

Ship

Figure 14 Seller ProcessComponent : internal composition

In the header above, the externally observable structure and choreography have been
defined, without revealing any internal details of the Seller ProcessComponent.

When des igning a system, that will play the Seller role in a BuySell CommunityProcess, the
Seller ProcessComponent will have to be further specified, and its complexity decomposed in
smaller units – and recursively – until the resulting ProcessComponent can be directly
mapped or implemented to non-CCA artifacts.

The internal de-composition of the Seller ProcessComponent, must comply with the
externally observable choreography. If it complies, the Seller may play the role in the BuySell
Community Process – and others using the Seller ProcessComponent definition –
independently of how the Seller ProcessComponent has been internally defined.

In our example, the Seller ProcessComponent is internally composed by using
QuoteCalculator, Seller_Order, Warehouse and AccountsReceivablel components.

ad/2001-08-20 – UML for EDOC Part II

A-18 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

The Sell ProtocolPort is rendered expanded, displaying the ProtocolPort of the Sales
Protocol, as sub-Port of the Sell ProtocolPort.

The individual sub-ProtocolPort of Sell are delegated or initiated to/from port of sub-
component of Seller.

The usage of QuoteCalculator responds to and handles the Quote sub-port of Sell. The
QuoteCalculator ProcessComponent has a ProtocolPort using the QuoteBT Protocol, and is
therefore compatible for direct delegation from the Quote sub-port of Sell.

Similarly, the Seller_Orders component usage responds to and handles the Order sub-Port of
Sell. In addition, the Seller_Orders ProcessComponent has an additional OrderConfirmation
outgoing flow, connected to the Warehouse and AccountsReceivable component usages.
When Seller_Orders responds an OrderConfirmation, the same OrderConfirmation will be
sent to Warehouse and AccountsReceivable.

The Warehouse component usage responds to the OrderConfirmation from the
Seller_Orders component, and initiates the interactions of the ShipBT Protocol, forwarded
through the Ship ProtocolPort of the container Seller ProcessComponent. After, the
Warehouse component initiates the interactions of the ShippingNoticeBT Protocol, through
the ShippingNotice sub-Port of Sell.

The AccountsReceivable component usage receives OrderConfirmation from Seller_Orders,
and responds to and handles the PaymentNotice sub-port of Sell.

3.4.4 QuoteCalculator ProcessComponent

The QuoteCalculator ProcessComponent has the structure as shown in its component usage
in the Seller internal compositions.

QuoteCalculator has a single ProtocolPort responding to the QuoteBT Protocol.

The chorography of QuoteCalculator corresponds to the choreography of the QuoteBT
Protocol.

3.4.5 Seller_Orders ProcessComponent

Seller_Orders

Order
OrderConfirmation

<<initiates>>
OrderConfirmation

<<responds>> Order

Failure

Success

[OrderDenied]

[OrderConfirmation]

Figure 15 Seller_Orders ProcessComponent structure and choreography

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II A-19

Seller_Orders ProcessComponent responds to interactions of the OrderBT Protocol through
the Order ProtocolPort.

The Seller_Orders ProcessComponent has an additional OrderConfirmation outgoing flow.
When Seller_Orders responds an OrderConfirmation, the same OrderConfirmation will be
sent also through the FlowPort.

3.4.6 Warehouse ProcessComponent

Warehouse

OrderConfirmation Shipping

Ship

<<initiates>> Ship

<<responds>>
OrderConfirmation

<<initiates>> Shipping

Figure 16 Warehouse ProcessComponent structure and choreography

The Warehouse ProcessComponent receives an OrderConfirmation flow, and initiates the
interactions of the ShipBT Protocol, through the Ship ProtocolPort. After, the Warehouse
component initiates the interactions of the ShippingNoticeBT Protocol, through the
ShippingNotice Port.

3.4.7 AccountsReceivable ProcessComponent

Accounts Receivable

OrderConfirmation

Payment

<<responds>> Payment

<<responds>>
OrderConfirmation

Figure 17 AccountsReceivable ProcessComponent structure and choreography

ad/2001-08-20 – UML for EDOC Part II

A-20 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

The AccountsReceivable ProcessComponent receives an OrderConfirmation, and responds
to the PaymentNoticeBT Protocol through the Payment ProtocolPort.

3.4.8 Logistics ProcessComponent

Logistics

ShipDelivery

<<initiates>> Delivery

<<responds>> Ship

Figure 18 Logistics ProcessComponent structure and choreography

Logistics ProcessComponent is used in the BuySell CommunityProcess, as
ComponentUsage of the same name.

Logistics has two ProtocolPort named Ship and Delivery.

The Logistics responds to interactions through the Ship ProtocolPort according to the
ShipBT Protocol. The Delivery ProtocolPort initiates interactions of the DeliveryBT Protocol.

The activities of the Logistics ProcessComponent will begin by responding and fully
performing the interactions through the Ship Port, according to the used ShipBT Protocol.

After this the Logistics ProcessComponent will initiate and fully perform the interactions
through the Delivery ProtocolPort.

The Logistics ProcessComponent integrates the ShipBT and DeliveryBT Protocols, by
safely synthesizing them in a sequence, where the ShipBT Protocol is fully exercised and
completed, before starting the DeliveryBT Protocol.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II B-1

Annex B – The Meeting Room Example

Contents

List of Figures 2
3.5 Introduction ..3

3.5.1 Description 3
3.5.2 Assumptions 3

3.6 Enterprise Viewpoint Specification..4
3.6.1 Community Structure 4
3.6.2 Objectives of each Community 5
3.6.3 The Project Working Community 5
3.6.4 The Administration Community 10

3.7 Information Viewpoint...13
3.7.1 Server-Side Information View 13
3.7.2 Client-Side Information View 14

3.8 Computational Viewpoint..15
3.8.1 Overview 16
3.8.2 Identified set of Legacy Wrapper Service Components 16
3.8.3 Identified set of Entity Components 17
3.8.4 Identified set of Computational Components 20
3.8.5 Protocol Specification 25
3.8.6 Component Collaboration 29

3.9 Engineering Viewpoint Specification...29
3.10 Technology Viewpoint Specification...30

3.10.1 Client-Side Components (Java models) 30
3.10.2 Server-Side Components (EJB models) 32

ad/2001-08-20 – UML for EDOC Part II

B-2 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

List of Figures

Figure 19: Organization Community...4
Figure 20: Communities, Enterprise Objects, and Roles ...5
Figure 21: Project Working Community Use Case View...7
Figure 22: “Plan and arrange meeting” process...8
Figure 23: “Plan meeting” sub process details ...8
Figure 24: “Arrange meeting” sub process details ..9
Figure 25: “Check requirements” activity details ...9
Figure 26: “Reserve chosen resources” activity details ...9
Figure 27: “Check requirements” activity specification..10
Figure 28: “Reserve chosen resources” activity specification..10
Figure 29: “Respond to meeting invitation” activity specification...10
Figure 30: Administration Community Use Case View...11
Figure 31: “Administrate resources” process ..12
Figure 32: “Remove meeting resource” activity specification...13
Figure 33: Server-Side Information View...13
Figure 34: Server-Side Composition View...14
Figure 35: Client-Side Information View..15
Figure 36: Component Structure Overview...16
Figure 37: Organization Service Component Structure ...17
Figure 38: Email Service Component Structure ..17
Figure 39: Authorization Service Component Structure ...17
Figure 40: Reservation Entity Component Entity View...18
Figure 41: Reservation Entity Component Structure...18
Figure 42: ReservationRemote Interface Structure ..18
Figure 43: Resource Entity Component Entity View...19
Figure 44: Resource Entity Component Structure ...19
Figure 45: ResourceRemote Interface Structure...20
Figure 46: Meeting Reservation Tool Component Structure ...21
Figure 47: Meeting Reservation Service Component Structure ..22
Figure 48: Meeting Response Tool Component Structure...22
Figure 49: Meeting Response Service Component Structure ..23
Figure 50: Resource Administration Tool Component Structure ..24
Figure 51: Resource Administration Service Component Structure ...24
Figure 52: Reservation Manager Component Structure ...25
Figure 53: Resource Manager Component Structure ..25
Figure 54: Meeting Invitation Protocol...26
Figure 55: Meeting Invitation Business Transaction Protocol Structure ..26
Figure 56: Meeting Invitation Business Transaction Protocol Choreography...27
Figure 57: Meeting Reservation Protocol...27
Figure 58: Meeting Reservation Business Transaction Protocol Structure ..28
Figure 59: Reservation Management Protocol...28
Figure 60: Reservation Management System Transaction Protocol Structure ...29
Figure 61: CCA Component Collaboration Model...29
Figure 62: Meeting Reservation Tool and Service Implementation..31
Figure 63: Meeting Response Tool and Service Implementation..31
Figure 64: Resource Administration Tool and Service Implementation...32
Figure 65: Reservation Manager Implementation..32
Figure 66: Resource Manager Implementation...33
Figure 67: Reservation Entity Implementation ...34
Figure 68: Resource Entity Implementation..35

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II B-3

3.5 Introduction

This annex describes and specifies a Meeting Reservation System (MRS) in terms of the
UML Profile for EDOC. The ISO RM-ODP framework (The Enterprise, Information,
Computational, Engineering and Technology Viewpoint) is used to structure the MRS
specification.

The model for the Meeting Reservation System comes from the COMBINE (COMponent-
Based Interoperable Enterprise system development) project, where it function as the small-
grained pilot for proving the COMBINE concepts.

The overall goal of COMBINE (ESPRIT project no. IST-1999-20893) is to support model-
driven development of enterprise systems - using components. This requires further
development of methods, infrastructures and tools as well as business solutions for
modeling, designing, deploying, testing and running components successfully in an
enterprise-wide scale. The UML profile for EDOC will form a baseline for the COMBINE
project.

3.5.1 Description

The Meeting Reservation System is a system for allocation of resources (e.g. rooms and
equipment) within specified time-slots and requesting participants for meetings or similar.
Resources are defined as being any kind of resource with a set of properties related to it.
Persons invited to the meeting should be automatically notified and requested for response.

• The reservation system should be able to present a list of reservation suggestions
based on the requirements set by the organizer. Typical kinds of organizer
requirements are: time period, duration, equipment, room capacity, equipment
capacity and required participants.

• Notifications should provide efficient feedback to participants and it should be
very simple to respond to them.

• The system should help the users making the mo st appropriate reservation by
making suggestions based on input from the user as well as relevant information
that is available. (E.g. suggest meeting room(s) nearby the requesting user, make
suggestion based on room properties (number of sites, room equipment etc), check
schedule of required participants and give intelligent suggestions and feedback to
the user, suggest additional equipment if appropriate (e.g. extension lead,
appropriate plugs (e.g. for power supply when there is an international meeting)).

3.5.2 Assumptions

The Meeting Reservation System modeled in this context are based on the following
assumptions:

• Availability of an organization structure and information system with employee
information.

• Meeting invitations are sent via e-mail (asynchronous).

ad/2001-08-20 – UML for EDOC Part II

B-4 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

• Allocation of resources is transacted on the server-side of the system
(synchronous).

• The usage of the system is assumed to be internal within one organization
structure. However, the models described, can be applied to virtual and/or
collaborating organization structures.

3.6 Enterprise Viewpoint Specification

In the Enterprise Viewpoint Specification, we structure communities for the Meeting
Reservation System. This includes describing the general structure of the communities, their
enterprise objects, roles, the objectives of those roles, and the enterprise processes involved
in accomplishing those objectives.

3.6.1 Community Structure

Figure 19 shows the community structure for the Meeting Reservation System. The top-level
community that this system is targeted at is an Organization community. An organization
can consist of several interacting departmental communities. Two sub communities of
interest for the Meeting Reservation System are: The Project working community in which
we find the end-users of the system, and the Administration community in which we find the
system operators responsible for running and administrating the system.

Organization Community

Project Working Community

Administration Community

Figure 19: Organization Community

Figure 20 shows a “rich picture” describing the relationship among communities, roles in
communities and objects performing those roles. (This is an ad-hoc UML diagram, where
classes are used to represent objects and actors are used to represent roles. A role is
performed by an object, which is shown using a dependency from an actor to a class.)

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II B-5

Organization Community

Organization Information System

Project Working Community

Administration Community

Email Information System

Organization Server

Email Server

Employee

Project Worker

Operator

Manager

Equipment

Room

Resource

Attendee

Authorization System

Authorization Server

Resource Administrator

*

Meeting Organizer

Meeting Resource

Meeting Attendee

1 * 1

Figure 20: Communities, Enterprise Objects, and Roles

3.6.2 Objectives of each Community

The objectives of each community are shown below:

• The Project Working Community is responsible for accomplishing project activities,
and is a sub community of the Organization Community.

• The Administration Community is responsible for supporting the other sub
communities of the Organization Community.

3.6.3 The Project Working Community

The end-users of the Meeting Reservation System are primarily found in the Project
Working Community.

3.6.3.1 Scope

There are many activities involved regarding the life cycle of a research or a development
project. The system described here is restricted to a few supporting activities, namely:

• Planning project/research meetings

ad/2001-08-20 – UML for EDOC Part II

B-6 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

• Arranging and holding project/research meetings.

3.6.3.2 Enterprise Objects

Enterprise objects participating in this community and performing those roles described
below are the following:

• Manager::Employee

• Project Worker::Employee

• Attendee::Resource

• Room::Resource

• Equipment::Resource

• Organization Server (existing system)

• Email Server (existing system)

• Authorization Server (existing system)

3.6.3.3 Roles

Figure 21 shows a use case diagram for the roles (actors) in the Project Working Community
with regards to the Meeting Reservation System.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II B-7

Meeting Reservation System

Meeting Organizer

Meeting Attendee

Email Information System

Organization Information System

Authorization System

Make Meeting Reservation

Change Meeting Reservation

Cancel Meeting Reservation

Send Meeting Information

Respond to Meeting Invitiation

Change Meeting Acknowledgement

View Meeting Schedule

View Resource Calendar

Login

Meeting Resource

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

Figure 21: Project Working Community Use Case View

Detailed roles required for this community to function are the followings:

• Meeting Organizer (performed by ::Employee)

• Meeting Attendee (performed by ::Employee)

• Meeting Resource (performed by ::Resource)

• Organization Information System (performed by Organization Server)

• Email Information System (performed by Email Server)

• Authorization System (performed by Authorization Server)

3.6.3.4 Policies

Here are some policies (constraints) placed on various roles. Note that more constraints,
such as pre-conditions, are described in Process section below.

• A Meeting Resource role of type Attendee must have an associated Employee
object.

• The Organization Information System must have all Meeting Resource roles of type
Attendee registered.

ad/2001-08-20 – UML for EDOC Part II

B-8 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

3.6.3.5 Processes

The processes for this community are described in terms of the Business Process Profile and
corresponding EDOC notation.

Figure 22 shows a high-level diagram that describes the main process from the planning of a
meeting until it is cancelled or is held. This process is further elaborated below in detailed
diagrams for the two sub processes.

Plan and arrange
meeting

Plan meeting

Arrange
meeting

Meeting
organizer

Meeting
attendee

Reservati
on server

Figure 22: “Plan and arrange meeting” process

Figure 23 shows the details for the “Plan meeting” sub process.

Plan meeting
arrange

select time

allocate
resources

Invite people

Write meeting
agenda

Meeting
reservation
requirements

Figure 23: “Plan meeting” sub process details

Figure 24 shows the details for the “Arrange meeting” sub process. This sub process
consists of several activities, some of which are described in own diagrams below.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II B-9

Arrange
meeting

check
requirements

choose & verify
schedule

Invite people

Check
responses

Plan meeting

schedule
suggestions

browse
suggestions

schedule
suggestions

reserve chosen
resource

Invitation
response

{Too many declines}

cancel
meeting

hold meeting

free resources

Figure 24: “Arrange meeting” sub process details

Figure 25 shows the details for the “Check requirements” activity.

check
requirements

get res.
requirements

check resource
shced

create res.
suggestion

get list of
resources

Meeting
schedule
suggestions

{meeting
reservation
requirements
must be filled
out properly}

get resource
calendar

resource
calendarsresource

lists

Figure 25: “Check requirements” activity details

Figure 26 shows the details for the “Reserve chosen resources” activity.

Reserve
resources

Parse meeting
suggestion create res.

event list

{One legal
meeting
schedule
suggestion
chosen}

reserve
resources

res.
events

Time

resources

Meeting
reservati
on Mgr

Reserve
Resource
s

Figure 26: “Reserve chosen resources” activity details

ad/2001-08-20 – UML for EDOC Part II

B-10 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

3.6.3.6 Activity Specification

The activity specifications for this community are described using the Business Process
Profile. The activities are derived from the process diagrams presented above.

Figure 27 shows the activity specification for the “Check requirements” activity.

<<Activity>>
Check requirements

<<ActivityPreCondition>>
meeting reservation requirements received

<<ActivityPostCondition>>
meeting schedule suggestions created

<<CompositeData>>
ReservationRequirements

<<EntityRole>>
Meeting Reservation System

<<ProcessComponent>>
MeetingReservationService

<<Performer>> <<Artifact>> <<ResponsibleParty>>

Figure 27: “Check requirements” activity specification

Figure 28 shows the activity specification for the “Reserve chosen resources” activity.

<<Activity>>
Reserve chosen resources

<<ActivityPreCondition>>
chosen valid meeting schedule suggestion

<<ActivityPostCondition>>
all selected resources allocated

<<EntityRole>>
Meeting Reservation System

<<CompositeData>>
ReservationSuggestion

<<ProcessComponent>>
MeetingReservationService

<<Artifact>><<Performer>> <<ResponsibleParty>>

Figure 28: “Reserve chosen resources” activity specification

Figure 29 shows the activity specification for the “Respond to meeting invitation” activity.

<<Activity>>
Respond to meeting invitation

<<ActivityPreCondition>>
meeting invitation created and delivered

<<ActivityPostCondition>>
attendee meeting status updated and response stored

<<EntityRole>>
Meeting attendee

<<CompositeData>>
MeetingInvitationMessage

<<ProcessComponent>>
MeetingResponseTool

<<Artifact>><<Performer>> <<ResponsibleParty>>

Figure 29: “Respond to meeting invitation” activity specification

3.6.4 The Administration Community

The administration community is responsible for the operations and maintenance
information systems supporting the project working community.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II B-11

3.6.4.1 Scope

The scope of the administration community described in this context is restricted to the
operations and maintenance of the Meeting Reservation System.

3.6.4.2 Enterprise Objects

The enterprise objects participating in this community and performing the roles described
below are the following:

• Operator::Employee

• Attendee::Resource

• Room::Resource

• Equipment::Resource

• Organization Server (existing system)

• Email Server (existing system)

• Authorization Server (existing system)

3.6.4.3 Roles

Figure 30 shows a use case model for the roles (actors) in the Administration community
with regards to the Meeting Reservation System.

Meeting Reservation System

Resource Administrator

Organization Information System

Email Information System

Authorization System

Create Resource

Remove Resource

Modify Resource

Handle Existing Reservation Conflicts

Send Reservation Conflict Information

Meeting Resource

Login

<<include>>

<<extend>>

<<extend>>

Figure 30: Administration Community Use Case View

Detailed roles required for this community to function are the followings:

ad/2001-08-20 – UML for EDOC Part II

B-12 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

• Resource Administrator (performed by Operator::Employee)

• Meeting Resource (performed by ::Resource)

• Organization Information System (performed by Organization Server)

• Email Information System (performed by Email Server)

• Authorization System (performed by Authorization Server)

3.6.4.4 Policies

Here are some policies (constraints) placed on various roles. Note that more constraints,
such as pre-conditions, are described in the process section below.

• A Meeting Resource role of type Room or Equipment must have an associated real-
life, physical object.

3.6.4.5 Processes

The processes for this community are described in terms of the Business Process Profile and
corresponding EDOC notation.

Figure 31 shows a high-level diagram that describes the main process of resource
administration.

Administrate
resources

Meeting
resource
changes

handle res.
conflicts

Remove meeting
resource

Adm phys.
resources

Register new
resources

Discard existing
resources

Maintenance of
existing resources

register meeting
resource

Modify meeting
resource

Figure 31: “Administrate resources” process

The remaining process details of the administration community are not described here.

3.6.4.6 Activity Specification

The activity specifications for this community are described using the Business Process
Profile. The activities are derived from the process diagrams presented above.

Figure 32 shows the activity specification for the “Remove meeting resource” activity.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II B-13

<<Activity>>
Remove meeting resource

<<ActivityPreCondition>>
resource id exists

<<ActivityPostCondition>>
resource removed and conflicts notified organizer

<<ProcessComponent>>
ResourceAdministrationTool

<<EntityRole>>
Resource administrator

<<ResponsibleParty>><<Performer>>

Figure 32: “Remove meeting resource” activity specification

3.7 Information Viewpoint

The information viewpoint describes the information context of the Meeting Reservation
System using the Entity and Relationship Profile.

3.7.1 Server-Side Information View

Figure 33 shows the server-side information view that describes the information context
represented on the server tier.

<<EntityData>>
Reservation <<EntityData>>

Resource

<<EntityData>>
Calendar

<<EntityData>>
PropertyList

<<EntityData>>
ResourceRelation

<<CompositeData>>
ReservationRequirements

<<EntityData>>
ResourceType

<<CompositeData>>
ReservationSuggestion

<<CompositeData>>
ResourceProperties

properties : undefined1

endTime : undefined

organizer : undefined
startTime : undefined

duration : undefined

*calendar
properties 1

parent

description : undefined

resourceAttendances : undefined
resourceResponses : undefined

0..1

id : string

reason : string
startTime : undefined
endTime : undefined

events

resources

*

name : string
id : string

organizer

1

relations

*
*

subresources

1

endTime : undefined
startTime : undefined

resourceAttendances : undefined
resourceObjects : undefined

attendance : undefined
actualReference : boolean
actualResource : undefined
resourceType : undefined
resourceProperties : undefined

* resources

type : undefined

type

1

Figure 33: Server-Side Information View

Each of the information profile types are described in more detail below:

• Reservation represents the allocation of a set of resources for a specific time frame. A
Reservation has a resources role of type ResourceRelation and an organizer role of
type Resource.

ad/2001-08-20 – UML for EDOC Part II

B-14 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

• ResourceRelation has a relations role of type Resource that represents the set of
allocated resources. A ResourceRelation also has information about resource
attendances and responses.

• Resource represents the target for reservations. A Resource has a Calendar that
contains the set of reservations it participates in. A Resource can have
subresources role and a parent role of type Resource describing the recursive
structure of a resource. A Resource has properties defined in a PropertyList and a
type defined in a ResourceType.

• Calendar represents a plan for resources. A Calendar defines a set of events of type
Reservation.

• PropertyList represents a set of defined properties for a resource.

• ResourceType represents the resource type (e.g. attendee, room, equipment).

• ReservationRequirements is a composite data element representing a composed
requirement specification for a reservation. It contains a set of ResourceProperties.

• ResourceProperties control required settings a reservation. ResourceProperties can
be used to refer to an actual resource or describe the properties of a suggested
resource.

• ReservationSuggestion represents the suggested resources for a reservation.

Figure 34 describes the two entity components derived from the information view.

ReservationComposition

ResourceComposition

<<EntityData>>
Reservation

<<EntityData>>
ResourceRelation <<EntityData>>

Resource

<<EntityData>>
Calendar

<<EntityData>>
PropertyList

<<EntityData>>
ResourceType

Figure 34: Server-Side Composition View

The entities corresponding to the ReservationComposition and ResourceComposition are
further elaborated in the Computational Viewpoint.

3.7.2 Client-Side Information View

Figure 35 shows the client-side information view that describes the information context on
the client tier. The server-side information view typically supports a more generic
information model, while the client-side information view represents a local view, possibly
augmented with information objects necessary to support business logic near the client tier.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II B-15

<<EntityData>>
MeetingReservation <<EntityData>>

Resource

<<EntityData>>
Calendar

<<EntityData>>
ResourceRelation

<<CompositeData>>
ReservationRequirements

<<CompositeData>>
ReservationSuggestion

<<CompositeData>>
ResourceProperties

<<CompositeData>>
MeetingInvitationMessage

<<Entity>>
Equipment

<<Entity>>
Room

<<Entity>>
Attendee

resourceAttendances : undefined 1events *

*calendar endTime : undefined

organizer : undefined
startTime : undefined

duration : undefined

reason : string
startTime : undefined
endTime : undefined

resourceResponses : undefined

*

relations

role : undefined
email : undefined

organizer

1

description : string
responseURL : string

description : undefined
id : string

resources 0..1

name : string
id : string

capacity : undefined category : undefined

has

*

attendance : undefined
actualReference : boolean
actualResource : undefined
resourceType : undefined
resourceProperties : undefined

* resources

endTime : undefined
startTime : undefined

resourceAttendances : undefined
resourceObjects : undefined

Figure 35: Client-Side Information View

Each of the information profile types are described in more detail below:

• MeetingReservation represents the local view of a reservation.

• Attendee represents the local view of a resource, with defined properties, of type
“Attendee”.

• Room represents the local view of a resource, with defined properties, of type
“Room”.

• Equipment represents the local view of a resource, with defined properties, of type
“Equipment”.

• MeetingInvitationMessage is a composite data element that is sent (via e-mail) to
every invited attendee containing an URL that is used to start a meeting response
tool.

The remaining information elements are as described for the server-side information view.

No compositions are described on the client-side since the entity data are to be interpreted
as object by value data controlled in a local, client workspace session

3.8 Computational Viewpoint

The Computation Viewpoint is mainly described using the Component Collaboration
Architecture (CCA) profile. In the Computational Viewpoint Specification, Computational
Objects are derived and presented as CCA Process Components. Port specification as
interface specifications for comp utational object, and Protocol specification as interaction
specifications between computational objects are described.

ad/2001-08-20 – UML for EDOC Part II

B-16 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

3.8.1 Overview

Figure 36 shows an overview of the component structure model, which describes the
relationships between the Tool, Service, and Manager component types used to model the
Meeting Reservation System.

OrganisationServiceComponent
<<ProcessComponent>>

OrgUnitServi
ce

EmailServiceComponent
<<ProcessComponent>>

AuthorisationServiceComponent
<<ProcessComponent>>

EmailServic
e

Authorisatio
nService

MeetingReservationToolComponent
<<ProcessComponent>>

MeetingReservationServiceComponent
<<ProcessComponent>>

IMeetingRes
ervation

IMeetingInvit
ation

IMeetingRetr
ieval

IResourcew
Retrieval

MeetingResponseToolComponen
t

<<ProcessComponent>>

MeetingResponseServiceComponent
<<ProcessComponent>>

IMeetingRes
ponse

IMeetingRetr
ieval

ResourceAdministrationToolComponent
<<ProcessComponent>>

ResourceAdministrationServiceComponent
<<ProcessComponent>>

IResourceAd
minsitration

IResourceR
etrieval

ReservationManagerComponent
<<ProcessComponent>>

IReservation
Management

HomeManag
ement

ResourceManagerComponent
<<ProcessComponent>>

IResourceM
anagement

HomeManag
ement

Figure 36: Component Structure Overview

3.8.2 Identified set of Legacy Wrapper Service Components

The Organization Community contained three existing systems (Organization, Email, and
Authorization server) that we can view as “classical” services having interfaces, which
exposes their usage. In order for the Meeting Reservation System to be able to interact with
each of these services, wrapper process components are needed:

• OrganizationServiceComponent of type ProcessComponent

• EmailServiceComponent of type ProcessComponent

• AuthorizationServiceComponent of type ProcessComponent

Each of these components is elaborated in diagrams below. The wrapper process
components defined below can be replaced by the actual server systems if they provide the
interfaces described.

Figure 37 shows the component structure for the organization service component.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II B-17

<<ProcessComponent>>
OrganizationServiceComponent

<<ProtocolPort>>
EnqOrgUnit

<<Interface>>
OrgUnitService

<<comment>>
This interface can be designed e.g. using the
javax.naming.ldap API.

<<responds>>

Figure 37: Organization Service Component Structure

Figure 38 shows the component structure for the email service component.

<<ProcessComponent>>
EmailServiceComponent

<<ProtocolPort>>
SendMail

<<Interface>>
EmailService

<<comment>>
This interface can be designed e.g. using the
javax.mail API.

<<responds>>

Figure 38: Email Service Component Structure

Figure 39 shows the component structure for the authorization service component.

<<ProcessComponent>>
AuthorizationServiceComponent

<<ProtocolPort>>
CheckAuthorization

<<Interface>>
AuthorizationService

<<comment>>
This interface can be designed e.g. using the
javax.naming.ldap API.

<<responds>>

Figure 39: Authorization Service Component Structure

3.8.3 Identified set of Entity Components

In the Information Viewpoint we defined two entity compositions (ReservationComposition
and ResourceComposition) that we now map onto corresponding entity components:

• ReservationComponent of type Entity

• ResourceComponent of type Entity

3.8.3.1 Reservation Component

Figure 40 shows the entity view for the reservation entity component.

ad/2001-08-20 – UML for EDOC Part II

B-18 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

<<Key>>
ReservationKey

<<Entity>>
ReservationComponent

<<KeyAttribute>>
id<<EntityData>>

Reservation
<<EntityData>>

ResourceRelation

<<ForeignKey>>
ResourceKey

1 1

1 1

1

1 1

1

1

*

Figure 40: Reservation Entity Component Entity View

Figure 41 shows the component structure for the reservation entity component.

<<Entity>>
ReservationComponent

<<ProtocolPort>>
ReservationRemoteManagement

<<ProtocolPort>>
ReservationHomeManagement

<<Interface>>
ReservationHome

<<Interface>>
ReservationRemote

<<responds>> <<responds>>

Figure 41: Reservation Entity Component Structure

Figure 42 shows the protocol structure for the ReservationRemote interface (protocol)
describing the operations defined.

<<Interface>>
ReservationRemote

+getResources():ResourceRelation
+getKey():ReservationKey
+addResource(Inout key:ResourceKey ,Inout attendance:string):boolean
+getDescription():string
+getEndTime():Date
+getOrganizer():ResourceKey
+getReason():string
+getResourcesByAttendance(Inout attendance:string): [*] ResourceKey
+getResourcesByResponse(Inout response:string): [*] ResourceKey
+getStartTime():Date
+removeResource(Inout key:ResourceKey):boolean
+setDescription(Inout newDescription:string)
+setEndTime(Inout newEndTime:Date):boolean
+setOrganizer(Inout newOrganizer:ResourceKey):boolean
+setReason(Inout newReason:string)
+setResources(Inout newResources:ResourceRelation):boolean
+setStartTime(Inout newStartTime:Date):boolean

Figure 42: ReservationRemote Interface Structure

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II B-19

3.8.3.2 Resource Component

Figure 43 shows the entity view for the resource entity component.

<<Entity>>
ResourceComponent

<<Key>>
ResourceKey

<<KeyAttribute>>
id

<<ForeignKey>>
ReservationKey

<<EntityData>>
Resource

<<EntityData>>
PropertyList

<<EntityData>>
Calendar

<<EntityData>>
ResourceType

<<ForeignKey>>
ResourceRelationKey

1

1

1

1

1

1

1

11

subresources *

parent 0..1

1

1

*

1

1

1

1

Figure 43: Resource Entity Component Entity View

Figure 44 shows the component structure for the resource entity component.

<<Entity>>
ResourceComponent

<<ProtocolPort>>
ResourceRemoteManagement

<<ProtocolPort>>
ResourceHomeManagement

<<Interface>>
ResourceHome

<<Interface>>
ResourceRemote

<<responds>> <<responds>>

Figure 44: Resource Entity Component Structure

Figure 45 shows the protocol structure for the ResourceRemote interface (protocol)
describing the operations defined.

ad/2001-08-20 – UML for EDOC Part II

B-20 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

<<Interface>>
ResourceRemote

+getName():string
+getParent():ResourceKey
+setName(Inout newValue:string):boolean
+getKey():ResourceKey
+getType():ResourceType
+getProperties():PropertyList
+setProperties(Inout newProperties:PropertyList):boolean
+isAvailable(Inout from:Date ,Inout to:Date):boolean
+addEvent(Inout event:ReservationKey):boolean
+addProperty(Inout key:string ,Inout value:Object):boolean
+addSubresource(Inout key:ResourceKey):boolean
+getCalendar():Calendar
+getEvents(Inout sDate:Date ,Inout eDate:Date): [*] ReservationKey
+getEvents(): [*] ReservationKey
+getSubresources(): [*] ResourceKey
+removeEvent(Inout event:ReservationKey):boolean
+removeProperty(Inout key:string):boolean
+removeSubresource(Inout key:ResourceKey):boolean
+setCalendar(Inout newCalendar:Calendar):boolean
+setParent(Inout newParent:ResourceKey):boolean
+setType(Inout newValue:ResourceType):boolean

Figure 45: ResourceRemote Interface Structure

3.8.4 Identified set of Computational Components

Other computational objects that are derived from the Enterprise Viewpoint specification and
Information Viewpoint specification are (all of type ProcessComponent):

• MeetingReservationToolComponent: A component that represents the client
application used for booking meetings.

• MeetingReservationServiceComponent: A client-side component that is used by
the MeetingReservationTool.

• MeetingResponseToolComponent: A component that represents the client
application used for responding to meeting invitations.

• MeetingResponseServiceComponent: A client-side component that is used by the
MeetingResponseTool.

• ResourceAdministrationToolComponent: A component that represents the client
application used for administrating resources.

• ResourceAdministrationServiceComponent: A client-side component that is used
by the ResourceAdministrationTool.

• ReservationManagerComponent: A server-side component that manages
reservations.

• ResourceManagerComponent: A server-side component that manages resources.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II B-21

The specifications of the tool, service and manager components are elaborated below. The
specification are structured according to a four tier architecture. The tool and service
components are client-side components. The manager and entity components are server-
side components. Interaction between the client and server side is enforced using only the
service components.

3.8.4.1 Meeting Reservation Tool Component

Figure 46 shows the component structure for the meeting reservation tool component.

<<ProcessComponent>>
MeetingReservationToolComponent

<<Protocol>>
MeetingInvitationBT

<<ProtocolPort>>
IMeetingInvitation

<<ProtocolPort>>
IMeetingRetrieval

<<ProtocolPort>>
IMeetingReservation

<<ProtocolPort>>
IResourceRetrieval

<<Protocol>>
MeetingRetrievalBT

<<Protocol>>
MeetingReservationBT

<<Protocol>>
ResourceRetrievalBT

<<Interface>>
AuthorizationService

<<ProtocolPort>>
CheckAuthorization

<<initiates>>
<<initiates>> <<initiates>>

<<initiates>>

<<initiates>>

Figure 46: Meeting Reservation Tool Component Structure

3.8.4.2 Meeting Reservation Service Component

Figure 47 shows the component structure for the meeting reservation service component.

ad/2001-08-20 – UML for EDOC Part II

B-22 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

<<ProcessComponent>>
MeetingReservationServiceComponent

<<Protocol>>
MeetingInvitationBT

<<ProtocolPort>>
IMeetingInvitation

<<ProtocolPort>>
IMeetingRetrieval

<<ProtocolPort>>
IMeetingReservation

<<ProtocolPort>>
IResourceRetrieval

<<Protocol>>
MeetingRetrievalBT

<<Protocol>>
MeetingReservationBT

<<Protocol>>
ResourceRetrievalBT

<<Protocol>>
ReservationManagementST

<<Protocol>>
ResourceManagementST

<<ProtocolPort>>
IReservationManagement

<<ProtocolPort>>
IResourceManagement

<<ProtocolPort>>
SendMail

<<Interface>>
EmailService

<<initiates>>

<<responds>>

<<initiates>>

<<responds>> <<responds>>

<<initiates>>

<<responds>>

Figure 47: Meeting Reservation Service Component Structure

3.8.4.3 Meeting Response Tool Component

Figure 48 shows the component structure for the meeting response tool component.

<<ProcessComponent>>
MeetingResponseToolComponent

<<ProtocolPort>>
IMeetingRetrieval

<<ProtocolPort>>
IMeetingResponse

<<Protocol>>
MeetingRetrievalBT

<<Protocol>>
MeetingResponseBT

<<initiates>> <<initiates>>

Figure 48: Meeting Response Tool Component Structure

3.8.4.4 Meeting Response Service Component

Figure 49 shows the component structure the meeting response service component.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II B-23

<<ProtocolPort>>
IMeetingResponse

<<ProcessComponent>>
MeetingResponseServiceComponent

<<ProtocolPort>>
IMeetingRetrieval

<<Protocol>>
MeetingRetrievalBT

<<Protocol>>
MeetingResponseBT

<<ProtocolPort>>
IReservationManagement

<<Protocol>>
ReservationManagementST

<<responds>>
<<responds>>

<<initiates>>

Figure 49: Meeting Response Service Component Structure

3.8.4.5 Resource Administration Tool Component

Figure 50 shows the component structure for the resource administration tool component.

<<ProtocolPort>>
IResourceAdministration

<<ProcessComponent>>
ResourceAdministrationToolComponent

<<Protocol>>
ResourceRetrievalBT

<<ProtocolPort>>
IResourceRetrieval

<<Protocol>>
ResourceAdministrationBT

<<Interface>>
AuthorizationService

<<ProtocolPort>>
CheckAuthorization

<<initiates>> <<initiates>>

<<initiates>>

ad/2001-08-20 – UML for EDOC Part II

B-24 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

Figure 50: Resource Administration Tool Component Structure

3.8.4.6 Resource Administration Service Component

Figure 51 shows the component structure for the resource administration service
component.

<<ProtocolPort>>
IResourceAdministration

<<ProcessComponent>>
ResourceAdministrationServiceComponent

<<Protocol>>
ResourceRetrievalBT

<<ProtocolPort>>
IResourceRetrieval

<<Protocol>>
ResourceAdministrationBT

<<Protocol>>
ResourceManagementST

<<ProtocolPort>>
EnqOrgUnit

<<ProtocolPort>>
IResourceManagement

<<Interface>>
OrgUnitService

<<responds>> <<responds>>

<<initiates>>
<<initiates>>

Figure 51: Resource Administration Service Component Structure

3.8.4.7 Reservation Manager Component

Figure 52 shows the component structure for the reservation manager component.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II B-25

<<ProcessComponent>>
ReservationManagerComponent

<<ProtocolPort>>
HomeManagement

<<Protocol>>
ReservationManagementST <<Interface>>

ReservationManagerHome

<<ProtocolPort>>
IReservationManagement

<<Interface>>
ReservationRemote

<<ProtocolPort>>
ReservationRemoteManagement

<<ProtocolPort>>
ResourceRemoteManagement

<<Interface>>
ResourceRemote

<<responds>> <<responds>>

<<initiates>> <<initiates>>

Figure 52: Reservation Manager Component Structure

3.8.4.8 Resource Manager Component

Figure 53 shows the component structure for the resource manager component.

<<ProcessComponent>>
ResourceManagerComponent

<<ProtocolPort>>
HomeManagement

<<Protocol>>
ResourceManagementST <<Interface>>

ResourceManagerHome

<<ProtocolPort>>
IResourceManagement

<<Interface>>
ResourceRemote

<<ProtocolPort>>
ResourceRemoteManagement

<<responds>> <<responds>>

<<initiates>>

Figure 53: Resource Manager Component Structure

3.8.5 Protocol Specification

The following are partial protocol specifications for some identified business transactions
using CCA.

ad/2001-08-20 – UML for EDOC Part II

B-26 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

3.8.5.1 Meeting Invitation Protocol

Figure 54 shows an activity diagram that describes the protocol for the meeting invitation
business transaction.

getInvitation
Responses

<<FlowPort>>

SendInvitation
<<FlowPort>>

MeetingReserv
ation

<<EntityData>>

Notify
Participants

<<FlowPort>>

MeetingNotifica
tion

<<EntityData>>

getInvitationRes
ponses

<<FlowPort>>

ResponseType
<<CompositeData>>

SendMail
<<FlowPort>>

MeetingInvitationResponserMeetingInvitationRequester

Figure 54: Meeting Invitation Protocol

Figure 55 shows the protocol structure for the meeting invitation business transaction. Since
meeting invitations and responses can be sent asynchronously via e-mail, publisher and
flow ports are defined that supports this business transaction.

<<CompositeData>>
MeetingInvitationMessage

<<Publisher>>
SendInvitation

<<Protocol>>
MeetingInvitationBT

<<FlowPort>>
GetTentatived

<<FlowPort>>
GetAccepted

<<FlowPort>>
GetDeclined

<<CompositeData>>
MeetingTentativedResponseType

<<CompositeData>>
MeetingAcceptedResponseType

<<CompositeData>>
MeetingDeclinedResponseType

<<responds>>

<<responds>>

<<responds>>

<<initiates>>

Figure 55: Meeting Invitation Business Transaction Protocol Structure

Figure 56 shows the protocol choreography for the meeting invitation business transaction.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II B-27

SendInvitation

GetTentatived GetAccepted GetDeclined

<<Success>> <<BusinessFailure>>

[Attendee optional]

[Attendee required]

Figure 56: Meeting Invitation Business Transaction Protocol Choreography

3.8.5.2 Meeting Reservation Protocol

Figure 57 shows an activity diagram that describes the protocol for the meeting reservation
business transaction.

createMeeting
<<FlowPort>>

createSuggestion
List

<<FlowPort>>
Reservation

Requirements

<<EntityData>>

Reserve
Schedule

<<FlowPort>>

Reservation
<<EntityData>>

Reservation
Suggestion

<<CompositeData>>

createMeetingR
esponse

<<FlowPort>>

MeetingReservation
<<EntityData>>

createSuggestionList
Response

<<FlowPort>>

Reservation
Suggestion

<<CompositeData>>

ReserveSchedule
Response

<<FlowPort>>

MeetingReservationResponderMeetingReservationRequester

Figure 57: Meeting Reservation Protocol

Figure 58 shows the protocol structure for the meeting reservation business transaction.

ad/2001-08-20 – UML for EDOC Part II

B-28 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

<<Protocol>>
MeetingReservationBT

+createMeeting():MeetingReservation
+createSuggestionList(Inout requirements:ReservationRequirements): [*] ReservationSuggestion
+reserveSchedule(Inout meeting:MeetingReservation ,Inout suggestion:ReservationSuggestion):MeetingReservation

Figure 58: Meeting Reservation Business Transaction Protocol Structure

3.8.5.3 Reservation Management Protocol

Figure 59 shows an activity diagram that describes the protocol for the reservation
management system transaction.

Reservation
<<Entity>>

FindReservation
<<FlowPort>>

CreateReservationRequ
est

<<FlowPort>>

CreateReservation
<<FlowPort>>

ReservationKey
<<CompositeData>>

Reservation
<<Entity>>

ReservationRequirements
<<CompositeData>>

Reservation
<<Entity>>

Reservation
<<Entity>>

ReservationTransaction
AbortedException

<<CompositeData>>

FindReservat
ionResponse

<<FlowPort>>

CreateSuggestionListResp
ons

<<FlowPort>>

CreateReservationResponse
<<FlowPort>>

ReservationSuggestion
<<CompositeData>>

ReservationR
esponse

<<FlowPort>>

CreateReservationExcepti
on

<<FlowPort>>

ReservationManagerResponderReservationManagementRequester

Figure 59: Reservation Management Protocol

Figure 60 shows the protocol structure for the reservation management system transaction.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II B-29

<<Protocol>>
ReservationManagementST

+createReservation(Inout requirements:ReservationRequirements):Reservation
+createReservation(Inout suggestion:ReservationSuggestion):Reservation
+createReservation():Reservation
+createSuggestionList(Inout requirements:ReservationRequirements): [*] ReservationSuggestion
+deleteReservation(Inout reservation:Reservation)
+findReservationByPrimaryKey(Inout pk:ReservationKey):Reservation
+findReservationsAll():Enumeration
+findReservationsByOrganizer(Inout pk:ResourceKey):Enumeration

Figure 60: Reservation Management System Transaction Protocol Structure

3.8.6 Component Collaboration

Figure 61 shows a diagram describing the collaboration of some of the component specified
above.

ReservationManager
Component t

 IReservationManagement ReservationRemoteMgt

ResourceRemoteMgt

ResourceManager
Component

t

IResourceManagement ResourceRemoteMgt

MeetingReservation
ServiceComponent t

IMeetingReservation IResourceManagement

EmailServer t

SendMail

OrganizationServer t

EnqOrgUnit

IMeetingInvitation

IMeetingRetrieval

IResourceRetrieval

IReservationManagement

SendMail

Property Type Value

ResourceAdministration
ServiceComponent t

 IResourceAdministration EnqOrgUnit

IResourceManagement

Property Type Value

 IResourceRetrieval

Figure 61: CCA Component Collaboration Model

3.9 Engineering Viewpoint Specification

The table, below, provides a mapping of the component elements specified in the
Computational Viewpoint and the component elements implemented in the Technology
Viewpoint below.

Computational Viewpoint Element Technology Viewpoint Element
<<ProcessComponent>>
OrganizationServiceComponent

not described

ad/2001-08-20 – UML for EDOC Part II

B-30 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

<<ProcessComponent>>
EmailServiceComponent

not described

<<ProcessComponent>>
AuthorizationServiceComponent

not described

<<Entity>>
Reservation

<<EJBImplementation>>
ReservationBean

<<Entity>>
Resource

<<EJBImplementation>>
ResourceBean

<<ProcessComponent>>
MeetingReservationToolComponent

<<Java application>>
MeetingReservationToolComponent

<<ProcessComponent>>
MeetingReservationService

<<Java interface>>
MeetingReservationService
<<Java class>>
MeetingReservationServiceImpl

<<ProcessComponent>>
MeetingResponseToolComponent

<<Java application>>
MeetingResponseToolComponent

<<ProcessComponent>>
MeetingResponseService

<<Java interface>>
MeetingReservationService
<<Java class>>
MeetingReservationServiceImpl

<<ProcessComponent>>
ResourceAdministrationTool

<<Java application>>
ResourceAdministrationTool

<<ProcessComponent>>
ResourceAdministrationService

<<Java interface>>
ResourceAdministrationService
<<Java class>
ResourceAdministrationServiceImpl

<<ProcessComponent>>
ReservationManagerComponent

<<EJBImplementation>>
ReservationManagerBean

<<ProcessComponent>>
ResourceManagerComponent

<<EJBImplementation>>
ResourceManagerBean

Further elaboration of the engineering viewpoint is not considered here.

3.10 Technology Viewpoint Specification

The technology viewpoint specification shows the J2EE implementation models for the
components specified in the computational viewpoint.

3.10.1 Client-Side Components (Java models)

3.10.1.1 Meeting Reservation Tool and Service

Figure 62 shows the Java model for the meeting reservation tool and service components.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II B-31

MeetingReservationTool

<<interface>>
MeetingReservationService

<<interface>>
IMeetingRetrieval

<<interface>>
IMeetingReservation

<<interface>>
IMeetingInvitation

<<interface>>
IResourceRetrieval_reservationService

*

0..1

+sendInvitation(Inout message:MeetingInvitationMessage ,Inout emails [*] string)

+getReservationByPrimaryKey(Inout key:ReservationKey): [*] Reservation
+getReservations(): [*] Reservation
+getReservationsByDates(Inout sDate:Date ,Inout eDate:Date): [*] Reservation
+getReservationsByOrganizer(Inout organizer:string): [*] Reservation

+getResources(): [*] Resource
+getResourcesByName(Inout name:string): [*] Resource
+getResourcesByType(Inout type:integer): [*] Resource

+createMeeting():MeetingReservation
+createSuggestionList(Inout requirements:ReservationRequirements): [*] ReservationSuggestion
+reserveSchedule(Inout meeting:MeetingReservation ,Inout suggestion:ReservationSuggestion):MeetingReservation

Figure 62: Meeting Reservation Tool and Service Implementation

3.10.1.2 Meeting Response Tool and Service

Figure 63 shows the Java model for the meeting response tool and service components.

MeetingResponseTool

<<interface>>
MeetingResponseService

<<interface>>
IMeetingRetrieval

<<interface>>
IMeetingResponse

_responseService

*

0..1

+respondReservation(Inout reservation:Reservation ,Inout resource:Resource ,Inout response:string):Reservation

+getReservationByPrimaryKey(Inout key:ReservationKey): [*] Reservation
+getReservations(): [*] Reservation
+getReservationsByDates(Inout sDate:Date ,Inout eDate:Date): [*] Reservation
+getReservationsByOrganizer(Inout organizer:string): [*] Reservation

Figure 63: Meeting Response Tool and Service Implementation

3.10.1.3 Resource Administration Tool and Service

Figure 64 shows the Java model for the administration tool and service components.

ad/2001-08-20 – UML for EDOC Part II

B-32 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

ResourceAdministrationTool

<<interface>>
ResourceAdministrationService

<<interface>>
IResourceRetrieval

<<interface>>
IResourceAdministration

_resourceService

*

0..1

+getResources(): [*] Resource
+getResourcesByName(Inout name:string): [*] Resource
+getResourcesByType(Inout type:integer): [*] Resource

+addResource(Inout resource:Resource)
+createResource(Inout name:string ,Inout type:integer):Resource
+removeResource(Inout resource:Resource)

Figure 64: Resource Administration Tool and Service Implementation

3.10.2 Server-Side Components (EJB models)

3.10.2.1 Reservation Manager

Figure 65 shows the EJB model for the reservation manager component.

<<EJBSessionHomeInterface>>
ReservationManagerHome

<<EJBRemoteInterface>>
ReservationManager

<<EJBImplementation>>
ReservationManagerBean

<<EJBRealizeHome>>

<<EJBRealizeRemote>>

ejbActivate()
createReservation()
createReservation()
createReservation()
deleteReservation()
createSuggestionList()
ejbCreate()
ejbPassivate()
ejbRemove()
findReservationByPrimaryKey()
findReservationsAll()
findReservationsByOrganizer()
getSessionContext()
newMethod()
setSessionContext()

<<EJBCreateMethod>>
+create():ReservationManager

<<EJBRemoteMethod>>
+createReservation(Inout requirements:ReservationRequirements):Reservation

<<EJBRemoteMethod>>
+createReservation(Inout suggestion:ReservationSuggestion):Reservation

<<EJBRemoteMethod>>
+createReservation():Reservation

<<EJBRemoteMethod>>
+createSuggestionList(Inout requirements:ReservationRequirements): [*] ReservationSuggestion

<<EJBRemoteMethod>>
+deleteReservation(Inout reservation:Reservation)

<<EJBRemoteMethod>>
+findReservationByPrimaryKey(Inout pk:ReservationKey):Reservation

<<EJBRemoteMethod>>
+findReservationsAll():Enumeration

<<EJBRemoteMethod>>
+findReservationsByOrganizer(Inout pk:ResourceKey):Enumeration

Figure 65: Reservation Manager Implementation

3.10.2.2 Resource Manager

Figure 66 shows the EJB model for the resource manager component.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II B-33

<<EJBSessionHomeInterface>>
ResourceManagerHome

<<EJBRemoteInterface>>
ResourceManager

<<EJBImplementation>>
ResourceManagerBean

createResource()
deleteResource()
ejbActivate()
ejbCreate()
ejbPassivate()
ejbRemove()
findResourceByPrimaryKey()
findResourcesAll()
findResourcesByName()
findResourcesByType()
getSessionContext()
setSessionContext()

<<EJBRealizeRemote>>

<<EJBRealizeHome>>

<<EJBCreateMethod>>
+create():ResourceManager

<<EJBRemoteMethod>>
+createResource():Resource

<<EJBRemoteMethod>>
+deleteResource(Inout resource:Resource)

<<EJBRemoteMethod>>
+findResourceByPrimaryKey(Inout pk:ResourceKey):Resource

<<EJBRemoteMethod>>
+findResourcesAll():Enumeration

<<EJBRemoteMethod>>
+findResourcesByName(Inout name:string):Enumeration

<<EJBRemoteMethod>>
+findResourcesByType(Inout type:string):Enumeration

Figure 66: Resource Manager Implementation

3.10.2.3 Reservation Entity

Figure 67 shows the EJB model for the reservation entity component.

ad/2001-08-20 – UML for EDOC Part II

B-34 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

<<EJBRemoteInterface>>
Reservation

ReservationKey

<<EJBImplementation>>
ReservationBean

<<EJBEntityHomeInterface>>
ReservationHome

Date

ResourceKey

ResourceRelation

<<create>>
+ReservationKey(Inout argId:string)

<<create>>
+ReservationKey()
+hashCode():integer
+equals(Inout o:Object):boolean

<<EJBRealizeHome>>

+setResourceAttendance(Inout key:ResourceKey ,Inout attendance:string):boolean

0..1

startTime

<<EJBFinderMethod>>

+findByOrganizer(Inout pk:ResourceKey):Enumeration
<<EJBFinderMethod>>

+findByPrimaryKey(Inout key:ReservationKey):Reservation
<<EJBCreateMethod>>

+create(Inout argId:string):Reservation
<<EJBFinderMethod>>
+findAll():Enumeration

+id : string

+getResources(): [*] ResourceKey

+addResource(Inout key:ResourceKey ,Inout attendance:string):boolean
+getResourceAttendance(Inout key:ResourceKey):string
+getResourceResponse(Inout key:ResourceKey):string
+getResourcesByAttendance(Inout attendance:string): [*] ResourceKey
+getResourcesByResponses(Inout response:string): [*] ResourceKey

+removeResource(Inout key:ResourceKey):boolean

+setResourceResponse(Inout key:ResourceKey ,Inout response:string):boolean

0..1

organizer

0..1

ejbPassivate()

<<EJBRemoteMethod>>

+addResource(Inout key:ResourceKey ,Inout attendance:string):boolean
<<EJBRemoteMethod>>

+getResourcesByAttendance(Inout attendance:string): [*] ResourceKey
<<EJBRemoteMethod>>

+getResourcesByResponse(Inout response:string): [*] ResourceKey
<<EJBRemoteMethod>>

+removeResource(Inout key:ResourceKey):boolean
<<EJBRemoteMethod>>

+setDescription(Inout newDescription:string)
<<EJBRemoteMethod>>

+setEndTime(Inout newEndTime:Date):boolean
<<EJBRemoteMethod>>

+setOrganizer(Inout newOrganizer:ResourceKey):boolean
<<EJBRemoteMethod>>

+setResources(Inout newResources:ResourceRelation):boolean
<<EJBRemoteMethod>>

+setStartTime(Inout newStartTime:Date):boolean

<<EJBRemoteMethod>>
+setReason(Inout newReason:string)

*

getKey()
addResource()
ejbActivate()

ejbCreate()
ejbLoad()

id : string
description : string
reason : string

<<EJBPrimaryKey>>

<<EJBRemoteMethod>>
+getResources():ResourceRelation

<<EJBRemoteMethod>>
+getEndTime():Date

<<EJBRealizeRemote>>

0..1

resources

*

ejbRemove()
ejbPostCreate()

ejbStore()
getResourcesByAttendance()
getResourcesByResponse()
removeResource()
unsetEntityContext()

<<EJBRemoteMethod>>
+getOrganizer():ResourceKey

<<EJBRemoteMethod>>
+getKey():ReservationKey
<<EJBRemoteMethod>>

+getDescription():string

<<EJBRemoteMethod>>
+getReason():string
<<EJBRemoteMethod>>

+getStartTime():Date

endTime

*

*

Figure 67: Reservation Entity Implementation

3.10.2.4 Resource Entity

Figure 68 shows the EJB model for the resource entity component.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II B-35

<<EJBRemoteInterface>>
Resource

<<EJBImplementation>>
ResourceBean

ResourceKey
<<EJBEntityHomeInterface>>

ResourceHome

PropertyList

ResourceType

Calendar

<<EJBFinderMethod>>
+findByPrimaryKey(Inout key:ResourceKey):Resource

<<EJBRealizeHome>>

+addProperty(Inout key:Object ,Inout value:Object):boolean

+removeProperty(Inout key:Object):boolean

+addEvent(Inout event:ReservationKey ,Inout force:boolean):boolean
+isAvailable(Inout sDate:Date ,Inout eDate:Date):boolean

<<EJBFinderMethod>>
+findByName(Inout name:string):Enumeration

<<EJBFinderMethod>>
+findByType(Inout type:string):Enumeration

<<EJBCreateMethod>>
+create(Inout argId:string):Resource
<<EJBFinderMethod>>
+findAll():Enumeration

+getProperty(Inout key:Object):Object

<<create>>
+PropertyList()

+getPropertyKeys():Enumeration

<<create>>
+Calendar()

+removeEvent(Inout event:ReservationKey):boolean

+type

0..1

unsetEntityContext()

<<EJBRemoteMethod>>
+getProperties():PropertyList

<<EJBRemoteMethod>>
+setProperties(Inout newProperties:PropertyList):boolean

<<EJBRemoteMethod>>
+addEvent(Inout event:ReservationKey):boolean

<<EJBRemoteMethod>>
+getEvents(Inout sDate:Date ,Inout eDate:Date): [*] ReservationKey

<<EJBRemoteMethod>>
+getEvents(): [*] ReservationKey

<<EJBRemoteMethod>>
+removeEvent(Inout event:ReservationKey):boolean

<<EJBRemoteMethod>>
+setParent(Inout newParent:ResourceKey):boolean

<<EJBRemoteMethod>>
+setType(Inout newValue:ResourceType):boolean

<<EJBRemoteMethod>>
+setName(Inout newValue:string):boolean

<<EJBRemoteMethod>>
+isAvailable(Inout from:Date ,Inout to:Date):boolean

<<EJBRemoteMethod>>
+addProperty(Inout key:string ,Inout value:Object):boolean

<<EJBRemoteMethod>>
+addSubresource(Inout key:ResourceKey):boolean

<<EJBRemoteMethod>>
+getSubresources(): [*] ResourceKey

<<EJBRemoteMethod>>
+removeProperty(Inout key:string):boolean

<<EJBRemoteMethod>>
+removeSubresource(Inout key:ResourceKey):boolean

<<EJBRemoteMethod>>
+setCalendar(Inout newCalendar:Calendar):boolean

*

<<EJBPrimaryKey>>

*

+parent

1

<<create>>
+ResourceKey(Inout argId:string)

<<create>>
+ResourceKey()
+hashCode():integer
+equals(Inout o:Object):boolean

+id : string

+subresources *
0..1

id : string

getKey()

name : string

ejbActivate()
ejbCreate()
ejbLoad()
ejbPassivate()
ejbPostCreate()
ejbRemove()
ejbStore()
isAvailable()

*

+calendar

0..1

*
<<EJBRealizeRemote>>

addEvent()
addProperty()
addSubresource()
getEvents()
getEvents()
removeEvent()
removeProperty()
removeSubresource()

<<EJBRemoteMethod>>
+getParent():ResourceKey
<<EJBRemoteMethod>>
+getKey():ResourceKey
<<EJBRemoteMethod>>
+getType():ResourceType
<<EJBRemoteMethod>>
+getName():string
<<EJBRemoteMethod>>
+getCalendar():Calendar

0..1
+properties

Figure 68: Resource Entity Implementation

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II C-1

Annex C - Example - Hospital Information System

Contents

List of Figures 2

1. Introduction 3
1.1 Description..3
1.2 Assumptions of the hospital model ..3

2. Enterprise Viewpoint Specification 4
2.1 Overview..4

2.1.1 Community structure 4
2.1.2 Objectives of each community 10

2.2 Radiological Community ...11
2.2.1 Scope 11
2.2.2 Enterprise objects 11
2.2.3 Roles 12
2.2.4 Policies 12
2.2.5 Business Processes 14

3. Information Viewpoint 19

4. Computational Viewpoint Specification 28
4.1 Identified set of ProcessComponents (computational objects)..28
4.2 PORT (interface) specification ...29
4.3 Protocol (interaction) specification ...31

ad/2001-08-20 – UML for EDOC Part II

C-2 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

List of Figures

Figure 1: Hospital community..5
Figure 2: Outpatient Community ..6
Figure 3: Inpatient Community ..7
Figure 4: Clinical Laboratory Community...8
Figure 5: Radiological Community ..8
Figure 6: Pharmaceutical Community..9
Figure 7: Reception Community ..9
Figure 8: Medical Accounting Community..10
Figure 9: same day radiological examination reception (process)..14
Figure 10: emergency cancellation of examination (sub-process)...15
Figure 11: instruct to move to other examinations (sub-process)..16
Figure 12: assignment of examined images (sub-process) ..17
Figure 13: plain X-ray image (process)...18
Figure 14: interpretation (process)..18
Figure 15: Information model (Information Viewpoint)..19
Figure 16: ExamOrder Composition (Composition Viewpoint)..20
Figure 17: ExamOrder Component (Entity Viewpoint)..20
Figure 18: Patient Composition (Composition Viewpoint)..21
Figure 19: Patient Component (Entity Viewpoint)..21
Figure 20: Healthcare professional Composition (Composition Viewpoint)...22
Figure 21: Healthcare professional Component (Entity Viewpoint)...22
Figure 22: Healthcare Resource Composition (Composition Viewpoint)..23
Figure 23: Healthcare Resource Component (Entity Viewpoint)..23
Figure 24: Dept Composition (Composition Viewpoint)..24
Figure 25: Dept Component (Entity Viewpoint)..24
Figure 26: Exam Composition (Composition Viewpoint)..25
Figure 27: Exam Component (Entity Viewpoint)..25
Figure 28: Interpret Composition (Composition Viewpoint)...26
Figure 29: Interpret Component (Entity Viewpoint)...26
Figure 30: Takes Xray Img Composition (Composition Viewpoint)...27
Figure 31: Takes Xray Img Component (Entity Viewpoint)...27
Figure 32: Modality Composition (Composition Viewpoint)..28
Figure 33: Modality Component (Entity Viewpoint)..28
Figure 34: Component for scanning ID card..29
Figure 35: Component for patient certification..30
Figure 36: Component for obtaining an examination order ...30
Figure 37: Component for completion of an examination notice ..30
Figure 38: Component for archiving an interpretation report ...30
Figure 39: Protocol for getting ID card information..31
Figure 40: Protocol for patient identification...32
Figure 41: Protocol for getting examination order...32
Figure 42: Protocol for completion of examination notice ...33
Figure 43: Protocol for archiving interpretation report ..33

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II C-3

4. Introduction

This annex describes the Radiological Community subset of a hospital information system
model in terms of the UML Profile for EDOC. The annex uses the UML Profile to specify the
Enterprise Viewpoint Specification, Information Viewpoint Specification, and Computational
Viewpoint Specification for the subset.

4.1 Description

The model for the hospital information system is taken from the Hospital Information
Reference Enterprise Model project in Japan. The purpose of the project is to provide a
robust starting point for the design of hospital information ODP systems , using the
concepts and rules defined in RM-ODP and ODP Enterprise Viewpoint Language, as well as
using UML and the UML Profile for EDOC.

Since healthcare services are legislation-bound and culture-bound, this model includes some
legislative and cultural requirements.

4.2 Assumptions of the hospital model

The model assumes that the hospital is a major regional hospital in Japan with approximately
300 beds. The model also makes the following assumptions.

• The hospital is not a postgraduate educational institution (no resident physicians
are on the staff).

• The hospital provides no advanced specialty care such as that provided at
university hospitals . Advanced specialty care includes renal dialysis, radiotherapy, etc.

• The hospital is a general hospital, i.e.,

− The hospital is an Insurance Medical Facility (a hospital is accredited by a municipal
governor to offer medical services under the public medical insurance scheme.
Almost all the hospitals in Japan are Insurance Medical Facilities).

− The hospital has no dental department (no dentists are on the staff).

− The hospital is not involved in clinical trials.

− The hospital has no surgery department, emergency department, or nutrition
department.

ad/2001-08-20 – UML for EDOC Part II

C-4 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

5. Enterprise Viewpoint Specification

The Enterprise Viewpoint Specification specifies the structures of communities first. The top-level
community called the Hospital Community is divided into sub-communities. This section describes the
overall structure including communities, objects, and roles.

5.1 Overview

5.1.1 Community structure

Figure 1 shows the community structure for the hospital model, and enterprise objects. The
top-level community is called the Hospital Community and is composed of several
interacting departmental communities. Two of the interacting departmental communities,
Patient Care and Administration, are further decomposed into their sub-communities

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II C-5

Hospital Community

Patient Community

Outpatient Community Inpatient Community

Administration Community

Reception Community Medical Accounting Community

System administrator

Hospital information
ODP system

Healthcare professional

Staff

Clinical laboratory technologist

Radiological technologist

Physician

Nurse

Hospital administrator

Visitor

Family

Clinical Laboratory Community

Radiological Community

Pharmaceutical Community

Patient

: Community : Enterprise object

Pharmacist

Figure 1: Hospital community

The following figures represent the relationship of the communities, the roles in the communities, and the
objects performing the roles. This figure also identifies which objects are to be shared by multiple
communities

ad/2001-08-20 – UML for EDOC Part II

C-6 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

Patient care Community

NursePhysician

Outpatient

Patient

Hospital Community

Outpatient Community

Staff

Outpatient
staff

Outpatient
physician

Outpatient
nurse

Figure 2: Outpatient Community

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II C-7

Patient care Community

Nurse

Physician

Inpatient Community

Inpatient Inpatient
physician

Accepting
nurse

Administrator
of the patient

Bed management
nurse

Sending
nurse

Patient

Hospital Community

Sending
physician

Accepting
physician

Inpatient
nurse

Inpatient visitor
reception staff

Staff

Figure 3: Inpatient Community

ad/2001-08-20 – UML for EDOC Part II

C-8 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

Clinical Laboratory Community

Outpatient Inpatient

Patient

Hospital Community

Clinical Laboratory
staff

Clinical Laboratory
nurse

Staff

Administrator of
Clinical Laboratory

Nurse

Clinical laboratory technologist

Figure 4: Clinical Laboratory Community

Hospital Community

Staff

Radiological technologist

Physician

Radiological Community

Outpatient Inpatient Radiologist Radiological staff

Administrator
of radiological

department

Examination
reception

Plain X-ray
images

Patient

Figure 5: Radiological Community

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II C-9

Hospital Community

Pharmaceutical Community

Pharmaceutical
staff

Administrator
of pharmaceutical
department

PharmacistStaff

Figure 6: Pharmaceutical Community

Administration Community

Reception Community

Outpatient Inpatient

Administrator of
Administration department

Patient

Hospital Community

Outpatient reception
staff

Admission
staff

Visitor reception
staff

Staff

Figure 7: Reception Community

ad/2001-08-20 – UML for EDOC Part II

C-10 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

Administration Community

Medical Accounting Community

Outpatient Inpatient

Patient

Hospital Community

Accounting
staff

Statement of healthcare
reimbursement claim

Staff

Figure 8: Medical Accounting Community

5.1.2 Objectives of each community

The objectives of each community are described below.

(1) Patient Care Community

• Providing patient care activities as a sub-community of the Hospital Community

(2) Outpatient Community

• Providing outpatient care as a sub-community of the Patient Care Community

(3) Inpatient Community

• Providing inpatient care as a sub-community of the Patient Care Community

(4) Clinical Laboratory Community

• Performing laboratory tests as a sub-community of the Hospital Community

(5) Radiological Community

• Performing X-ray examinations as a sub-community of the Hospital Community

(6) Pharmaceutical Community

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II C-11

• Auditing prescriptions issued by physicians and dispensing medicine according to
prescriptions as a sub-community of the Hospital Community

(7) Administration Community

• Providing administrative services including reception and medical accounting as a
sub-community of the Hospital Community

(8) Reception Community

• Performing clerical and reception activities as a sub-community of the
Administration Community

(9) Medical Accounting Community

• Performing medical accounting activities as a sub-community of the Administration
Community

5.2 Radiological Community

Among the communities listed in 5.1.1, this annex uses the Radiological Community to
describe the details of specification using the UML Profile of EDOC. This section describes
the Enterprise Viewpoint Specification for this community.

5.2.1 Scope

The scope of this community is as follows:

• Taking X-ray images

• Interpreting X-ray images

• Managing X-ray images

5.2.2 Enterprise objects

The following enterprise objects participate in this community and perform the roles
described in .5.2.3.

• Patient

• Staff

• RadTechnologist (Radiological technologist)

• Physician

• HospitalInfoODPSystem (Hospital information ODP system)

• SystemAdmin (System administrator)

ad/2001-08-20 – UML for EDOC Part II

C-12 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

5.2.3 Roles

Detailed roles that are required for this community to function are listed below. Several roles
have been refined with <<refine>>.

• Outpatient
• (Enterprise Object: Patient)
• Inpatient
• (Enterprise Object: Patient)
• RadStaff (Radiological staff)
• (Enterprise Object: Staff)
• ExamReception (Examination reception)
• (Enterprise Object: RadTechnologist)
• PlainX-rayImg (Plain X-ray images)
• (Enterprise Object: RadTechnologist)
• Radiologist
• (Enterpris e Object: Physician)
• EmgExamOrder (Emergency examination order)
• (Enterprise Object: Physician)
• AdminRadDpt (Administrator of the radiological department)
• (Enterprise Object: SystemAdmin)
• PatientCertification
• GetExamOrder (Obtaining an examination order)
• GetPfmExamList (Obtaining a list of performed examinations)
• GetExamRslt (Obtaining an examination result)

<refined as:>
GetPfmExam (Obtaining a performed examination)
GetExamImg (Obtaining an examination images)

• GetPreReadInfo (Obtaining pre-reading information)
<refined as:>

GetInterpretImg (Obtaining images for interpretation)
GetPrevImg (Obtaining previous images)
GetExamOrder (Obtaining an examination order)
GetExamInfo (Obtaining examination information)
GetPatientRec (Obtaining a patient record)

• ArchExamRslt (Archiving an examination result)
<refined as:>

ArchExamImg (Archiving examination images)
ArchExamInfo (Archiving examination information)

• ArchInterpretReport (Archiving interpretation report)

5.2.4 Policies

Here are some policies (constraints) placed on objects and roles.

(1) Administrator of the radiological department

<<refine>>

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II C-13

• The administrator of the radiological department is obligated to record radiation
exposure information and to archive the record for five years. (Archiving of medical
records is mandated by the Medical Practitioners Law.)

• The administrator of the radiological department is obligated to archive the
examination images for two years (as mandated by the Medical Radiological
Technologists Law).

(2) Radiological technologist

• If the radiological technologist has any doubts regarding the contents of an
examination order, the radiological technologist is obligated to resolve the doubts by
submitting an inquiry to the physician who issued the order.

• The radiological technologist is obligated to perform radiological examination
quickly without subjecting the patient to unreasonable discomfort or anxiety.

• The radiological technologist is obligated to understand the intent of the physician
and to perform radiological examination in the manner that satisfies the physician's
intent.

• The radiological technologist is obligated to perform radiological examination
without delay according to the type of the physician's request (urgent, routine, etc.) and
to report the examination results (including image delivery) to the physician.

• The radiological technologist is obligated to notify the Medical Accounting
Community of the accounting information related to the examination process without
delay.

• The radiological technologist is obligated to maintain the equipment used for
radiological examination so that the equipment meets its performance specifications.
The radiological technologist is also obligated to appropriately replenish and manage
materials required to perform radiological examination.

• The radiological technologist is obligated to protect all of the patient's personal
information obtained in the process of the technologist’s activities.

(3) Radiologist

• The radiologist is obligated to submit the interpretation report to the physician
without delay according to the type of the physician's request (degree of urgency,
reason for radiography, etc.).

(4) Physician

• The physician who orderes the radiological examination is obligated to sign the
record of the radiation dose.

(5) Others

• Only physicians and radiological technologists are permitted to expose a human
body to radiation (as mandated by the Medical Radiological Technologists Law).

• The hospital information ODP system is obligated to electronically archive the
medical images used for diagnosis as authorized images. Images acquired but not used

ad/2001-08-20 – UML for EDOC Part II

C-14 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

for diagnosis need not be archived. (It is assumed that the hospital information ODP
system includes an image management system.)

5.2.5 Business Processes

This section describes three Business processes in the Radiological Community: same day
radiological examination reception, plain X-ray images, and interpretation.

Sub-processes corresponding to activities such as emergency cancellation of examination,
instruct to move to other examinations, and assignment of examination images, are also
specified in the process same day radiological examination reception.

same day radiological examination reception processsame day radiological
 examination reception

go to the reception desk
of the radiological
department

notify arrival scan ID card certify patient

get examination
order

confirm
examination order

assess before
examination

emergency
cancellation
of examination

Patient
/Outpatient Staff/RadStaff

Patient
Certification

instruct to take
other examinations

assign
examined images

instruct to enter
examination room

enter into
examination room

IDcardInfo IDcardInfo PatientInfo

PatientInfo ExamOrder

ExamOrder

patient status
not suitable

waiting for
examination

examination suitable

examination
performed

ScanIDCard PatientCertification

GetExamOrder
RadTechnologist
/ExamReception

GetExamOrder

RadTechnologist
/ExamReception

Patient
/Outpatient

RadTechnologist
/ExamReception

RadTechnologist
/ExamReception

IDcardInfo PatientInfo

ExamOrder

Figure 9: same day radiological examination reception (process)

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II C-15

emergency cancellation of examination sub-processemergency cancellation
 of examination

send notification of
the cancellation of
examination to the
physician who ordered

send notification
of the cancellation
of examination

move to
consulting room

cancellation
of examination

ExamCancel
Reason

consult patient

send notification of
the emergency
examination order to
radiological department

move to
radiological
department

send notification
 of the emergency
examination order

EmgExamOrder

urgent radiography not needed

urgent radiography needed

ExamCancelNotice

EmgExamOrderNotice

EmgExamOrder

ExamCancel
Reason

ExamCancel
Reason

RadTechnologist
/ExamReception

Patient
/Outpatient

Patient
/Outpatient

Physician
/EmgExamOrder

Physician
/EmgExamOrder

ExamCancel
Reason

EmgExamOrder

Figure 10: emergency cancellation of examination (sub-process)

ad/2001-08-20 – UML for EDOC Part II

C-16 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

instructs to move to other examinations sub-processinstructs to move to
other examinations
sub-process

inquire if other
section can accept
patient

move to other
examination room

make this patient's
reception pending

get a list of
performed
examinations

look up other
examinations
for patient

PfmExamList PfmExamList

propose
examination
sequence to the
physician who ordered

suggest patient
to move to other
examinations

instruct patient
to wait for
examination

change of examination sequence impossible

change of examination sequence possible

reception of patient impossible

reception of patient possible

suggestion rejected

suggestion agreed

GetPfmExamList

RadTechnologist
/ExamReception

Patient/Outpatient RadTechnologist
/ExamReception

RadTechnologist
/ExamReception

Staff/RadStaff

RadTechnologist
/ExamReceptionGetPfmExamList

PfmExamList

Figure 11: instruct to move to other examinations (sub-process)

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II C-17

assignment of examined images sub-processassignment of examined
images:sub-process

assigns images
to the examination
order

explain the reason
for examination
cancellation to patient

send notification of
 the examination
cancellation

ExamCancel
Reason

get performed
 examinations

compare contents of
order and performed
examination

ExamInfo ExamInfo

get examination
images

look up
examined images

ExamImg ExamImg

propose assignment
of images to the
physician who ordered

instructs to enter
examination room

send notification
of the completion
of examination

ExamInfo ExamInfo

enter examination
room

order part not examined

order part examined

assignment impossible

instructs to cancel examination

assignment possible

GetPfmExam

GetExamImg

AssignImg ExamCompleteNotice

ExamCancelNotice

ExamCancel
Reason

GetExamImg RadTechnologist
/ExamReception

RadTechnologist
/ExamReception

RadTechnologist
/ExamReception

Patient/Outpatient

RadTechnologist
/ExamReception

ExamInfo

GetPfmExam

ExamImg

ExamInfo

ExamCancel
Reason

Figure 12: assignment of examined images (sub-process)

ad/2001-08-20 – UML for EDOC Part II

C-18 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

plain X-ray image processplain X-ray image process

select order of
patient

get
examination order

ExamInfo

ExamOrder

confirm the
examination order

ExamOrder

prepare
examination
machines

lead patient to
examination
equipment

move to
examination
equipment

take X-ray image check images

send notification
of the completion of
examination to patient

enter examination
information

archive
examination images

archive
examination
information

archive examination result

ExamInfo

ExamImg

ExamInfo

ExamImg

provide notification
 of the completion
 of examination

ExamInfo

radiography succeeded

radiography not succeeded

GetExamOrder

ArchExamImg

ArchExamInfo

ExamCompleteNotice

decide examination
images

ExamImg

ExamInfo

RadTechnologist
/PlainX-rayImg

RadTechnologist
/PlainX-rayImg

RadTechnologist
/PlainX-rayImg

Patient
/Outpatient

RadTechnologist
/PlainX-rayImg

RadTechnologist
/PlainX-rayImg

RadTechnologist
/PlainX-rayImg

RadTechnologist
/PlainX-rayImg

GetExamOrder

RadTechnologist
/PlainX-rayImg

RadTechnologist
/PlainX-rayImg

ArchExamImg
RadTechnologist
/PlainX-rayImg

ArchExamInfo

ExamOrder

ExamImg

ExamInfo
ExamInfo

Figure 13: plain X-ray image (process)

interpretation processinterpretation process

select examination
order of
interpretation

get images for
interpretation

get previous
images

get information for
inpterpretation

PrevImage

InterpretImage

 interpret

get examination
order

get examination
information

ExamInfo

ExamOrder

get patient record

PatientRec

PrevImage

InterpretImage

ExamInfo

ExamOrder

PatientRec

look up images
for interpretation

look up
previous images

assess before
interpretation

confirm
examination
order

look up
examination
information

look up
patient record

PrevImage

InterpretImage

ExamInfo

ExamOrder

PatientRec

InterpretImage

PrevImage

ExamOrder

ExamInfo

PatientRec

enter
interpretation
report

archive
interpretation report

InterpretReport

send notification
of the completion
of interpretation

InterpretReport InterpretReport

InterpretReport

GetInterpretImg

GetPrevImg

GetExamOrder

GetExamInfo

GetPatientRec

Arch InterpretReport

InterpretCompleteNotice

GetExamInfo

GetPatientRec

GetExamOrder

GetInterpretImg Physician
/Radiologist

Physician
GetPrevImg

Physician
/Radiologist

Arch
InterpretReport

Physician
/Radiologist

Physician
/Radiologist

Physician
/Radiologist

InterpretImage

PrevImage

ExamOrder

ExamInfo

PatientRec

InterpretReport

InterpretReport

Figure 14: interpretation (process)

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II C-19

6. Information Viewpoint

The following figures represent the Information Viewpoint Specification for this community
specified with the Entities Profile.

< <Entity Data>>
InterpretOrderText

Description

< <Entity Data>>
ExamOrderDat

PfmCat

<<Entity Data>>
Sub-OrderInfo

ExamRegion
RadRoom
PfmStatus
CancelReason
Radtech
Position
Orientation
Leftright

<< Entity Data>>
DirectInfo

DiseaseSuspected
ExamType
UrgencyCat
VisitCat
InterpretOrder
DirectInfo1
DirectInfo2

<<Entity Data>>
ExamOrder

OrderDateTime
OrderNo
ExamScheduleDateTime

<<Entity Data>>
PlacerInfo

InPatientOutPatient
Admi Info

<<Entity Data>>
PatientInfo

PatientID
Pa t i en tNam(Kana)
Pa t i en tNam(Kanji)
Pa t i en tNam(Alphabet)
Address
TelNo
Sex
BirthDate
Height
Weight
BloodType

<< Entity Data>>
PatientCareInfo

ExamHist
PresentClinicHist

<<Entity Data>>
IDcardInfo

PatientID
PatientNam (Kana)
BirthDate
Sex

<<Entity Data>>
ConditionInfo

Pregnancy
MenstrualInfo
AmbulationLev
Pacemaker
CerebArteryClip
ArtificJoint
ArtificValve
FractureCement
CardiacDisease
PrstGlandOvergr
Diabetes
ThyroidDisease
Glaucoma
LimbDis
VisualDis
AuditoryDis
LanguageDis
MentalDis
RenalDis
Hepatopathy

<<Entity Data>>
EquipInfo

EquipNam
QuantityUsed

<< Entity Data>>
RadParameters

Tech
Voltage
Current
ExpoTime

<< Entity Data>>
FilmInfo

FilmType
FramesNo
FilmsNo
ExposNo

< <Entity Data>>
TechInfo

TechID
TechNam(kana)
TechNam(kanji)
TechNam(Alphabet)

<<Entity Data>>
PhysicianInfo

PhysicianID
PhysicianNam (Kana)
PhysicianNam (Kanji)
PhysicianNam (Alphabet)

<<Entity Data>>
DeptInfo

DeptCode
DeptNam (Kana)
DeptNam (Kanji)
DeptAbbreviat

<< Entity Data>>
InterpretReport

OrderNo
ImgNo
PatientID
Findings
Impres
Diagnosis
Direct

<<Entity Data>>
BasicInfo

PatientID
ExamType
ExamPfmDateTime

<<Entity Data>>
ExamInfo

PfmStatus

<<Entity Data>>
TakesXrayImg

ImgNo
OrderNo
PatientID
TakesDateTime

<< Entity Data>>
Modality

<< Entity Data>>
MedicalMaterialInfo

Type
Nam
QuantityUsed
Unit

<< Entity Data>>
DrugInfo

Type
DrugNam
Dosage
Unit
AdminMethod

<<Entity Data>>
InfectionInfo

Hepati t isB
Hepati t isC
HIV
WA
MRSA
PseudomonasAeruginosa
Tuberculosis

<<Entity Data>>
AllergyInfo

ContrastAgentAllergy
DrugHypsen

< <Entity Data>>
StaffInfo

StaffID
StaffNam (kana)
StaffNam (kanji)
StaffNam (Alphabet)

Figure 15: Information model (Information Viewpoint)

ad/2001-08-20 – UML for EDOC Part II

C-20 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

ExamOrder Composition

InterpretOrderText

ExamOrderDat

Sub-OrderInfo

DirectInfo

ExamOrder

PlacerInfo

Figure 16: ExamOrder Composition (Composition Viewpoint)

<<Entity>>
ExamOrder Component

<<Entity Data>>
InterpretOrderText

<<Entity Data>>
ExamOrderDat

<<Entity Data>>
Sub-OrderInfo

<<Entity Data>>
DirectInfo

<<Entity Data>>
ExamOrder

<<Entity Data>>
PlacerInfo

<<Key>>
Exam Order Key

<<Key Attribute>>
OrderNo

Figure 17: ExamOrder Component (Entity Viewpoint)

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II C-21

PatientInfo

PatientCareInfo

IDcardInfo

Patient Composition

InfectionInfo
AllergyInfo

ConditionInfo

Figure 18: Patient Composition (Composition Viewpoint)

<<Entity Data>>
PatientInfo

<<Entity Data>>
PatientCareInfo

<<Entity Data>>
IDcardInfo

<<Entity>>
Patient Component

<<Entity Data>>
InfectionInfo

<<Entity Data>>
AllergyInfo

<<Entity Data>>
ConditionInfo

<<Key>>
Patient Key

<<Key Attribute>>
PatientID

Figure 19: Patient Component (Entity Viewpoint)

ad/2001-08-20 – UML for EDOC Part II

C-22 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

TechInfo PhysicianInfo

Healthcare professional
Composition

StaffInfo

Figure 20: Healthcare professional Composition (Composition Viewpoint)

<<Entity Data>>
TechInfo

<<Entity Data>>
PhysicianInfo

<<Entity>>
Healthcare professional Component

<<Entity Data>>
StaffInfo

<<Key>>
Healthcare professional Key

<<Key Attribute>>
HealthProID

Figure 21: Healthcare professional Component (Entity Viewpoint)

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II C-23

MedicalMaterial
Info

DrugInfo

Healthcare Resources Composition

Figure 22: Healthcare Resource Composition (Composition Viewpoint)

<<Entity Data>>
MedicalMaterial Info

<<Entity Data>>
DrugInfo

<<Entity>>
Healthcare Resources Component

<<Key>>
Healthcare Resources Key

<<Key Attribute>>
HealthcareResources Code

Figure 23: Healthcare Resource Component (Entity Viewpoint)

ad/2001-08-20 – UML for EDOC Part II

C-24 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

Dept Composition

DeptInfo

Figure 24: Dept Composition (Composition Viewpoint)

<<Entity>>
Dept Component

<<Entity Data>>
DeptInfo

<<Key>>
Dept Key

<<Key Attribute>>
DeptCode

Figure 25: Dept Component (Entity Viewpoint)

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II C-25

BasicInfo

ExamInfo

Exam Composition

EquipInfo

RadParameters

FilmInfo

Figure 26: Exam Composition (Composition Viewpoint)

<<Entity Data>>
BasicInfo

<<Entity Data>>
ExamInfo

<<Entity>>
Exam Component

<<Entity Data>>
EquipInfo

<<Entity Data>>
RadParameters

<<Entity Data>>
FilmInfo

<<Key>>
Exam Key

<<Key Attribute>>
ExamNo

<<Foreign Key>>
Exam Order Key

Figure 27: Exam Component (Entity Viewpoint)

ad/2001-08-20 – UML for EDOC Part II

C-26 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

InterpretReport

Interpret Composition

Figure 28: Interpret Composition (Composition Viewpoint)

<<Entity Data>>
InterpretReport

<<Entity>>
Interpret Component

<<Key>>
Interpret Key

<<Key Attribute>>
Interpret No

<<Foreign Key>>
Exam Order Key

<<Foreign Key>>
Patient Key

<<Foreign Key>>
ImgNo

Figure 29: Interpret Component (Entity Viewpoint)

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II C-27

TakesXrayImg

Takes Xray Img Composition

Figure 30: Takes Xray Img Composition (Composition Viewpoint)

<<Entity Data>>
TakesXrayImg

<<Entity>>
Takes Xray Img Component

<<Key>>
TakesXray Key

<<Key Attribute>>
ImgNo

Figure 31: Takes Xray Img Component (Entity Viewpoint)

ad/2001-08-20 – UML for EDOC Part II

C-28 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

Modality

Modality Composition

Figure 32: Modality Composition (Composition Viewpoint)

<<Entity Data>>
Modality

<<Entity>>
Modality Component

<<Key>>
Modality Key

<<Key Attribute>>
ModalityNo

Figure 33: Modality Component (Entity Viewpoint)

7. Computational Viewpoint Specification

In the Computational Viewpoint Specification, computational objects are derived and
presented as CCA ProcessComponents, followed by PORT specifications as interface
specifications for computational objects. And, Protocol specifications as interaction
specifications between computational objects are described. Component Collaboration
Architecture Profile (Part III a) is the main Profile used.

7.1 Identified set of ProcessComponents (computational objects)

From the Enterprise Viewpoint Specification and Information Viewpoint Specification, the
following components are identified as computational objects:

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II C-29

• ScanIDCard (Component for scanning ID Card)

• PatientCertification (Component for patient certification)

• GetExamOrder (Component for obtaining examination order)

• ExamCancellNotice (Component for examination cancellation notice)

• EmgExamOrderNotice (Component for emergency examination order notice)

• GetPfmExamList (Component for obtaining a list of performed examinations)

• GetPfmExam (Component for obtaining performed examinations)

• GetExamImg (Component for obtaining examination images)

• ArchExamImg (Component for examination images archiving)

• AssignImg (Component for assign image)

• ArchExamInfo (Component for examination information archiving)

• ExamCompleteNotice (Component for completion of examination notice)

• GetInterpretImg (Component for obtaining images for interpretation)

• GetPrevImg (Component for obtaining previous images)

• GetExamInfo (Component for obtaining examination information)

• GetPatientRec (Component for obtaining patient records)

• ArchInterpretReport (Component for interpretation report archiving)

• InterpretCompleteNotice (Component for completion of interpretation notice)

7.2 PORT (interface) specification

The following figures represent the PORT specifications for each ProcessComponent using
CCA.

ScanIDCard GetIDcardInfo

 S anIDcardReception
 ScanIDcard
 ScanIDcardReception

GetIDcardInfoRequest
GetIDcardInfo
GetIDcardInfoRequest

 GetIDcardInfoReception
 GetIDcardInfo
 GetIDcardInfoReception

Figure 34: Component for scanning ID card

ad/2001-08-20 – UML for EDOC Part II

C-30 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

PatientCertification
IdentifyPersonComponent

PIDS

IdentifyPersonInterface

PatientCertificationReception
PatientCertification
PatientCertificationReception

PatientIdentificationReception
PatientIdentification
PatientIdentificationReception

PatientIdentificationRequest
PatientIdentification
PatientIdentificationRequest

Figure 35: Component for patient certification

ExamCompleteNotice ExamCompleteNotice

ExamCompleteNoticeReception
ExamCompleteNotice
ExamCompleteNoticeReception

ExamCompleteNoticeReception
ExamCompleteNotice
ExamCompleteNoticeReception

ExamCompleteNoticeTransfer
ExamCompleteNotice
ExamCompleteNoticeTransfer

Figure 36: Component for obtaining an examination order

GetExamOrder GetExamOrder

GetExamOrderReception
GetExamOrder
GetExamOrderReception

GetExamOrderReception
GetExamOrder
GetExamOrderReception

GetExamOrderRequest
GetExamOrder
GetExamOrderRequest

Figure 37: Component for completion of an examination notice

ArchInterpretReport ArchInterpretReport

ArchInterpretReporReceptiont
ArchInterpretRepor
ArchInterpretReporReceptiont

ArchInterpretReporReceptiont
ArchInterpretRepor
ArchInterpretReporReceptiont

ArchInterpretReportRequest
ArchInterpretReport
ArchInterpretReportRequest

Figure 38: Component for archiving an interpretation report

Note that the component for patient certification uses the IdentifyPersonComponent in the
PIDS (Person Identification Service) for the identification of the patients (reference: OMG
Healthcare DTF: Document Number: corbamed/98-02-29: Final adopted PIDS specification
including errata sheets). In such cases as obtaining or archiving information, get/archive
messages are sent to the system that stores the information.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II C-31

7.3 Protocol (interaction) specification

The following figures represent protocol specifications for ProcessComponents (roles) using
CCA.

GetIDcardInfo

responderRole
GetIDcardInfoReceptio

initiatorRole
GetIDcardInfoRequest

GetIDcardInfoRequest

<<initiates>>
GetIDcardInfoRequest

<<responds>>
IDcardInfo

IDcardInfo

Figure 39: Protocol for getting ID card information

ad/2001-08-20 – UML for EDOC Part II

C-32 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

PatientIdentification

responderRole
PatientIdentificationReception

initiatorRole
PatientIdentificationRequest

PatientIdentificationInfoPatientLists

<<initiates>>
PatientIdentificationInfo

<<responds>>
PatientLists

Figure 40: Protocol for patient identification

GetExamOrder

responderRole
GetExamOrderReception

initiatorRole
GetExamOrderRequest

GetExamOrderRequestExamOrder

<<initiates>>
GetExamOrderRequest

<<responds>>
ExamOrder

Figure 41: Protocol for getting examination order

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II C-33

ExamCompleteNotice

responderRole
ExamCompleteNoticeReception

initiatorRole
ExamCompleteNoticeTransfer

CompletionExamNotice

<<initiates>>
CompletionExamNotice

Figure 42: Protocol for completion of examination notice

ArchInterpretReport

responderRole
ArchInterpretReportReception

initiatorRole
ArchInterpretReportRequest

InterpretReport

<<initiates>>
InterpretReport

Figure 43: Protocol for archiving interpretation report

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II D-1

Annex D - Examples of Patterns

Contents

List of Figures 2

1. Simple Pattern Examples 2

2. Process Model Patterns 5
2.1 Activity ... 6
2.2 CompoundTask.. 6
2.3 ActivityPreCondition and ActivityPostCondition... 7
2.4 Timeout ... 8
2.5 Terminate .. 8
2.6 Simple Loop.. 9
2.7 While and Repeat/Until Loop.. 9
2.8 For Loop.. 10
2.9 Multitask... 10
2.10 Procurement.. 11
2.11 Evaluation... 12

ad/2001-08-20 – UML for EDOC Part II

D-2 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

List of Figures

Figure 1 Parameterized Collaboration..2
Figure 2 Order Process Pattern ..3
Figure 3 Customer/ Supplier Model..3
Figure 4 Funds Transfer Pattern ..3
Figure 5 Exchange Pattern ..4
Figure 6 Purchase Model..4
Figure 7 Unfolded Purchase Model..5
Figure 8 Activity Pattern...6
Figure 9 CompoundTaskFrame and CompoundTask pattern ...7
Figure 10 ActivityPreCondition and ActivityPostCondition Pattern ...7
Figure 11 Timeout Pattern...8
Figure 12 Terminate Pattern..8
Figure 13 Simple Loop Pattern ..9
Figure 14 While Loop Pattern ..9
Figure 15 For Loop Pattern ...10
Figure 16 Multitask Pattern ..10
Figure 17 Procurement Pattern ...11

1. Simple Pattern Examples

Figure 1 below represents the business process pattern in ECA. An order process pattern is
applied to a customer/ supplier model.

/Supplier /Customer

Buyer Seller
Order Process

<<BP Binding>>

Figure 1 Parameterized Collaboration

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II D-3

/Buyer /Seller

Order

<<BP Package>>
Order Process

Figure 2 Order Process Pattern

Figure 2 represents an order process pattern. It defines a relationship between a buyer and a
seller in the order process using a pattern to make it reusable model.

/Customer /Supplier
Order

Buyer Seller

Figure 3 Customer/ Supplier Model

Figure 3 represents the unfolded order process pattern. An association between a customer
and a supplier is expressed as role, a buyer and a seller, in the business process modeling.

Figure 4 and Figure 5 are the funds transfer pattern and the exchange pattern. Each one is a
simple pattern, but it’s possible to apply more than one pattern as Figure 6.

<<BP Package>>

Funds Transfer

/TransSender /TransRcpt
Funds Transfer

Figure 4 Funds Transfer Pattern

ad/2001-08-20 – UML for EDOC Part II

D-4 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

 <<BP Package>>
Exchange

</Debit> </Credit>
Exchange

Figure 5 Exchange Pattern

/Supplier /Customer

/Supplier

/Customer Bank

Buyer Seller

Debit

Credit Debit

Credit

TransSender TransRcpt

Order Process

Funds Transfer

Exchange Exchange

<<BP Binding>>

<<BP Binding>> <<BP Binding>>

<<BP Binding>>

Figure 6 Purchase Model

Figure 6 represents collaboration by applying multiple patterns into the model. There is an
order process pattern between a customer and a supplier, and an exchange process pattern
is also applied between a customer and its bank to express the process of payment from a
customer to its bank. Furthermore, the funds transfer pattern is applied between customer
bank and supplier bank to process the transaction between two. At last, a supplier
withdraws the payment from supplier bank. Figure 7 below represents the object model after
all patterns are unfolded.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II D-5

/Customer

/Supplier
Bank

/Customer
Bank

/Supplier Order

Exchange

Funds Transfer

Exchange

Buyer

Trans Rcpt Trans Sender

Seller

Debit

Credit

Credit

Debit

Figure 7 Unfolded Purchase Model

This example uses the patterns in one layer, but by applying patterns in several layers more
effective and reusable model models can be created.

2. Process Model Patterns

Section 5.5 of Part I titled Process Model Patterns describes various patterns of common
usage and associated special notion that may be useful when using the ECA Process Model.
In there, the pattern in terms of its normal notation possibly with parameterized parts are
described.

However, It is not sufficient to express the complexity required by these patterns, since they
usually consist of a CompoundTask parameterized by an Activity that will have some
unknown number of ProcessMultiPorts and ProcessFlowPorts. When instantiating such a
template with respect to a particular Activity, the Compound Task needs to have
corresponding ProcessMultiPorts and ProcessFlow Ports connected by Flows to the
equivalent ports on the Activity argument to the template.

We show examples of describing the Process Model Patterns with the BP Package notation

ad/2001-08-20 – UML for EDOC Part II

D-6 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

2.1 Activity

• ƒActivity>

• ƒR> <A>

<SIG> <SOG>

<AIG>
<EOG>

<AOG>

<P>

Activity

Note:
<SIG>: Sync InputGroup, <AIG>: Async InputGroup
<SOG>: Sync OutputGroup, <AOG>: Async OutputGroup
<EOG>: ExceptionGroup
<P>: Performer, <PR>:ProcessRole
<A>: Artifact, <R>: ResponsibleParty

<PR>

Figure 8 Activity Pattern

2.2 CompoundTask

<SIG1> <SOG1>

<AIG1>

<EOG1>

<AOG1>

CompoundTaskFrame

<SIG2>

<SIG3>

<AIG2>

<AIG3>

<SOG2>

<SOG3>

<AOG2>

<AOG3>

<EOG2>

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II D-7

• ƒActivity>

• ƒR> <A>

<SIG> <SOG>

<AIG>

<EOG>

<AOG>

CompoundTask

Activity

CompoundTaskFrame

<P>

Figure 9 CompoundTaskFrame and CompoundTask pattern

2.3 ActivityPreCondition and ActivityPostCondition

• ƒActivity>

• ƒR> <A>

<SIG> <SOG>

<AIG>

<EOG>

<AOG>

CompoundTask

Activity

CompoundTaskFrame

<P>

PreCond:
SIG
AIG
<OCL>

PostCond:
SOG
AOG
EOG
<OCL>

Activity : SIG, AIG -> SOG, AOG, EOG:
 <OCL>

Figure 10 ActivityPreCondition and ActivityPostCondition Pattern

ad/2001-08-20 – UML for EDOC Part II

D-8 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

2.4 Timeout

• ƒActivity>

<SIG> <SOG>

<EOG>

Timeout

CompoundTask

CompoundTaskFrame

CompoundTask

<Clock>

<IU> <OU>

SIU AOU

<IU>: InputUsage
<OU>: OutputUsage

Figure 11 Timeout Pattern

2.5 Terminate

• ƒActivity>

<SIG> <SOG>

<EOG>

Terminate

CompoundTask

CompoundTaskFrame

SIG SOG

<AIG>

Figure 12 Terminate Pattern

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II D-9

2.6 Simple Loop

• ƒActivity>

<SIG>
<SOG>

SIG

Simpleloop

CompoundTask

CompoundTaskFrame

Simpleloop

SIG SOG

AOG

Figure 13 Simple Loop Pattern

2.7 While and Repeat/Until Loop

• ƒActivity>

<SIG> <SOG>

SIG

Whileloop

CompoundTask

CompoundTaskFrame

Whileloop

SIU
SOG

AOG

• ƒWhile>

CompoundTask
SIG

SIG

Figure 14 While Loop Pattern

ad/2001-08-20 – UML for EDOC Part II

D-10 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

2.8 For Loop

• ƒWhile>

<SIG> <SOG>

AOG

Forloop

CompoundTaskFrame

Whileloop

SOG SIG

• ƒInit>

CompoundTask

SIG

• ƒActivity>

Figure 15 For Loop Pattern

2.9 Multitask

• ƒActivity>

<SIG> <SOG>

SIG

MultiTask

CompoundTask

CompoundTaskFrame

MultiTask

SIU

SOG

EOG

• ƒSplit>

CompoundTask

SIG SIG

<EOG>

EOG

SOG

Figure 16 Multitask Pattern

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II D-11

2.10 Procurement

<SIG1>

Procurement

CompoundTaskFrame

SOG

Award

SIG SOG
Evaluation

SIG SOG

Sourcing

SIG
SOG

Maintain

SIG

SOG

Release

SIG AOG

Monitor

SIG

AOG

Process Order

AIG
SOG

Receipt Approve

SIG

SOG

Source Freight-dependent
Request

SIG

Accounting Officer Order/Contract Purchasing Officer

EOG
Timer

SIG

Supplier Inventory Account Payable

Request
RequestGrp

Accounting

Acc’ting/Closing

AOG

<SOG>

<SIG2>

SIG

Figure 17 Procurement Pattern

ad/2001-08-20 – UML for EDOC Part II

D-12 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

2.11 Evaluation

<Request>

<SIG2>

<EOG>

Evaluation

Evaluation Loop

CompoundTaskFrame

Log to Reject DB

SIG
SOG <SOG>

<Weightings> <RequestGrp>

<SIG1>

Reject DB

<Request>

<SIG>

<EOG>

Evaluation Loop

Check
Suppliers

CompoundTaskFrame

Maintain
Suppliers

SIG SOG <SOG1>

<Weightings> <RequestGrp>

Rank
Suppliers

<SOG2>

SIG

Evaluation Loop

PreCond:
 SIG1: SIU:Resource Requirements
 SIG2: SIU1: Resource Requirements ,SIU2: Freight Info
 <OCL>
PostCond:
 EOG: EOU:Error
 SOG: SOU:Contorol
 <OCL>

Evaluation: SIU, SIG2:SIU1, SIG2:SIU2 -> EOU, SOU
 <OCL>

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II E-1

Annex E - Technology mappings from EDOC to
Distributed Component and Message Flow Platform

Specific Models

Contents

List of Figures 3

List of Tables 4

1. Introduction to EDOC and Platform Specific Models 4
1.1 Introduction to EDOC... 4
1.2 EDOC and Platform Specific Models .. 6

2. Principal Platform Specific Models 8
2.1 Distributed components using a multi-tier architecture model... 8

2.1.1 Implementation neutral technology model 9
2.2 Mapping to Distributed Component Models .. 10

2.2.1 Mapping to CORBA 3 / CCM 10
2.2.2 Mapping to J2EE/EJB 10
2.2.3 Mapping to Microsoft COM+ and .Net 10

2.3 Mapping to Message Flow Models ... 11
2.3.1 Mapping to the Flow Composition Model (FCM) 11
2.3.2 Mapping to Workflow Services 11
2.3.3 Mapping to Message Brokers 11
2.3.4 Mapping to ebXML 11
2.3.5 Mapping to Web Services 12

2.4 Mapping approaches .. 12

3. Mapping from EDOC to J2EE/EJB 13
3.1 The Model of J2EE .. 13
3.2 Model and UML Profile for EJB.. 14

3.2.1 A basis in UML for EJB: JSR-26 14
3.2.2 EJB Design Model – External view 14
3.2.3 EJB Design Model – Internal view 15
3.2.4 EJB Implementation Model 16

3.3 Mapping from the EDOC CCA Profile .. 16
3.3.1 Mapping Process Components and Protocols 16
3.3.2 Mapping Composition 21
3.3.3 Mapping Choreography 24
3.3.4 Mapping Document Model 25

3.4 Mapping from the Entities Profile ... 27
3.5 Mapping from the Relationship Profile .. 29

ad/2001-08-20 – UML for EDOC Part II

E-2 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

3.6 Mapping from the Event Profile ...30
3.7 Mapping from the Business Process Profile ..33
3.8 Mapping from the Patterns Profile...36

4. Mapping from EDOC to CORBA/CCM 36
4.1 The Model of CORBA 3..37
4.2 CCM – The CORBA Component Model..38
4.3 UML Profile for CCM...39

4.3.1 Some suggested Stereotypes 39
4.3.2 Tagged Values 40

4.4 Mapping from the EDOC CCA Profile...42
4.4.1 Mapping Process Components and Protocols 42
4.4.2 Mapping Composition 46
4.4.3 Mapping Choreography 48
4.4.4 Mapping Document Model 48

4.5 Mapping from the Entities Profile ..49
4.6 Mapping from the Relationship Profile ...50
4.7 Mapping from the Event Profile ...51
4.8 Mapping from the Business Process Profile ..52
4.9 Mapping from the Patterns Profile...54

5. Mapping From EDOC Business Process to CORBA 54
5.1 Common Base Types for the Business Process Model ...54

5.1.1 BusinessProcess 54
5.1.2 CompoundTask 55
5.1.3 Activity 55
5.1.4 ProcessRole 56

5.2 Notification-based Mapping for the Business Process Model...57
5.2.1 CompoundTask (as represented by Activity) 57
5.2.2 ProcessFlowPort (represented by ProcessPortConnector) 58
5.2.3 Activity(representing a CompoundTask with a Composition) 58
5.2.4 ExceptionGroup 58

5.3 Interface-based Mapping for the Business Process Model..59
5.3.1 Activity (representing CompoundTask instance) 59
5.3.2 ProcessMultiPort 61
5.3.3 ProcessFlowPort 61
5.3.4 CompoundTask (instantiated to give Activities) 61
5.3.5 ExceptionGroup 62
5.3.6 BusinessProcess 62

6. Mapping from EDOC Business Process to FCM 62
6.1 Overview of FCM Concepts ...62
6.2 Mapping from the Business Process Profile to the FCM...63

6.2.1 Mapping CompoundTask 63
6.2.2 Mapping Activity 63
6.2.3 Mapping ProcessPortConnector 63
6.2.4 Mapping ProcessFlowPort 63
6.2.5 Mapping DataFlow 64
6.2.6 Mapping InputGroup 64
6.2.7 Mapping OutputGroup 64
6.2.8 Mapping BusinessProcess 64
6.2.9 Mapping ProcessRole 64
6.2.10 Mapping Performer 64
6.2.11 Mapping Artifact 65
6.2.12 Mapping ResponsibleParty 65
6.2.13 Procurement Example 65

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II E-3

List of Figures

Figure 1 EDOC related to RM-ODP viewpoints.. 6
Figure 2 EDOC & Technology mapping... 7
Figure 3 Multi-tiered reference model for Enterprise systems ... 8
Figure 4 — Implementation neutral abstract technology model... 9
Figure 5 Mapping to ebXML.. 12
Figure 6 — J2EE/EJB model.. 13
Figure 7 CCA Structural Specification Model.. 17
Figure 8 CCA Composition and usage model.. 22
Figure 9 CCA Choreogrpahy.. 24
Figure 10 CCA Document Model... 26
Figure 11 ECA Entity Model... 27
Figure 12 ECA Relationship model.. 29
Figure 13 EDOC Event Model... 30
Figure 14 EDOC Business Processes ... 33
Figure 15 Pattern structures.. 36
Figure 16 — CORBA Technologies related to Abstract Architecture model... 37
Figure 17 CCM External view.. 38
Figure 18 Corba Component Model.. 39
Figure 19 Procurement example .. 65

ad/2001-08-20 – UML for EDOC Part II

E-4 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

List of Tables

Table 2: EJB Design Model – External View - UML Stereotypes ..14
Table 3: EJB Design Model - External View - UML Tagged Values ..14
Table 4: EJB Design Model – Internal View - UML Stereotypes...15
Table 5: EJB Design Model – Internal View – Tagged values ...16
Table 6: EJB Implementation Model – UML Stereotypes...16
Table 7: Stereotypes for Structural Specification (UML notation: Class Diagram) ..20
Table 8: Stereotypes for Composition (UML notation: Collaboration Diagram at specification level)23
Table 9: Stereotypes for DocumentModel (UML notation: Class Diagram)...27
Table 10 Element Mappings..29
Table 11 Mapping Events Concepts to Profile Elements..32
Table 12 Mapping of process profile ...35
Table 13: UML Profile for CCM – Suggested Prototypes ..40
Table 13: UML Profile for CCM – Tagged Values ...42
Table 14: Stereotypes for Structural Specification (UML notation: Class Diagram) ..45
Table 15: Stereotypes for Composition (UML notation: Collaboration Diagram at specification level)47
Table 17: Stereotypes for DocumentModel (UML notation: Class Diagram)...49
Table 18 Element Mappings..50
Table 19 Mapping Events Concepts to Profile Elements..52
Table 20 Mapping of process profile ...54

1. Introduction to EDOC and Platform Specific
Models

1.1 Introduction to EDOC

The ECA – Enterprise Collaboration Architecture is a model-driven architecture approach
for specifying Enterprise Distributed Object Computing systems.

A forthcoming RFP will address technology mappings for “UML for EDOC”.

This annex is non-normative and illustrates technology mappings to Distributed
Component Models (in particular J2EE/EJB and CORBA/CCM) and a discussion on
forthcoming mappings to Message Flow Models (FCM (Flow Composition Model from
EDOC Part I), Workflow, MOM, WSDL, ...). This annex also contains a more detailed
description of mappings from the EDOC Business Process profile to CORBA and FCM.

The EDOC vision is to provide a recursive collaboration based modeling approach that can
be used at different levels of granularity, for both business and systems modeling. EDOC is
able to support the specification of both loosely and tightly connected systems, with
support for both synchronous and asynchronous communication in both container
managed and message-based architectures.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II E-5

This is done by providing a kernel in the CCA – the Component Collaboration Architecture
with extensions for events, for entities, for relationships, and business processes and the
use of patterns.

The focus of the ECA is on enterprise, computational and information specifications for a
platform independent model of an EDOC system. These are transformed further to
engineering and technology specifications for platform specific models using technology
concepts from an appropriate Technology Specific Model.

Neither the business world, nor the computing world, applies only one paradigm to their
problem space. Businesses use a combination of loosely coupled and tightly coupled
processes, and computing solutions to deploy a combination of loosely coupled and tightly
coupled styles of communication and interaction between distributed components.

An ECA based business process can be defined as event driven for some of its steps and
workflow or request/response driven for others. Likewise, distributed components in the
ECA can be configured to communicate with each other in a mixture of event-driven publish-
and-subscribe, asynchronous peer-to-peer, and client-server remote invocation styles.

The EDOC Profile anticipates three levels of component coupling: linked, tightly coupled
and loosely coupled.

Linked coupling refers to components that are co-located in the same address space. These
components interact with each other directly, without communicating over a network. As
such, they can interact without being identifiable over the network. Messaging will generally
be synchronous, within the scope of a single transaction.

Tightly coupled components are distributed across multiple servers. These components will
also interact with synchronous messaging, but messaging will occur over a network. While
some messaging between the components may be asynchronous for performance and
recoverability considerations, components are tightly coupled if any interactions between
them are synchronous.

Loosely coupled components are distributed and only communicate asynchronously,
through a messaging infrastructure. Communication is through messages and events. A
message or event is issued in the scope of one transaction and accepted by one or more
recipients in independent transactions. Messages and events are stored and forwarded. A
message is a communicated with a defined recipient, and an event is a communicated
(published) with self-declaring recipients (subscribers) unknown to the publisher.

The level of coupling between components has important performance and system flexibility
implications. Generally, components should be designed in a level-of-coupling hierarchy so
that components that are linked are within components that are tightly coupled, and tightly
coupled components are then loosely coupled with each other. This coupling hierarchy
should be reflected in the network accessibility property of components and the
synchronous vs. asynchronous property of their ports.

With a consistent mapping to a particular technology, implementations of independently
developed specifications should be operationally interoperable. Furthermore, components
implemented with different technologies should be operationally interoperable if the
technology mappings are consistent with the transformations provided by bridges between
the technologies.

An EDOC computational specification can specify ProcessComponents at a number of
different levels. These levels correspond to four general categories of ProcessComponent:

ad/2001-08-20 – UML for EDOC Part II

E-6 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

• E-Business Components

• Application Components

• Distributed Components

• Program Components

In this annex we only discuss a mapping of Process Components at the Distributed
Component level, through mappings to EJB and CCM, even if the EDOC approach will be
suitable for all levels. A wider scope for mapping is anticipated for a forthcoming RFP on
technology mappings.

1.2 EDOC and Platform Specific Models

EDOC based specifications can be mapped down to various technology choices, and in
particular both container-managed components and message-based services. Two Platform
Specific Models are defined as part of the EDOC Profile, for Enterprise Java Beans and Java
enterprise computing architectures, and for the Flow Composition Model (FCM).

The EJB metamodel captures the concepts that will be used to design an Enterprise
JavaBean-based application down to the Java implementation classes. The metamodel
includes the assembly and deployment descriptor

FCM is a general-purpose model that supports creating flow compositions of components
and defining behaviors of those compositions using wiring diagrams. It provides a common
set of technology abstractions across a variety of flow model types used in message
brokering. FCM is related to the principal model in MQ-Series but it has more general
applicability and is positioned as a layer of abstraction just above middleware technology,in
contrast to the EDOC Business Processes profile which is intended technology neutral and
intended for use in an analysis level model.

Enterprise viewpoint
(CCA, Business Processes, Entities, Relationships, Events)

Information viewpoint
(Entities, Relationships)

Computational viewpoint
(CCA, Events)

Engineering viewpoint
 (FCM – Flow Composition Model)

Technology viewpoint
(UML for J2EE/EJB/JMS, CORBA 3/CCM, COM, SOAP,ebXML, ...)

(Patterns - applied to all viewpoints)

Figure 1 EDOC related to RM-ODP viewpoints

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II E-7

The focus of the main ECDOC parts is on implementation neutral enterprise, computation
and information specifications. This is transformed further to platform specific technologies
in the technology viewpoint, potentially with common platform abstractions in an
engineering viewpoint, for instance with FCM – for message based platforms, and a similar
abstraction for distributed component platforms.

Neither the business world, nor the computing world, applies only one paradigm to their
problem space. Businesses use a combination of loosely coupled and tightly coupled
processes and computing solutions deploy a combination of loosely coupled and tightly
coupled styles of communication and interaction between distributed components.

The group of distributed component models includes technologies for container-manged
components, such as EJB, CCM and COM+. The broader context for these technologies with
J2EE, CORBA 3 and MS DNA/.Net also contains support for more asynchrounous and
message-based services. EDOC based specifications can be mapped down to various
technology choices, and in particular both container-managed components and message-
based services.

 EDOC & Technology Mapping

ProcessEntitiesProcess
Business
Process

Collaboration Component Architecture

ProcessEvent ProcessRelationship

Distributed Component Model Mapping

EJBCOM+ CCM
Message Model Mapping

ebXML MOM

DCP

ebXML ebXML BPBP

FCM

WorkWork
FlowFlow

Architecture Patterns

Enterprise Collaboration
Architecture

Webservices

Figure 2 EDOC & Technology mapping

An EDOC based business process can be defined as event driven for some of its steps and
workflow or request/response driven for others. Likewise, distributed components in the
CCA profile can be configured to communicate with each other in a mixture of event-driven
publish-and-subscribe, asynchronous peer-to-peer, and client-server remote invocation
styles. The Event Model describes the purely event driven approach

The EDOC approach unifies specification for both Distributed Component and Message
Oriented platform specific models. It includes a possibility for specifying both operations
(request-response messages) and one-way messages and events. This might be mapped to
Distributed Component technologies using traditional operations and one-way
operations or event/notification services, and to Message Oriented technologies using
composed messages (request-response pairs) and traditional messages. In broader

ad/2001-08-20 – UML for EDOC Part II

E-8 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

platform environments, such as CORBA 3 or J2EE, there is support for both technologies,
and a combination of distributed components and messaging might be used in one system.

2. Principal Platform Specific Models

2.1 Distributed components using a multi-tier architecture model

To support flexible Enterprise systems, IT architectures can be structured as multi-tiered
distributed architectures. As a reference model, a logical 4-tier architecture is presented .

Model/Information
Management serv

Shared processing
Services

User processing
services

Human Interaction
services

Workflow/Task
services

System
Management serv

Figure 3 Multi-tiered reference model for Enterprise systems

The figure above shows the various parts of a multi-tiered reference model for enterprise
systems:

• The Human Interaction service tier is responsible for physical interaction with the user,
through display and input media, and an appropriate dialogue.

• The Communication services are responsible for connecting the various tiers together
(although not labelled in the figure, the communication services are present as
connections between the other service tiers).

• The User processing service tier is a part of the processing services responsible for the
functionality required by the user

• The Business processing service tier is part of the processing services responsible for
common services (both domain specific and general) that can be used by multiple users.

• The Model/Information Management service tier is responsible for physical data
storage and data management.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II E-9

• The Workflow/Task services is a set of services that can be viewed as a specialised
processing service, supporting sequencing of actions and tools.

• The System Management services tier is orthogonal to the multi-tiered architecture, and
might be introduced in multiple tiers.

The logical architecture can be mapped to multiple physical architectures. All tiers could be
mapped into one monolithic application, or through different client-server architectures. The
communication within and between the tiers can be inter- and/or intra- enterprise, and be
both synchronous and asynchronous.

2.1.1 Implementation neutral technology model

Deferred
Synch request

Naming service

Persistence service

Server
Components

Message

Transaction
service

Concurrency
service

XML

Synchron.
request

Event - publish &
subscribe

Model/Information
Management serv

Shared processing
Services

User processing
services

Human Interaction
services

Trading service
Security
 service

Workflow/Task
services

Streaming

Integration service

User Interface
Document model
Web interaction

System
Management serv

Communication
services

Figure 4 — Implementation neutral abstract technology model

The figure above shows an implementation neutral and abstract technology model of
various services available in a typical target environment, such as CORBA 3 or J2EE.

The abstract technology model is related to typical service support for a multi-tiered service
model, with the following services

Human Interaction Services are supported by various user interface mechanisms, including
web-browsers.

Communication Services are supported by a principal set of 3+2 interaction modes:
operations (synchronous or deferred synchronous requests), signals (event
publish/subscribe or asynchronous messaging) and flows (with streaming). Associated with
this is general naming and trading services.

ad/2001-08-20 – UML for EDOC Part II

E-10 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

In the context of UML for EDOC, it is important to note the need to support different
communication mechanisms, in particular both synchronous and asynchronous
communication, and both request/reply and notification oriented interaction.

Workflow/Task Services are supported by a set of workflow/task services.

System Management Services are supported by various kinds of user, application and
security management services.

Processing Services are separated into user and shared services, where user services
typically are supported in a single user mode, while shared services adds functionality for
server-side and multi-user support with concurrency and transactions.

Model/Information Management Services are supported through data storage, persistence
and manipulation services – potentially including various legacy system/format integration
services.

The target infrastructure for the technology mapping of enterprise systems, will typicall
consist of parts that supports the services described above.

In this document however, the focus for technology mapping is only on the container-
managed shared processing services of J2EE/EJB and CORBA/CCM, thus addressing only
a subset of a total system architecture. It is expected that a wider range of technologies
will be targeted in a future RFP on technology mappings for EDOC.

2.2 Mapping to Distributed Component Models

EDOC and CCA supports both synchronous and asynchronous message specification. The
current EJB, DCOM and CCM specifications are mostly tuned towards synchronous
interactions. The current trend is, however, to integrate asynchronous message support als o
for such managed components. The overall platform infrastructures already provides
supports for asynchronous messaging through JMS, MSMQ and the CORBA Message
service.

2.2.1 Mapping to CORBA 3 / CCM

This document contains a possible mapping from EDOC to the CCM – CORBA
ComponentModel part of CORBA 3. A normative extension to this is expected to be
submitted for a future RFP on EDOC technology mappings.

2.2.2 Mapping to J2EE/EJB

This document contains a possible mapping from EDOC to the EJB –Enterprise Java Beans
part of J2EE. A normative extension to this is expected to be submitted for a future RFP on
EDOC technology mappings.

2.2.3 Mapping to Microsoft COM+ and .Net

Future work could include a mapping to Microsoft COM+ and/or .Net.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II E-11

2.3 Mapping to Message Flow Models

2.3.1 Mapping to the Flow Composition Model (FCM)

The FCM is a Flow Composition Model (FCM) that can describe the interactions and flows
of information between application components

Further mapping from FCM to various message flow models will be addressed by the
forthcoming “UML for EAI –Enterprise Application Integration” submission, and is thus not
detailed further here.

2.3.2 Mapping to Workflow Services

Workflow is a possible service to support business processes. In the CORBA/CCM
mapping it is shown how it is possible to map the EDOC Business Process profile to the
CORBA Workflow service.

2.3.3 Mapping to Message Brokers

Message services are typically provided by Message Broker products, addressing the needs
of business and application integration through management of information flow. It provides
services that allow you to:

• Route a message to several destinations, using rules that act on the contents of one or
more of the fields in the message or message header.

• Transform a message, so that applications using different formats can exchange
messages in their own formats.

• Store and retrieve a message, or part of a message, in a database.

• Modify the contents of a message (for example, by adding data extracted from a
database).

• Publish a message to make it available to other applications. Other applications can
choose to receive publications that relate to specific topics, or that have specific
content, or both.

In particular in the EAI, Enterprise Application Integration, area it has been a trend towads
the use of message brokers. A goal of EDOC has been to specify models that can provide a
basis for EAI modeling, targeting infrastructure support from message brokers.

It is expected that the forthcoming RFP submission on UML for EAI will be able to make use
of the base EDOC models.

2.3.4 Mapping to ebXML

The development of the concepts for EDOC and CCA has been developed in close contact
with the development of the modeling approach for ebXML (ref. www.ebxml.org).

ad/2001-08-20 – UML for EDOC Part II

E-12 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

In particular the modeling approach has been tuned to meet the requirements for
asynchronous messaging and business protocol specifications emerging in that
environment.

CPP: Collaboration Protocol Profile
CPA: Collaboration Protocol Agreement
BT: Business Transaction
BD: Business Document

BuyerC
<<Bus inessServ ice In ter face>>

Sel lerC
<<Bus inessServ ice In ter face>>

Sa lesP ro toco l
<<CPP>>

O r d e r B T
< < B T > >

buyRo leOrde r

+ orderConf i rmed() : orderConfBD
+ orderDen ied() : o rderDenBD

< < P r o t o c o l R o l e > >

se l lRo leOrder

o rde r (Orde rBD)

<<Pro toco lRo le>>

buy

<<Protoco lPor t>>

se l l

<<Protoco lPor t>>

<<connec t ion>>

SalesProtoco lS
< < C P P > >

MessageAg
<<CPA>>

O r d e r
<<Bus inessDocumen t>>

Figure 5 Mapping to ebXML

The ebXML message-based infrastructures is a potential target for EDOC-based
specifications. The figure shows the mapping from the EDOC Buyer-Seller example to
some of the related ebXML model concepts.

2.3.5 Mapping to Web Services

The emergence of Web Services, with specication languages such as WSDL (Web
Services Definition Language) is a suitable target for EDOC based models. It is expected
that Web Services will be a target for a future RFP for EDOC technology mappings.

2.4 Mapping approaches

A mapping to a technical platform can use one of two basic approaches:

Type 1. It can describe how to transform a model to a set of declarations expressed in the
native declarative language of the chosen technical platform. This kind of transformation
targeted to the CORBA platform generates declarations expressed in CORBA IDL, i.e.
CORBA interfaces, valuetypes, etc. If targeted to the Java platform, it generates declarative
Java code, i.e. Java interfaces and abstract classes. If targeted to XML, it generates an XML
DTD or XML Schema, both of which are essentially declarative code.

Type 2. It can describe how transform a model to another UML model expressed in terms of a
UML profile targeted to the chosen technical platform, such as the UML Profile for CORBA1

1 [UML-CORBA]

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II E-13

or the UML Profile for EJB2. Such UML profiles support expression via UML of declarative
semantics in terms of the concepts native to the chosen technical platform.

This document discusses the mapping from EDOC to J2EE/EJB and CORBA/CCM using a
Type 2 approach with a discussion on mapping from UML for EDOC model elements to
elements of the JSR-26 UML for EJB profile, and to an early draft UML for CCM profile.

3. Mapping from EDOC to J2EE/EJB

3.1 The Model of J2EE

Remote Method
Invocation (RMI, IIOP)

Naming and
Directory Interface

(JNDI)

Database
Connectivity

(JDBC+)

Servlets &
Java Server
Pages + XSL

(Servlets +JSP)

Enterprise
Java Beans

(EJB)

Java Messaging
Service (JMS)

Transaction
API (JTA, JTS)

Connectors
(CICS, SAP, ERP)

XML

Java IDL
(JMI)

Java Mail &
Java Activation

Framework (JMI + JAF)

JINI (Trading)

Communication
services

Model/Information
Management serv

Shared processing
services

User processing
services

Human Interaction
services

Figure 6 — J2EE/EJB model

Human Interaction Services are supported by the Java windowing system and through
support for web-browsers, typically with web-server support such as Java Server Pages
(JSP) and increased support for XML and XSLT.

Communication Services are supported by Java RMI, as well as with the Java messaging
service and event¬ification through the messaging service. Further support for
communication of XML-structures will be provided by the Java XML-API.

Workflow/Task Services are not supported directly.

System Management Services are supported by Java Security and associated user services.

2 [JSR-26]

ad/2001-08-20 – UML for EDOC Part II

E-14 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

Processing Services are supported by server-side Enterprise Java Beans (EJB) and the
associated concurrency and transaction service.

Model/Information Management Services are supported by the JDBC and a forthcoming
Java persistence service, as well as the current Java serialisation.

In the forhcoming mapping presented here we are only focusing on the mapping of shared
processing services, using the EJB technology.

3.2 Model and UML Profile for EJB

3.2.1 A basis in UML for EJB: JSR-26

The EJB and Java Metamodel used here is based on the public version of the “UML for EJB”
profile, JSR-26, emerging from the Java Community Process. Some input to discussions on
this is described in the part I of this submission, UML for EDOC Part I – Chapter 5 section 1.

3.2.2 EJB Design Model – External view

3.2.2.1 UML Stereotypes
Stereotype Applies to Definition
<<EJBCreateMethod>> Operation Specializes «EJBHomeMethod». Indicates that the Operation

represents an EJB Create Method.
<<EJBFinderMethod>> Operation Specializes «EJBHomeMethod». Indicates that the Operation

represents an EJB Finder Method.
<<EJBRemoteMethod>> Operation Indicates that the Operation represents an EJB Remote Method.
<<EJBRemoteInterface>> Class Specializes the standard UML Stereotype «type». Indicates that

the UML Class represents an EJB Remote Interface.
<<EJBHomeInterface>> Class An abstract Stereotype indicating that the UML Class represents

an EJB Home Interface. Specializes the standard UML Stereotype
«type».

<<EJBSessionHomeInterface>> Class Indicates that the Class represents an EJB Session Home.
Specializes the Stereotype «HomeInterface».

<<EJBEntityHomeInterface>> Class Indicates that the Class represents an EJB Entity Home.
Specializes the Stereotype «HomeInterface».

<<EJBPrimaryKey>> Usage Indicates that the supplier of the Usage represents the EJB
Primary Key Class for the EJB Entity Home represented by the
client.

Table 1: EJB Design Model – External View - UML Stereotypes

3.2.2.2 UML Tagged Values

Tagged Value Applies To Definition
EJBSessionType Class

<<EJBSessionHomeInterface>>
Stateful or Stateless. Indicates whether or not the EJB
Session Bean maintains state.

Table 2: EJB Design Model - External View - UML Tagged Values

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II E-15

3.2.3 EJB Design Model – Internal view

3.2.3.1 UML Stereotypes
Stereotype Applies to Definition
<<EJBCmpField>> Attribute Indicates that the Attribute represents a container-managed field for an

EJB Entity Bean with container-managed persistence
<<EJBPrimaryKeyField>> Attribute Specializes «EJBCmpField». Indicates that the Attribute is the primary

key field for an EJB Entity Bean with container-managed persistence.
<<EJBRealizeHome>> Abstraction Indicates that the supplier of the Abstraction represents an EJB Home

Interface for the EJB Implementation Class represented by the client.
<<EJBRelizeRemote>> Abstraction Indicates that the supplier of the Abstraction represents an EJB Remote

Interface for the EJB Implementation Class represented by the client.
<<EJBImplementation>> Class Specializes the standard UML Stereotype «implementationClass».

Indicates that the Class describes an EJB Implementation Class,
distinguishing it from other Classes that may appear within a UML
Subsystem that represents an EJB Enterprise Bean.

<<EJBEnterpriseBean>> Subsystem An abstract Stereotype indicating that the Subsystem represents an
EJB
Enterprise Bean.

<<EJBSessionBean>> Subsystem Indicates that the Subsystem represents an EJB Session Bean.
Specializes «EJBEnterpriseBean».

<<EJBEntityBean>> Subsystem Indicates that the Subsystem represents an EJB Entity Bean. Specializes
«EJBEnterpriseBean».

<<EJBReference>> Association A Stereotype indicating that the navigable end of the UML Association
represents a referenced EJB Enterprise Bean.

<<EJBAccess>> Association A Stereotype indicating that the UML Association defines a security
role name relationship between a UML Actor and an
«EJBEnterpriseBean».

Table 3: EJB Design Model – Internal View - UML Stereotypes

3.2.3.2 UML Tagged Values

Tagged value Applies to Definition
EJBRoleNames Operation A comma-delimited list of Strings, designating the security roles

that may invoke the Operation.
EJBTransAttribute Operation An enumeration with values Not Supported, Supports, Required,

RequiresNew, Mandatory, or Never. Defines the transaction
management policy for the Operation.

EJBEnvEntries Subsystem
<<EJBEnterpriseBean>>

A comma-delimited list of tuples, designating the environment
entries used by the EJB Enterprise Bean, of the form <name, type,
value>.

EJBNameInJAR Subssytem
<<EJBEnterpriseBean>>

The name used for the EJB Enterprise Bean in the EJB-JAR.
Defaults to the name of the EJB Remote Interface.

EJBReferences Subssytem
<<EJBEnterpriseBean>>

A comma-delimited list of tuples, designating the other EJB
Enterprise Beans referenced by the EJB Enterprise Bean, of the
form <name, type, home, remote>.

EJBResources Subssytem
<<EJBEnterpriseBean>>

A comma-delimited list of tuples, designating the resource
factories used by the EJB Enterprise Bean, of the form <name,
type,auth>.

EJBSecurityRoles Subssytem
<<EJBEnterpriseBean>>

A comma-delimited list of tuples, designating the role names that
may invoke ALL operations on the EJB Enterprise Bean, of the
form <name, link>.

ad/2001-08-20 – UML for EDOC Part II

E-16 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

Tagged value Applies to Definition
EJBTransType Subssytem

<<EJBSessionBean>>
An enumeration with values Bean or Container. Indicates whether
the transactions of the EJB Session Bean are managed by the EJB
Session Bean or by its container, respectively.

EJBPersistenceType Subssytem
<<EJBEntityBean>>

An enumeration with values Bean or Container. Indicates whether
the persistence of the EJB Entity Bean is managed by the EJB
Entity Bean or by its container, respectively.

EJBReentrant Subssytem
<<EJBEntityBean>>

A Boolean value indicating whether or not the EJB Entity Bean
can be called reentrantly.

Table 4: EJB Design Model – Internal View – Tagged values

3.2.4 EJB Implementation Model

3.2.4.1 UML Stereotypes
Stereotype Applies to Definition
<<EJB-JAR>> Package Specializes the Stereotype «JavaArchiveFile». Indicates that the Package

represents an EJB-JAR.
<<EJBDescriptor>> Component Specializes the standard Stereotype «file». Indicates that the Component

represents an EJB Deployment Descriptor.
<<EJBClientJAR>> Usage Indicates that the client of the Usage represents an ejb-client-jar for the

EJB-JAR represented by the supplier of the Usage.

Table 5: EJB Implementation Model – UML Stereotypes

3.3 Mapping from the EDOC CCA Profile

This section details the mappings from the EDOC Part I CCA, Component Collaboration
Architecture.

3.3.1 Mapping Process Components and Protocols

Part of a component’s specification is the set of protocols it implements, a protocol specifies
what messages the component sends and receives when it collaborates with another
component and the choreography of those messages – when they can be sent and received.
Each protocol the component supports is provided via a “port”, the connection point
between components.

Protocols, ports and choreography comprise the contract on the outside of the component.
Protocols are also used for large-grain interactions, such as for B2B components.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II E-17

DirectionType
- initiates
- responds

<<Enumeration>>

Port
- name : String
- isSynchronous : Boolean
- isTransactional : Boolean
- direction : DirectionType
- postCondition : Status

<<boundary>>

PortOwner

n

1

+portsn

+owner 1

Ports

ProtocolPort
<<boundary>>

RespondingRole

- name : String

InitiatingRole
- name : String

Protocol

1

+uses

1

ProtocolType
0..1

1

+responder 0..1

1

0..1
1+initiator

0..1
1

DataElement
(from DocumentModel)

FlowPort
<<boundary>>

0..1

n

+type 0..1

n

FlowType

ProcessComponent
- granularity : GranularityKind
- isPersistent : Boolean = false
- primitiveKind : String = ""
- primitiveSpec : String

PropertyDefinition
- name : String
- initial : Expression
- isLocked : Boolean

1

n

+type1

n
PropertyType

0..1

0..n +typeProperty

0..1+constrains

0..n

DynType

1

n

+component 1

+properties n

Properties

MultiPort

Composition

Choreography

n
0..1

+subtypes

n
Generalization

+supertype

0..1

IsChoreography

OperationPort
<<boundary>>

Interface

UsageContext

IsComposition

GranularityKind

- program
- owned
- shared

<<Enumeration>>

Figure 7 CCA Structural Specification Model

In mapping to Distributed Component technologies, such as CCM, EJB, COM+ the most
significant specification aspect are the interfaces. In CCA interfaces are specified implicitly
through the protocol messages being sent from a Process Component and the messages
being received as replies. If the interaction is taking place through a synchronous
interaction, the operations of the interface can be derived through combining the request
and corresponding reply messages into the signature of an operation of the required
interface.

In mapping ProcessComponents and associated Ports with interactions according to
Protocols to an Interface-oriented technology, there is an issue of how to map FlowPorts
and OperationPorts, and how to combine these into interfaces. The EDOC Protocol
structure specification specifies messages being sent both ways between the protocol
initiator and the responder. In an interface-oriented mapping of this it is necessary to
analyse the direction of messages with respect to being sent from initiator or responder. The

ad/2001-08-20 – UML for EDOC Part II

E-18 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

rolename of the protocol can be used to give a default name for the interface to be provided
at each side, if the protocol represents a dual interface situation. The interface will be
populated by the operationport and flowports (operations without result) going in the
respective directions.

The EDOC model allows for ProcessComponents with multiple ports, and thereby both using
and providing multiple interfaces. Since some models, i.e. EJB allows for only one interface
per component (Bean) the interfaces related to multiple ports need to be merged, with a
potential for name-clashes and name-conflicts.

In the Composition model it is possible to delegate (connect) message flow from one
component to another, but still provide the message reply back to the initiator. This requires
that a reference to the reply-to object is included in the argument of a message, or that the
infrastructure provides for some means to identify the caller.

Subprotocols can be initiated by providing a reference to an object with an interface
according to its role in the subprotocol.

Metamodel element
name

Map comment EJB

ProcessComponent A ProcessComponent represents the
contract for a component that
performs actions – it “does
something”. A ProcessComponent
may realize a set of Ports for
interaction with other
ProcessComponents and it may be
configured with properties

Maps to an <<EnterpriseBean>> (in
this description) but can also naturally
map to higher (Business Process) or
lower (Object) level concepts.
(One of EJBSessionBean, or
EJBEntityBean)

IsPersistent
(Property of
ProcessComponent)

default=false, if true stores session
specific state across interactions

If true, EJBSessionType = Stateful. If
false EJBSessionType = Stateless
(default)
Is always true for EJBEntity.

Port A port realizes a simple or complex
conversation for a
ProcessComponent or protocol. Each
port is connected with collaborative
components that speak the same
protocol

All interactions with a
ProcessComponent are done via one
of its ports Each port provides a
connection point for interaction with
other components or services and
realizes a specific protocol. The
protocol may be simple and use a
“FlowPort” or the protocol may be
complex and use a “ProtocolPort” or
an “OperationPort”. If allowed by its
protocol, a port may send and receive
information.

Mapping depends on kind of port. See
below.

External view :
<<EJBRemoteInterface>>

Internal view :
<<EJBImplementation>> with
<<EJBRealizeRemote>> and
<<EJBRealizeHome>>

IsTransactional
(Property of port)

interactions with the component are
transactional & atomic

IsTransacational = true means a
mapping to an EJBTransAttribute of
one of supports, required, requiresNew,
mandatory
IsTransacational = false means a
mapping to EJBTransAttribute of one

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II E-19

Metamodel element
name

Map comment EJB

of notSupporte or Never
IsSynchronous
(Property of port)

A port may interact synchronously or
asynchronously. A port that is
marked as synchronous is required to
interact using synchronous messages
and return values

IsSynchronous = true means mapping
to operations,
IsSynchronous = false (default) means
mapping to a message (JMS) or an
event notification mechanism

Direction
(Property of port)
Initiates or
Responds

Indicates that the port will either
initiate or respond to the related type.
An initiating port will send the first
message. Note that by using
ProtocolPorts a port may be the
initiator of some protocols and the
responder to others.

The direction of the port is with respect
to the protocol, it is only implicitly
mapped to EJB (See below)

FlowPort A Flow Port is a port which defines a
data flow in or out of the port on
behalf of the owning component or
protocol.

direction in is one way operation or
out is a one way call

Direction Initiates:
Maps to a
message being sent.

Direction Responds:
Maps to a message being received. In
the synchrounous case this is a
mapping to an operation without return
values in an interface, In the
asynchrounous case this is a mapping
to an event being received.

ProtocolPort A protocol port is used for potentially
complex two-way interactions
between components

Maps to the Interface and/or
Message/Event being used and/or
provided for a two-way interaction

MultiPort Each port owned by the MultiPort will
“buffer” information sent to that port
until all the ports within the MultiPort
have received data, at this time all the
ports will send their data

Direction Responds: Maps to an
implementation where a set of
messages (events) need to be received
by the port before it is sent further.

OperationPort An operation port represents the
typical call/return pattern of an
operation. The OperationPort is a
PortOwner which is constrained to
contain only flow ports, exactly one
of which must have its direction set to
“initiates”.

Direction Initiates:
This maps to the invoker of an
operation, which is not explicitly
represented in EJB.

Direction Responds:
This maps to an operation to be
implemented. (an operation in an
interface) (EJBRemoteInterface).

ad/2001-08-20 – UML for EDOC Part II

E-20 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

Metamodel element
name

Map comment EJB

Protocol A protocol defines a type of
conversation between two parties, the
initiator and responder. One protocol
role is the initiator of the conversation
and the other the responder.
However, after the conversation has
been initiated, individual messages
and sub-protocols may by initiated by
either party.

Maps to a description of the messages
and operation interactions in a
conversation. Only the responding side
is explicitly represented in EJB.

Interface An interface is a protocol constrained
to match the capabilities of the typical
object interface. It is constrained to
only contain OperationPorts and
FlowPorts and all of its ports must
respond to the interaction (making
interfaces one-way)
Each OperationPort or FlowPort in the
Interface will map to a method. A
ProtocolPort which initiates the
Interface will call the interface. A
ProtocolPort which Responds will
implement the interface
Existing interface

An EDOC interface represents a
protocol that maps directly to a UML
interface that again is mapped to a Java
(EJB) interface. Depending on the
direction (initiates or responds) the
Interface is either used or provided
(responds).

InitiatingRole The role of the protocol which will
send the first message

Default Interface name

Represents the EJB Bean that is the
initiator of a protocol

RespondingRole The role in the protocol which will
receive the first message
Default Interface name

Represents the EJB Bean that is the
receiver of the first message in a
protocol

PropertyDefinition PropertyDefinition defines name and
type for properties which may be set
when the ProcessComponent is used

Properties on the EJB Bean. Can be
mapped to EJBEnvEntries

Table 6: Stereotypes for Structural Specification (UML notation: Class Diagram)

A protocol specifies the conversation between two ProcessComponents (via their ports).
Each component that is using that protocol must use it from the perspective of the “initiating
role” or the “responding role”. Each of these components will use every port in the
protocol, but in complementary directions.

Each port is connected with collaborative components that speak the same protocol. Multi-
party conversions are defined by components using multiple ports, one for each kind of
party.

Components interact with their environment through ports. A port has a defined interaction
protocol. Ports may send messages, receive messages, or both. A port may be implemented
as an object interface, e.g., CORBA or Java interface.

Ports are synchronous or asynchronous. A synchronous port communicates within the
context of a transaction. An asynchronous port communicates in a store-and-forward
manner so that sending a message occurs in the context of one transaction and receipt of the
message then occurs in the context of another transaction.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II E-21

Ports may communicate with messages or event notices. A message is directed to a specific
destination. An event notice is published to the communication infrastructure to be
delivered to subscribers—destinations that have expressed interest. The messages and
event notices may be communicated synchronously or asynchronously.

All Data Managers will have a synchronous interface port that represents the typical object
interface. A Data Manager may have other ports, such as to send messages to other Data
Managers, and to send and receive asynchronous messages and events.

3.3.2 Mapping Composition

Components may be abstract (having only an outside) or concrete (having an inside and
outside). Frequently a concrete component inherits its external contract from an abstract
component – implementing that component.

There may be any number of implementations for an abstract component and various ways
to “bind” the correct implementation when a component is used.

The two basic kinds of concrete components are:

• Primitive components – those that are built with programming languages or by
wrapping legacy systems.

• Composed components – Components that are built from other components; these use
other components to implement the new components functionality. Composed
components are defined using a composition.

Compositions define how components are used. Inside of a composition components are
used, configured and connected. This connected set of component usage’s implements the
behavior of the composition in terms of these other components – which may be primitive,
composed or abstract components.

Compositions can also include a choreography of how the components used work together,
which should execute when.

Compositions are used to build composed components out of other components and to
describe community processes – how a set of large grain components works together for
some purpose.

Central to compositions are the connections between components, values for configuration
properties and the ability to bind concrete components to a component usage.

ad/2001-08-20 – UML for EDOC Part II

E-22 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

PortConnector

Connection

Dependencies
are informative,
not normative.

UsageContext

Port

- name : String
- isSynchronous : Boolean
- isTransactional : Boolean
- direction : DirectionType
- postCondition : Status

PortUsage

1

n

+extent1

+portsUsed
n

PortUsages

1

n

+represents
1

n

Represents

ContextualBinding

Composition owns

1

n

+owner 1

+bindings n

Bindings

ProcessComponent

1

n

+bindsTo
1

n BindsTo

creates

ComponentUsage

name : String

1

n

+fills 1

n

Fills

1

n

+owner

1

+uses
n

ComponentUsages

creates

1

n +uses

1

n

Uses

PropertyValue

- value : Expression

n

1

+configurationn

+owner1

PropertyDefinition
- name : String
- initial : Expression
- isLocked : Boolean

n

1

n

+fills 1

ValueFor

CommunityProcess

AbstractTransitionChoreography
n

+connections

n

Connections

IsChoreography

n
0..1

+subtypes
n

Generalization

+supertype
0..1

connects

IsComposition

Figure 8 CCA Composition and usage model

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II E-23

Metamodel element name Mapping description EJB
Composition Compositions describe how

instances of ProcessComponents
(called ComponentUsages) are
configured (with PropertyValues
and ContextualBindings) and
connected (with Connections) to
implement the composed
ProcessComponent or
CommunityProcess.

Maps to the structure of interacting
components (beans), and how they
are configured and connected. Not
explicitly represented in EJB.

ComponentUsage A ComponentUsage will cause a
ProcessComponent instance to be
created at runtime (this instantiation
may be real or virtual).

Maps to the use of one component by
another.

PortConnector PortConnector provides a
“connection point” for
ComponentUsages within a
composition and exposes the
defined ports within the
composition. The connections
between PortConnectors are made
with Connections.

Maps to the realisation of ports. EJB
interfaces represents responding
ports. Initiating ports are not
represented in EJB.

Connection A Connection connects two
PortConnectors within a
composition. Each port can
produce and/or consume message
events. The connection logically
registers each port connector as a
listener to the other, effectively
making them collaborators.

This is the representation of the
communication between two
PortConnectors, either the
communication link for operation
invocations, or a mechanism for
message event handling. (Event
handling is not directly supported in
EJB 1.1)

PropertyValue a ProcessComponent may have
configuration properties –which are
defined by a PropertyDefinition.
When the component is used in a
ComponentUsage those properties
values may be set using a
PropertyValue.

The values of properties defined by
name/type, e.g as
EJBEnvEntries

ContextualBinding Contextual Binding allows the
substitution of a more concrete
ProcessComponent for a compatible
abstract ProcessComponent when
an abstract composed
ProcessComponent is used.

Interface conformance allows for
multiple implementations of a bean.

CommunityProcess CommunityProcess may be thought
of as the “top level composition” in
a CCA specification, it is a
specification of a composition of
ProcessComponents that work
together for some purpose other
than specifying another
ProcessComponent.

Highest level of component
interaction

Table 7: Stereotypes for Composition (UML notation: Collaboration Diagram at specification level)

ad/2001-08-20 – UML for EDOC Part II

E-24 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

Specifications of composition can be used to automatically create components that use
existing components, and support this dynamically or through code generation.

3.3.3 Mapping Choreography

A Choreography uses
transitions to order
usages of ports.

Status
- success
- timeoutFailure
- technicalFailure
- businessFailure
- anyFailure
- anyStatus

<<Enumeration>>

PseudoState
- kind : PseudostateKind

Transition
- preCondition : Status

PortActivity

Connection

PseudostateKind
- choice
- fork
- initial
- join
- success
- failure

<<Enumeration>>

UsageContext

Port
- name : String
- isSynchronous : Boolean
- isTransactional : Boolean
- direction : DirectionType
- postCondition : Status

<<boundary>>

PortUsage

1

n

+extent
1

+portsUsed
n

PortUsages

1

n

+represents

1

n
Represents

Node
- name : String

AbstractTransition

n
1

+outgoing
n

+source

1

Source
n1

+incoming
n

+target

1

Target

Choreography

n
+nodes

n

Nodes

n +connectionsn

Connections

n

0..1

+subtypes
n Generalization

+supertype

0..1

Figure 9 CCA Choreogrpahy

A Choreography specifies how messages will flow between PortUsages. The choreography
may be externally oriented, specifying the contract a component will have with other

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II E-25

components or, it may be internally oriented, specifying the flow of messages within a
composition. External choreographies are shown as an activity graph while internal
choreography is shown as part of a collaboration. An external choreography may be defined
for a protocol or a ProcessComponent.

A Choreography uses Connections and transitions to order port messages as a state
machine. Each “node” in the choreography must refer to a state or a port usage.

Choreography is an abstract capability that is inherited by ProcessComponents and
protocols.

Choreography may be used at multiple levels;

• A protocol Choreography specifies the sequencing of messages and sub-protocols
between protocol roles. This is much like a sequence diagram.

• A process component Choreography specifies the sequencing of multiple messages
and sub-protocols of ports and is part of the external contract of the component.

The use of choreography at all of these levels is not always required, as sufficient
specification may be determined from the other layers.

Specifications of choreography can be used to automatically create
executable code, or to support the execution of a workflow engine, in the case
of a mapping to a coordinating workflow system.

3.3.4 Mapping Document Model

The information that flows between components is described in a Document Model, the
structure of information exchanged. The document model also forms the basis for
information entities and a generic information model. The information model is acted on by
CCA process components.

ad/2001-08-20 – UML for EDOC Part II

E-26 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

DataType

Enumeration
Value

name : String

Emumeration

n
+values
n

+enumeration

1+initial 1

DataInvariant
expression : String
onCommit : Boolean

DataElement
1

n +constrainedElement

1+constraints

n

Attribute

byValue : Boolean
required : Boolean
many : Boolean
initialValue : Expression

1

n

+type1

n

CompositeData

n

1
+feature

n+owner

1

n

0..1

+subtypesn

+supertype

0..1

ExternalDocument
mimeType : String
specURL : String
externalName : String

Figure 10 CCA Document Model

A data element represents a type of data which may either be primitive DataTypes or
composite. CompositeData has named attributes which reference other types. Any type
may have a DataInvariant expression.

Attributes may be isByValue, which are strongly contained or may simply reference
other data elements provided by some external service. Attributes may also be marked as
required and/or many to indicate cardinality. DataTypes define local data – these types
are defined outside of CCA. ExternalDocument defines a document defined in an
external type system. An enumeration defines a type with a fixed set of values

Metamodel element name Mapping Comment EJB
CompositeData A datatype composed of other

types in the form of attributes
Maps to a data representation as
being used for a set of actual
arguments in a message/operation
or in a generic data structure

ExternalDocument A large, self contained document
defined in an external type system
such as XML, Cobol or Java that
may or may not map to the ECA
document model

Mapping to an external
datastructure to be interpreted.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II E-27

Metamodel element name Mapping Comment EJB
DataInvariant A constraint on the legal values of a

data element.
Constraint that could be checked by
generated code.

DataType Data types may have their structure
and semantics defined outside of
CCA. The following data types are
defined for all specializations of
CCA: String, Integer, Float, Decimal,
Boolean.

Maps to the basic datatypes of Java
and EJB. The definition of the
EDOC platform independent basic
datatypes and the rules for mapping
to Java/EJB will be done according
to the rules being defined by MOF
1.4 currently in progress.

Enumeration An enumeration defines a type that
may have a fixed set of values.

Maps according to MOF 1.4 as
above.

Attribute Defines one “slot” of a composite
type that may be filled by a data
element of “type”.

Maps to the definition of one
attribute in CompositeData.

Table 8: Stereotypes for DocumentModel (UML notation: Class Diagram)

Specifications of data elements from the document model are used for creating value objects
for messages, and for defining data representations.

3.4 Mapping from the Entities Profile

Entity
<<tagDefinition>> - Managed = Boolean

<<stereotype>>

EntityRole
- virtualEntity : bool

<<stereotype>>
<<Stereotype>>

Process Component
(from CCA)

<<stereotype>>
Port

(from CCA)
<<stereotype>>

CompositeData
(from CCA)

<<stereotype>>

DataProbe
<<tagDefinition>> - ExtentProbe

<<stereotype>>

Key
<<tagDefinition>> - primeKey : Boolean

<<stereotype>>

DataManager
<<tagDefinition>> - NetworkAccess : Boolean
<<tagDefinition>> - Sharable : Boolean

<<stereotype>>

<<Association>>
<<Stereotype>>

<<Stereotype>>

Entity Data
<<stereotype>>

<<Stereotype>>

Attribute
(from UML)

Key Attribute <<stereotype>>

AttributeName
<<Tagged Value>>

Foreign Key <<stereotype>>

Key Element
<<stereotype>>

Rela tionship
(from UML)

<<Stereotype>>

<<Stereotype>>

<<Stereotype>>

<<Stereotype>> Probes
<<Tagged Value>>

Key
<<Tagged Value>>

KeyElements
<<Tagged Value>>

Multi Port
(from CCA)

<<stereotype>>

<<Stereotype>>

<<Stereotype>>

<<Class Feature>>

KeySource
<<Tagged Value>>

<<Class Feature>>
RoleOf

0..n

1..1
<<Aggregation>>

Context
0..n

1..1
<<Aggregation>>

Figure 11 ECA Entity Model

ad/2001-08-20 – UML for EDOC Part II

E-28 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

Data Managers are components which manages a given type of data. Entities are
identifiable elements in an information model which are managed by Entity Managers. Keys
provide the identity for entities.

Metamodel Element Mapping comment EJB
Data Manager Data Manager is a functional

component that provides access to
and may perform operations on its
associated Composite Data (i.e., its
state). The Data Manager defines
ports for access to operations on the
state data

Maps typically to an EJBEntityBean,
but might sometimes be handled by a
stateful EJBSessionBean.
If not network-addressable (see below)
this might be handled by a dependent
object.

Network-addressable A Boolean value which indicates if
the Data Manager is intended to be
accessible over the network.

If true, maps the
DataManager to an EJBSessionBean
or EJBEntityBean.

Shareable Boolean value which indicates if the
Data Manager can be shared by
multiple transactions/sessions. A
Data Manager that is not sharable is
either transient or depends on a
sharable Data Manager that contains
it for persistence.

If true, maps the DataManager to an
EJBEntityBean.

Entity Entity is an object representing
something in the real world of the
application domain. It incorporates
Entity Data that represents the state
of the real world thing, and it provides
the functionality to encapsulate the
Entity Data and provide associated
business logic.

Maps to an EJBEntityBean (if
Shareable and/or Network-
addressable, or Managed) if not to a
dependent object.

Managed (Entity
Property)

Boolean value that indicates if the
Entity type is managed. If it is
managed, then the implementation
provides a mechanism for accessing
the extent of all instances

If true implies the declaration of an
EJBHomeInterface.

Entity Data Entity Data is the data structure that
represents a concept in the business
domain. It is equivalent to an entity
in data modelling or a relation in a
relational database. In a Data
Manager or its specializations, such
as Entity, it represents the state of an
object.

Maps to the data representation part of
an EJB EntityBean.

Entity Role Entity Role extends its parent Entity
for participation in a particular
context. An Entity may have a
number of associated Entity Roles
reflecting participation in multiple
contexts

Maps to another associated
EJBEntityBean or dependent object

Virtual Entity Boolean value that indicates if the
Entity Role incorporates and extends
the primary interface of the parent
Entity it represents, i.e., it can be used
in place of the primary Entity

Maps to another associated
EJBEntityBean or dependent object,
extending the primary interface.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II E-29

Metamodel Element Mapping comment EJB
Key Key is composed of key elements

which may be selected attribute
values of the associated Entity Data
or Foreign Keys

Maps to an EJBPrimaryKey.

Foreign Key A Foreign Key is the key of a related
Entity Data.

Maps to EJBPrimaryKey for another
EJBEntityBean

Data Probe Data Probe port is associated with an
Entity that accepts requests to detect
changes in the internal state of the
Entity and forwards messages or
events when the states of interest
become true.

Maps to an interface for requesting
and managing change detection.

Table 9 Element Mappings

3.5 Mapping from the Relationship Profile

 _

Aggregation

_

<<stereotype>>

_

AbstractReference

_

<<stereotype>>

_ _ _

ReferenceForCreate

_

<<stereotype>>

_

Assembly

_

<<stereotype>>

_

Subordination

_

<<stereotype>>

_

List

_

<<stereotype>>

_

Dependency

_

(from UMLCore)

_

Association

_

(from UMLCore)

_

Relationship

_

(from UMLCore)

_

<<stereotype>>

_

<<stereotype>>

_

Packet

_

<<stereotype>>

_

{overlapping}

_

Reference

_

<<stereotype>>

_

{incomplete}

_

{incomplete}

_ _ _ _ _

Figure 12 ECA Relationship model

The constraints specified for the different kinds of relationships can be mapped into
code that executes to check and manage the constraints.

ad/2001-08-20 – UML for EDOC Part II

E-30 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

The relationship section of part I states that mapping algorithms should ignore all of the
specific aggregation stereotypes defined in this profile that modify the a binary or non-
binary aggregation (Assembly, Subordination, List, and Packet). These specific stereotypes
are merely constraints on the multiplicities of the association ends. Any mapping of
standard UML 1.4 aggregation associations would have to have rules for how the
transformation is affected by these multiplicities.

The presence of the stereotypes does not mean that these multiplicities are missing.
Therefore the multiplicities can drive the transformation and the stereotypes are redundant.

3.6 Mapping from the Event Profile

EventbasedDat
aManager

DataEvent

1

0..n

1

0..n

lifeCycle

Publisher
DataManager
(from Entity)

BusinessEvent

EventNotice

(from Event)

1

0..n

+triggers
1

+triggeredBy
0..n

0..1

0..n

+describedBy
0..1

+describes

0..n

CompositeData
(from CCA)

Publication

publicationClause : expression
domain : String

0..n

0..n

+offers
0..n

+offeredBy
0..n

Subscriber

PubSubNotice

1..n

1..n
+announcedBy

1..n
+announces

1..n

EventCondition

condition : Expression

EventbasedProcess

Subscription

subscriptionClause : expression
domain : String

1..n

1..n
+subscribedBy

1..n
+subscribesTo

1..n

0..n

0..n
+requiredBy

0..n
+requires

0..n

Choreography
(from CCA)

ProcessEvent

entry : Boolean
success : Boolean

0..n0..n

lifeCycle

NotificationRule

condition : Expression
0..n

0..n +guardedBy

0..n+guards

0..n

Node
(from CCA)

1..2

0..n

+reflectedIn
1..2

+reflects
0..n

0..1

1..2

+governs
0..1

+governedBy
1..2

Figure 13 EDOC Event Model

Metamodel element Mapping comment EJB
Publisher publisher is a component that

exposes a list of publications, and
produces PubSubNotices
accordingly

No inherent suppor for events. Can be
mapped to specific event
listener/provider interfaces for the
listener/provider.

Publication Publication is a declaration of
capability and intent to produce a
PubSubNotice

No inherent support in EJB.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II E-31

Metamodel element Mapping comment EJB
Subscriber subscriber is a role or component

that exposes a list of subscriptions,
and consumes PubSubNotices
accordingly

No inherent support in EJB. Can be
mapped to implementation of event
listener interfaces.

Subscription Subscription is the expression of
interest in receiving and capability
to receive a PubSubNotice

No inherent support in EJB. An EJB
Bean can declare a subscription by
implementing a event listener interface.

PubSubNotice PubSubNotice is any data structure
that is announcedBy a publication
and/or subscribedTo by a
subscription. Instances of
PubSubNotice are communicated as
DataFlows from publishers to
subscribers based on the
subscriptions

No inherent support. Can be mapped to
an EventObject instance that is sent from
an EJB provider to a listener.

BusinessEvent business event is any event of
business interest that happens
within an enterprise.
BusinessEvents are either
ProcessEvents or DataEvents

No inherent support in EJB. Can be
mapped to an instance of (a subtype of)
EventObject.

ProcessEvent process event is any business event
that reflects a state change within a
process, i.e. entry into or exit from
Nodes in a Choreography

(same as above)

DataEvent data event is any business event
that reflects a changes in data
managed by a DataManager

(same as above)

EventNotice event notice is any PubSubNotice
that is triggered by a business
event.

No inherent support. Can be mapped to
an EventObject instance that is sent from
an EJB provider to a listener.

EventBasedProcess EventBasedProcess is a subtype of
Choreography (CCA profile). It is a
Subscriber and has
NotificationRules associated with
its Subscriptions. It is a Publisher
and publishes ProcessEvents.
ProcessEvents describe the life
cycle of the EventBasedProcess

No inherent support in EJB. Can be
mapped to an EJB Bean that publishes
java events.

EventBasedDataManager EventBasedDataManager is a
DataManager. It is also a Publisher
and publishes DataEvents when its
data changes. It may also be a
subscriber, typically subscribing to
PubSubNotices relating to the
maintenance of its data

No inherent support in EJB.

NotificationRule NotificationRule is a rule associated
with a subscription which
determines what should happen
within the EventBasedProcess
holding the subscription when a
qualifying PubSubNotice is
delivered

No inherent support in EJB.

ad/2001-08-20 – UML for EDOC Part II

E-32 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

Metamodel element Mapping comment EJB
EventCondition EventCondition identifies a

subscription and specifies a
PubSubNotice instance subset of
which one must have been received
to satisfy this condition

No inherent support in EJB.

Table 10 Mapping Events Concepts to Profile Elements

Event Publication and Event Subscription is mapped into Publication and Subscription as
supported by the platform, or by event-notification in different messaging services.

An Event Notice is composite data that is being submitted through a flow port. It is also
possible to map these to static callback interfaces.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II E-33

3.7 Mapping from the Business Process Profile

Composition
(from CCA)

ComponentUsage

name : String

(from CCA)

n1

+uses

n

+owner

1

ProcessComponent

granularity : String = "Program"
isPersistent : Boolean = false
primitiveKind : String
primitiveSpec : String

(from CCA)

n

1

n
+uses

1

PortConnector
(from CCA)

PortActivity
(from CCA)

MultiPort
(from CCA)

FlowPort

(from CCA)

<<boundary>>

Port

name : String
synchronous : Boolean
transactional : Boolean
direction : DirectionType
postCondition : Status

(from CCA)

<<boundary>>

UsageContext
(from CCA)

PortUsage
(from CCA)

1 n

+represents

1 n

1

+extent

1

AbstractTransition
(from CCA)

Node

name : String

n 1

+outgoing

n

+source

1

n 1

+incoming

n

+target

1

ProcessPortConnector

ProcessFlowPort

multiplicity_lb : short
multiplicity_ub : short

ProcessMultiPort

InputGroup OutputGroup

ExceptionGroup

DataFlow

BusinessProcess

CompoundTask

ProcessRole

selectionRule : string
creationRule : string

Activity

0..n 0..n
+responsibleFor
0..n 0..n

0..n 0..n
+usesArtifact
0..n 0..n

0..1 0..n
+performedBy
0..1 0..n

Connection
(from CCA)

connects

BusinessProcessEntity

Entity

Managed : Boolean
(from Entity)

Artifact Performer ResponsibleParty

Figure 14 EDOC Business Processes

ad/2001-08-20 – UML for EDOC Part II

E-34 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

This model is organized with three main model elements to describe a business process:
BusinessProcess, CompoundTask and Activity as shown in Figure 14 where the derivation
from the CCA is shown. BusinessProccess is the outermost layer of composition
representing a complete process specification. It is a ProcessComponent for the purpose of
its usage inside other CCA Compositions, but its Composition is constrainedin the same
way as a CompoubdTask.In other words, BusinessProcesses are the entry point from CCAto
a process definition. CompoundTasks arealsospecializations of CCA ProcessComponents,
but their Ports are constrained specializations of CCA Ports whichrepresent the data
required to initiate an enactment itsComposition,which defines how itexecutes. The only
ComponentUsages CompoundTasks and BusinessProcesses may contain are Activities,
whichare specializations of CCA ComponentUsages. Activities are the pieces of work
required to complete a Process, and CompoundTasks are the containers for a logical set of
Activities and the DataFlows that define the temporal and data dependencies between them.
DataFlows are specializations of CCA Flows that connect the PortConnectors on the
Activities. Activities are always usages of a CompoundTask definition, which defines the
Port types and their correlation semantics. CompoundTasks defining an Activity either
compose additional Activities and DataFlows to show how this Activity is performed, or the
Activity also refers to a Performer ProcessRole via the performedBy association, which is
a binding to aProcessComponent that fulfils the requirements of the ProcessRole. Performer
ProcessRoles are the exit point from a process defintion which allows it to invoke
ProcessComponents (and their specializations, such as Entities). Many Activities may be
usages of the same CompoundTask definition, and many activities in the same
CompoundTask may be performed by the same ProcessRole.

Process models capture information at a level of abstraction which is complimentary to the
information captured in Capsule/Port models such as CCA. Capsule/Port models define
component composition and collaboration – the configuration/wiring of signals, data, and
interactions between components. The Process profile, using information that describes
enterprise processes, specifies what to wire and compose from the enterprise perspective.

The process models describes a higher level usage model for components. This information
can be used by a workflow engine for sequencing the use of components. Mapping of the
process profile to a technology must utilise available services on the target platform, e.g.
CORBA workflow management facility on CORBA/CCM, IBMs web services flow language
or possibly forthcoming process/workflow support for the J2EE-platform. The mapping
below gives a possible mapping to the CCM and CORBA Workflow Management Facility.

Metamodel element name Mapping Comment Mapping to a CORBA-like Workflow
Management Facility

CompoundTask CompoundTasks have only a type
nature.

WorkflowModel : WfProcessMgr and
WorkflowModel :
WfProcessObject

Activity Activity WorkflowModel : WfActivity
Activity : : usesArtifact The usesArtifact association

between Activity and ProcessRole
is a way of defining access
requirements of Activities to entities
residing outside the process model.

Each link of this association kind is
mapped as the existence of a
NameValue member of the
process_context attribute of the
WfExecutionObject which implements
this Activity

Activity::performedBy The performedBy association
specifies the ProcessRole which
represents the behaviour to be
executed by this Activity.

The association is implemented as a
WorkflowModel::WfAssignment. The
ProcessRole with which it is associated
must support the type
WorkflowModel::WfResource.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II E-35

Metamodel element name Mapping Comment Mapping to a CORBA-like Workflow
Management Facility

Activity::responsibleFor The responsibleFor association
between Activity and ProcessRole
is a way of defining a party,
represented by an object, which is
responsible for the actions
undertaken by this Activity.

Each link of this association kind is
mapped as the existence of a
NameValue member of the
process_context attribute of the
WfExecutionObject which implements
this Activity

ProcessRole ProcessRole A set of CORBA object references in
use from the context of a CORBA
object.

BusinessProcess A BusinessProcess is the

implementation of a root
CompoundTask in a tree of
composed CompoundTask usages

CCM component

BusinessProcessEntity BusinessProcessEntity CORBAEntity
ProcessFlowPort ProcessFlowPort Maps to the creation and transmission

of an event from an CCM event
publisher/emitter.

ProcessPortConnector ProcessPortConnector Mapped to the representation of a
logical link between an event sink and
event publisher/emitter.

DataFlow DataFlow Dataflows of type source is mapped to
CCM event publishers/emitters.
Dataflows of types sink of mapped to
CCM event sinks.

ProcessMultiPort ProcessMultiPort Maps to a CCM emitter of events.
InputGroup InputGroup Maps to
OutputGroup OutputGroup
ExceptionGroup ExceptionGroup
Performer Performer Maps to a CCM component that

excetutes responsible a task.
Artifact Artifact Maps to a CCM component (e.g.

CORBAEntity) representing the artifact.
ResponsibleParty ResponsibleParty Map to a CCM component responsible

for the task.

Table 11 Mapping of process profile

ad/2001-08-20 – UML for EDOC Part II

E-36 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

3.8 Mapping from the Patterns Profile

Simple Pattern Pattern Inheritance Pattern Composition

Figure 15 Pattern structures

The Patterns profile describes and examplifies the use of patterns fo rmodel specification.
These are used in the other modeling profiles, but the patterns are typically unfolded before
mapping to the platform specific models.

4. Mapping from EDOC to CORBA/CCM

This section describes a non-normative mapping from EDOC to the CORBA Component
Model (CCM).

The mapping from EDOC to CCM is based on the same principles as the mapping from
EDOC to EJB, as CCM can be considered a superset of EJB.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II E-37

4.1 The Model of CORBA 3

CORBA
Dynamic API

Naming service

Persistence service

Corba
Components

(CCM)

Corba Messaging
Service

Transaction
service

Concurrency
service

XML, IIOP
mapping

CORBA ORB
w/IDL

Event &
Notification

service

Trading service
Security
 service

+ real-time/min. CORBA
+ Firewall + QoS + ...

Workflow
service

Communication
services

Model/Information
Management serv

Shared processing
services

User processing
services

Human Interaction
services

Figure 16 — CORBA Technologies related to Abstract Architecture model

Human Interaction Services are not directly supported.

Communication Services are supported by the CORBA ORB and dynamic API, as well as
with the CORBA messaging service and event¬ification service. Further support for
communication of XML-structures will be provided by the CORBA XML-value mapping.

Workflow/Task Services are supported by the CORBA workflow service.

System Management Services are supported by CORBA Security and associated user
services.

Processing Services are supported by server-side CORBA-objects and the concurrency and
transaction service. In CORBA 2 the Corba Components Model will provide further services
for server-side objects.

Model/Information Management Services are supported by the CORBA persistence service

ad/2001-08-20 – UML for EDOC Part II

E-38 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

4.2 CCM – The CORBA Component Model

facetsfacets

component facetcomponent facet

attributesattributes

receptaclesreceptacles

event sourceevent source

event sinkevent sink

Figure 17 CCM External view

The CORBA Component Model (CCM) extends from the J2EE/EJB concepts, by describing a
component with multiple outgoing (facets) and incoming (receptacles) interfaces, outgoing
(source) and incoming (sink) event, and attributes for configuration.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II E-39

OperationDef
(from BaseIDL)

ProvidesDef
UsesDef

+ multiple : boolean

InterfaceDef
(f rom BaseIDL)

1

0..*

+provides
1

0..*
0..*

1

0..*

+uses1

EmitsDef Publ ishesDef ConsumesDef

FactoryDef FinderDef

ComponentDef

isBasic : boolean

1

0..*

1

+facet
0..*

0..*

1

+receptacle
0..*

1

0..*

0..*

+supports 0..*

0..*

1

0..*

1

+emits

0..*

1

0..*

1

+publ ishes 0..*

1

0..*

1

+consumes
0..*

HomeDef

+ isBasic : boolean

1

0..*

1

+factory0..*

1

0..*

1

+f inder0..*

1

0..*

+manages 1

+home0..*

PrimaryKeyDef

1

0..1

+home1

+key0..1

/Home_Key

ValueDef
(from BaseIDL)

1

0..*

+type

1

0..*

EventDef

1

0..*

+type1

0..*

Figure 18 Corba Component Model

The UML diagram in the figure above illustrates the main concepts used for defining a
CORBA Component.

4.3 UML Profile for CCM

There is currently now formalised UML Profile for CCM, although an initial draft has
been done, in principal similar to the UML Profile for EJB.

4.3.1 Some suggested Stereotypes
Stereotype Applies To Definition
<<CORBAService>> Subsystem (Design) Indicates the Subsystem

represents a CORBA service
component.

<<CORBASession>> Subsystem (Design) Indicates the Subsystem
represents a CORBA session
component.

<<CORBAProcess>> Subsystem (Design) Indicates the Subsystem
represents a CORBA process
component.

<<CORBAEntity>> Subsystem (Design) Indicates the Subsystem
represents a CORBA service
component.

<<CORBAHome>> Class (Design) Indicates the class represents a
CORBA home interface

ad/2001-08-20 – UML for EDOC Part II

E-40 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

Stereotype Applies To Definition
<<CORBAFinder>> Class (Design) Indicates the class represents a

CORBA finder interface
<<CORBAEvent>> Operation Indicates the Operation

represents a CORBA Event
<<CORBAConstant>> Class (Design) Indicates that the class

represents a CORBA constant.
<<CORBAEnum>> Class (Design) Indicates that the class

represents a CORBA Enum.
<<CORBAException>> Class (Design) Indicates that the class

represents a CORBA Exception.
<<CORBAModule>> Package (Design) Indicates a package is a CORBA

Module, as opposed to a logical
abstraction.

<<CORBANative>> Class (Design) Indicates that the class
represents a CORBA Native.

<<CORBAStruct>> Class (Design) Indicates that the class
represents a CORBA Struct.

<<CORBATypedef>> Class (Design) Indicates that the class
represents a CORBA Typedef.

<<CORBAUnion>> Class (Design) Indicates that the class
represents a CORBA Union.

<<CORBAFacet>> Component (Design) Indicates the component
represents a CORBA facet

Table 12: UML Profile for CCM – Suggested Prototypes

4.3.2 Tagged Values

Tagged Value Applies To Definition
ContainerType Subsystem

<<CORBAService>>
<<CORBASession>>
<<CORBAProcess>>
<<CORBAEntity>>

Usage is:
Transient
Persistent

ContainerImplementation
Type

Subsystem
<<CORBAService>>
<<CORBASession>>
<<CORBAProcess>>
<<CORBAEntity>>

Usage is:
Stateless
Conversational
Durable

ServantLifetimePolicy Subsystem
<<CORBAService>>
<<CORBASession>>
<<CORBAProcess>>
<<CORBAEntity>>

Usage is:
Method
Transaction
Component
Container

TransactionPolicy Subsystem
<<CORBAService>>
<<CORBASession>>
<<CORBAProcess>>
<<CORBAEntity>>

Usage is:
NOT_SUPPORTED
REQUIRED
SUPPORTS
REQUIRES_NEW
MANDATORY
NEVER

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II E-41

Tagged Value Applies To Definition
SecurityPolicy Subsystem

<<CORBAService>>
<<CORBASession>>
<<CORBAProcess>>
<<CORBAEntity>>

TBD

EventPolicy Subsystem
<<CORBAService>>
<<CORBASession>>
<<CORBAProcess>>
<<CORBAEntity>>

Usage is:
Normal
Default
Transaction

PersistenceMechanism Subsystem
<<CORBAService>>
<<CORBASession>>
<<CORBAProcess>>
<<CORBAEntity>>

Usage is:
CORBA
User

PersistenceSupport Subsystem
<<CORBAService>>
<<CORBASession>>
<<CORBAProcess>>
<<CORBAEntity>>

Usage is:
Container Managed
Component Managed

ImplementationType Class
<<CORBAConstant>>
Class
<<CORBATypedef>>
Class
<<CORBASequence>>
Class
<<CORBAUnion>>

Usage is dependent on the class
stereotype:

CORBAConstant – the type of
the constant

CORBATypedef or
CORBASequence – the
type of the typedef or
sequence if there is no
dependency relationship

CORBAUnion – the switch type

ConstValue Class
<<CORBAConstant>>

Used only if the stereotype of
the class is
CORBAConstant.
Represents the value of
the constant.

ArrayDimensions Class

<<CORBATypedef>>
If non-blank, indicates that the

declarator is an array and
defines the array
dimension(s) portion of the
declarator.

CaseSpecifier Attribute
<<CORBAUnion>>
Role
<<CORBAUnion>>

Used only when the stereotype
of the class is
CORBAUnion. Case
expression. Should be
equal to 'default' for the
default case.

IsReadOnly Attribute

Role
Indicates whether or not the

attribute is readonly.
BOOLEAN = FALSE

ad/2001-08-20 – UML for EDOC Part II

E-42 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

Tagged Value Applies To Definition
Order Attribute Integer which defines the

ordering of the attributes.

ArrayDimensions Attribute
<<CORBAException>>
<<CORBAStruct>>
<<CORBAUnion>>

Used only if the attribute's class
represents an exception,
struct, or union. If non-
blank, indicates that the
declarator is an array and
defines the array
dimension(s) portion of the
declarator.

BoundedRoleType Role Whether to use an array or
sequence to represent a
relationship with bounded
cardinality. Unbounded
cardinality always
generates an unbounded
sequence. The cardinality
of the relationship defines
the size of the array or
sequence.

ENUMERATION (Sequence,
Array) = Sequence

Table 13: UML Profile for CCM – Tagged Values

4.4 Mapping from the EDOC CCA Profile

This section details the mappings from the EDOC Part I CCA, Component Collaboration
Architecture.

4.4.1 Mapping Process Components and Protocols

Part of a component’s specification is the set of protocols it implements, a protocol specifies
what messages the component sends and receives when it collaborates with another
component and the choreography of those messages – when they can be sent and received.
Each protocol the component supports is provided via a “port”, the connection point
between components.

Metamodel element name Map comment CCM
ProcessComponent A ProcessComponent represents

the contract for a component that
performs actions – it “does
something”. A ProcessComponent
may realize a set of Ports for
interaction with other
ProcessComponents and it may be
configured with properties

Maps to a <<CORBA
Component>> (in this
description) but can also
naturally map to higher
(Business Process) or lower
(Object) level concepts.
(One of CORBAService, COR
BASession, CORBAProcess or
CORBAEntity)

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II E-43

Metamodel element name Map comment CCM
IsPersistent
(Property of
ProcessComponent)

default=false, if true stores session
specific state across interactions

If true, Component =
CORBASession. If false
Component = CORBAService
(default).
Is always true for
CORBAProcess and
CORBAEntity

Port A port realizes a simple or complex
conversation for a
ProcessComponent or protocol.
Each port is connected with
collaborative components that
speak the same protocol

All interactions with a
ProcessComponent are done via
one of its ports . Each port provides
a connection point for interaction
with other components or services
and realizes a specific protocol. The
protocol may be simple and use a
“FlowPort” or the protocol may be
complex and use a “ProtocolPort” or
an “OperationPort”. If allowed by
its protocol, a port may send and
receive information.

Mapping depends on kind of
port. See below.

CORBAFacet and
CORBAReceptacle or
EventSource or EventSink

IsTransactional
(Property of port)

interactions with the component are
transactional & atomic

IsTransacational = true means a
mapping to an
CCMTransactionSupportKind of
one of supported, required,
requiresNew, mandatory,
selfManaged
IsTransacational = false means a
mapping to
CCMTransactionSupportKind of
one of notSupported or Never

IsSynchronous
(Property of port)

A port may interact synchronously
or asynchronously. A port that is
marked as synchronous is required
to interact using synchronous
messages and return values

IsSynchronous = true means
mapping to operations,
IsSynchronous = false (default)
means mapping to a one-way
operation if this is an initiator
port or to event source or sink

Direction
(Property of port)
Initiates or
Responds

Indicates that the port will either
initiate or respond to the related
type. An initiating port will send
the first message. Note that by
using ProtocolPorts a port may be
the initiator of some protocols and
the responder to others.

The direction of the port is with
respect to the protocol, it is only
implicitly mapped to CCM (See
below)

ad/2001-08-20 – UML for EDOC Part II

E-44 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

Metamodel element name Map comment CCM
FlowPort A Flow Port is a port which defines

a data flow in or out of the port on
behalf of the owning component or
protocol.

direction in is one way operation or
out is a one way call

Direction Initiates:
Maps to a
one-way operation being
invoked, or to a CCM event
source.

Direction
Responds:
Maps to a message being
received. In the synchrounous
case this is a mapping to an
operation without return values
in an interface, In the
asynchrounous case this is a
mapping to an CCM event sink.

ProtocolPort A protocol port is used for
potentially complex two-way
interactions between components

Maps to the CORBAReceptacle
and/or CCM Event sink being
used and/or provided for a two-
way interaction

MultiPort Each port owned by the MultiPort
will “buffer” information sent to that
port until all the ports within the
MultiPort have received data, at this
time all the ports will send their data

Direction
Responds:
Maps to an implementation
where a set of messages
(events) need to be received by
the port before it is sent further.

OperationPort An operation port represents the
typical call/return pattern of an
operation. The OperationPort is a
PortOwner which is constrained to
contain only flow ports, exactly one
of which must have its direction set
to “initiates”.

Direction Initiates:
This maps to the operation to be
invoked, in a CORBAReceptacle.

Direction Responds:
This maps to an operation to be
implemented in a CORBAFacet.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II E-45

Metamodel element name Map comment CCM
Protocol A protocol defines a type of

conversation between two parties,
the initiator and responder. One
protocol role is the initiator of the
conversation and the other the
responder. However, after the
conversation has been initiated,
individual messages and sub-
protocols may by initiated by either
party.

Maps to a description of the
messages and operation
interactions in a conversation.
This can be described through
the operations in receptacles
and facets that are involved, and
the event sources and sinks that
are involved.

Interface An interface is a protocol
constrained to match the
capabilities of the typical object
interface. It is constrained to only
contain OperationPorts and
FlowPorts and all of its ports must
respond to the interaction (making
interfaces one-way)
Each OperationPort or FlowPort in
the Interface will map to a method.
A ProtocolPort which initiates the
Interface will call the interface. A
ProtocolPort which Responds will
implement the interface
Existing interface

An EDOC interface represents a
protocol that maps directly to a
UML interface that again is
mapped to corresponding CCM
facet and receptacle.

InitiatingRole The role of the protocol which will
send the first message

Default Interface name

Represents the CCM component
that is the initiator of a protocol

RespondingRole The role in the protocol which will
receive the first message
Default Interface name

Represents the CCM component
that is the receiver of the first
message in a protocol

PropertyDefinition PropertyDefinition defines name
and type for properties which may
be set when the ProcessComponent
is used

Properties on the CCM
component.

Table 14: Stereotypes for Structural Specification (UML notation: Class Diagram)

A protocol specifies the conversation between two ProcessComponents (via their ports).
Each component that is using that protocol must use it from the perspective of the “initiating
role” or the “responding role”. Each of these components will use every port in the
protocol, but in complementary directions.

Each port is connected with collaborative components that speak the same protocol. Multi-
party conversions are defined by components using multiple ports, one for each kind of
party.

Components interact with their environment through ports. A port has a defined interaction
protocol. Ports may send messages, receive messages, or both. A port may be implemented
as an object interface, e.g., CORBA or Java interface.

Ports are synchronous or asynchronous. A synchronous port communicates within the
context of a transaction. An asynchronous port communicates in a store-and-forward

ad/2001-08-20 – UML for EDOC Part II

E-46 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

manner so that sending a message occurs in the context of one transaction and receipt of the
message then occurs in the context of another transaction.

Ports may communicate with messages or event notices. A message is directed to a specific
destination. An event notice is published to the communication infrastructure to be
delivered to subscribers—destinations that have expressed interest. The messages and
event notices may be communicated synchronously or asynchronously.

All Data Managers will have a synchronous interface port that represents the typical object
interface. A Data Manager may have other ports, such as to send messages to other Data
Managers, and to send and receive asynchronous messages and events.

4.4.2 Mapping Composition

Components may be abstract (having only an outside) or concrete (having an inside and
outside). Frequently a concrete component inherits its external contract from an abstract
component – implementing that component.

There may be any number of implementations for an abstract component and various ways
to “bind” the correct implementation when a component is used.

The two basic kinds of concrete components are:

• Primitive components – those that are built with programming languages or by
wrapping legacy systems.

• Composed components – Components that are built from other components; these use
other components to implement the new components functionality. Composed
components are defined using a composition.

Compositions define how components are used. Inside of a composition components are
used, configured and connected. This connected set of component usage’s implements the
behavior of the composition in terms of these other components – which may be primitive,
composed or abstract components.

Compositions can also include a choreography of how the components used work together,
which should execute when.

Compositions are used to build composed components out of other components and to
describe community processes – how a set of large grain components works together for
some purpose.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II E-47

Central to compositions are the connections between components, values for configuration
properties and the ability to bind concrete components to a component usage.

Metamodel element name Mapping description CCM
Composition Compositions describe how

instances of ProcessComponents
(called ComponentUsages) are
configured (with PropertyValues
and ContextualBindings) and
connected (with Connections) to
implement the composed
ProcessComponent or
CommunityProcess.

Maps to the structure of interacting
components and how they are
configured and connected. Through
the configuration and connection
between receptacles and facets, and
event sources and sinks.

ComponentUsage A ComponentUsage will cause a
ProcessComponent instance to be
created at runtime (this instantiation
may be real or virtual).

Maps to the use of one component by
another.

PortConnector PortConnector provides a
“connection point” for
ComponentUsages within a
composition and exposes the
defined ports within the
composition. The connections
between PortConnectors are made
with Connections.

Maps to the realisation of ports. The
runtime representation of CORBA
Receptacle represents initiating ports.
For receiving ports this is the
representation of a CORBA facet.
The mapping can also be done to
CCM event publisher and emitters.

Connection A Connection connects two
PortConnectors within a
composition. Each port can
produce and/or consume message
events. The connection logically
registers each port connector as a
listener to the other, effectively
making them collaborators.

This is the representation of the
communication between two
PortConnectors, either the
receptacle/facet link or the event
publisher/emitter link.

PropertyValue a ProcessComponent may have
configuration properties –which are
defined by a PropertyDefinition.
When the component is used in a
ComponentUsage those properties
values may be set using a
PropertyValue.

The value of CORBA Component
attributes.

ContextualBinding Contextual Binding allows the
substitution of a more concrete
ProcessComponent for a compatible
abstract ProcessComponent when
an abstract composed
ProcessComponent is used.

Interface conformance allows for
multiple implementations of a
CORBA Component.

CommunityProcess CommunityProcess may be thought
of as the “top level composition” in
a CCA specification, it is a
specification of a composition of
ProcessComponents that work
together for some purpose other
than specifying another
ProcessComponent.

Highest level of component
interaction

Table 15: Stereotypes for Composition (UML notation: Collaboration Diagram at specification level)

ad/2001-08-20 – UML for EDOC Part II

E-48 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

Specifications of composition can be used to automatically create components that use
existing components, and support this dynamically or through code generation.

4.4.3 Mapping Choreography

A Choreography specifies how messages will flow between PortUsages. The choreography
may be externally oriented, specifying the contract a component will have with other
components or, it may be internally oriented, specifying the flow of messages within a
composition. External choreographies are shown as an activity graph while internal
choreography is shown as part of a collaboration. An external choreography may be defined
for a protocol or a ProcessComponent.

A Choreography uses Connections and transitions to order port messages as a state
machine. Each “node” in the choreography must refer to a state or a port usage.

Choreography is an abstract capability that is inherited by ProcessComponents and
protocols.

Choreography may be used at multiple levels;

• A protocol Choreography specifies the sequencing of messages and sub-protocols
between protocol roles. This is much like a sequence diagram.

• A process component Choreography specifies the sequencing of multiple messages
and sub-protocols of ports and is part of the external contract of the component.

The use of choreography at all of these levels is not always required, as sufficient
specification may be determined from the other layers.

Specifications of choreography can be used to automatically create executable code, or to
support the execution of a workflow engine, in the case of a mapping to a coordinating
workflow system.

4.4.4 Mapping Document Model

The information that flows between components is described in a Document Model, the
structure of information exchanged. The document model also forms the basis for
information entities and a generic information model. The information model is acted on by
CCA process components.

A data element represents a type of data which may either be primitive DataTypes or
composite. CompositeData has named attributes which reference other types. Any type
may have a DataInvariant expression.

Attributes may be isByValue, which are strongly contained or may simply reference other
data elements provided by some external service. Attributes may also be marked as required
and/or many to indicate cardinality. DataTypes define local data – these types are defined
outside of CCA. ExternalDocument defines a document defined in an external type system.
An enumeration defines a type with a fixed set of values

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II E-49

Metamodel element
name

Mapping Comment CCM

CompositeData A datatype composed of other types in
the form of attributes

Maps to a data representation as being used
for a set of actual arguments in a
message/operation or in a generic data
structure

ExternalDocument A large, self contained document
defined in an external type system such
as XML, Cobol or Java that may or may
not map to the ECA document model

Mapping to an external datastructure to be
interpreted.

DataInvariant A constraint on the legal values of a
data element.

Constraint that could be checked by
generated code.

DataType Data types may have their structure
and semantics defined outside of CCA.
The following data types are defined
for all specializations of CCA: String,
Integer, Float, Decimal, Boolean.

Maps to the basic datatypes of CORBA IDL.

Enumeration An enumeration defines a type that
may have a fixed set of values.

Maps to CORBA IDL enumeration.

Attribute Defines one “slot” of a composite type
that may be filled by a data element of
“type”.

Maps to the definition of one attribute in
CompositeData.

Table 16: Stereotypes for DocumentModel (UML notation: Class Diagram)

Specifications of data elements from the document model are used for creating value objects
for messages, and for defining data representations.

4.5 Mapping from the Entities Profile

Data Managers are components which manages a given type of data. Entities are
identifiable elements in an information model which are managed by Entity Managers. Keys
provide the identity for entities.

Metamodel Element Mapping comment CCM
Data Manager Data Manager is a functional

component that provides access to and
may perform operations on its
associated Composite Data (i.e., its
state). The Data Manager defines ports
for access to operations on the state
data

Maps typically to an CORBAEntity,
but might sometimes be handled by a
CORBAProcess or a CORBASession.
If not network-addressable (see
below) this might be handled by a
dependent object.

Network-addressable A Boolean value which indicates if
the Data Manager is intended to be
accessible over the network.

If true, maps the
DataManager to an CORBASession,
CORBAProcess or CORBAEntity.

Shareable Boolean value which indicates if the
Data Manager can be shared by
multiple transactions/sessions. A
Data Manager that is not sharable is
either transient or depends on a
sharable Data Manager that contains
it for persistence.

If true, maps the DataManager to a
CORBAProcess or CORBAEntity.

ad/2001-08-20 – UML for EDOC Part II

E-50 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

Metamodel Element Mapping comment CCM
Entity Entity is an object representing

something in the real world of the
application domain. It incorporates
Entity Data that represents the state
of the real world thing, and it
provides the functionality to
encapsulate the Entity Data and
provide associated business logic.

Maps to an CORBAProcess or
CORBAEntity (if Shareable and/or
Network-addressable, or Managed) if
not to a dependent object.

Managed (Entity
Property)

Boolean value that indicates if the
Entity type is managed. If it is
managed, then the implementation
provides a mechanism for accessing
the extent of all instances

If true implies the declaration of an
CORBAFactoryInterface.

Entity Data Entity Data is the data structure that
represents a concept in the business
domain. It is equivalent to an entity
in data modelling or a relation in a
relational database. In a Data
Manager or its specializations, such
as Entity, it represents the state of an
object.

Maps to the data representation part of
a CORBAEntity.

Entity Role Entity Role extends its parent Entity
for participation in a particular
context. An Entity may have a
number of associated Entity Roles
reflecting participation in multiple
contexts

Maps to another associated
CORBAEntity or dependent object

Virtual Entity Boolean value that indicates if the
Entity Role incorporates and extends
the primary interface of the parent
Entity it represents, i.e., it can be
used in place of the primary Entity

Maps to another associated
CORBAEntity or dependent object,
extending the primary interface.

Key Key is composed of key elements
which may be selected attribute
values of the associated Entity Data
or Foreign Keys

Maps to a CORBAPrimaryKey.

Foreign Key A Foreign Key is the key of a related
Entity Data.

Maps to CORBAPrimaryKey for
another CORBAEntity

Data Probe Data Probe port is associated with an
Entity that accepts requests to detect
changes in the internal state of the
Entity and forwards messages or
events when the states of interest
become true.

Maps to an interface for requesting and
managing change detection.

Table 17 Element Mappings

4.6 Mapping from the Relationship Profile

The constraints specified for the different kinds of relationships can be mapped nto
code that executes to check and manage the constraints.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II E-51

The relationship section of part I states that mapping algorithms should ignore all of the
specific aggregation stereotypes defined in this profile that modify the a binary or non-
binary aggregation (Assembly, Subordination, List, and Packet). These specific stereotypes
are merely constraints on the multiplicities of the association ends. Any mapping of
standard UML 1.4 aggregation associations would have to have rules for how the
transformation is affected by these multiplicities.

The presence of the stereotypes does not mean that these multiplicities are missing.
Therefore the multiplicities can drive the transformation and the stereotypes are redundant.

4.7 Mapping from the Event Profile

Metamodel element Mapping comment CCM
Publisher publisher is a component that

exposes a list of publications, and
produces PubSubNotices
accordingly

Maps to a CORBA component that
publishes events (CCM
publisher/emitter).

Publication Publication is a declaration of
capability and intent to produce a
PubSubNotice

A publication is declared by
publishing/emitting CCM components.

Subscriber subscriber is a role or component
that exposes a list of subscriptions,
and consumes PubSubNotices
accordingly

Mapped to CCM event sink.

Subscription Subscription is the expression of
interest in receiving and capability to
receive a PubSubNotice

A subscription is declared by a CCM
event sink.

PubSubNotice PubSubNotice is any data structure
that is announcedBy a publication
and/or subscribedTo by a
subscription. Instances of
PubSubNotice are communicated as
DataFlows from publishers to
subscribers based on the
subscriptions

The notification of a CCM event sent
from a CCM event publisher/emitter.

BusinessEvent business event is any event of
business interest that happens within
an enterprise. BusinessEvents are
either ProcessEvents or DataEvents

CCM event.

ProcessEvent process event is any business event
that reflects a state change within a
process, i.e. entry into or exit from
Nodes in a Choreography

CCM event.

DataEvent data event is any business event that
reflects a changes in data managed
by a DataManager

CCM event.

EventNotice event notice is any PubSubNotice
that is triggered by a business event.

The notification of a CCM event sent
from a CCM event publisher/emitter.

ad/2001-08-20 – UML for EDOC Part II

E-52 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

Metamodel element Mapping comment CCM
EventBasedProcess EventBasedProcess is a subtype of

Choreography (CCA profile). It is a
Subscriber and has NotificationRules
associated with its Subscriptions. It
is a Publisher and publishes
ProcessEvents. ProcessEvents
describe the life cycle of the
EventBasedProcess

Maps to a CCM component that is a
publisher/emitter of CCM process
events.

EventBasedDataMan
ager

EventBasedDataManager is a
DataManager. It is also a Publisher
and publishes DataEvents when its
data changes. It may also be a
subscriber, typically subscribing to
PubSubNotices relating to the
maintenance of its data

Maps to CCM components that is a
Maps to CCM event sink.

NotificationRule NotificationRule is a rule associated
with a subscription which determines
what should happen within the
EventBasedProcess holding the
subscription when a qualifying
PubSubNotice is delivered

Maps to the logic provided by a CCM
event sink for handling incoming
notifications.

EventCondition EventCondition identifies a
subscription and specifies a
PubSubNotice instance subset of
which one must have been received
to satisfy this condition

Table 18 Mapping Events Concepts to Profile Elements

Event Publication and Event Subscription is mapped into Publication and Subscription as
supported by the DCP, or by event-notification in different messaging services.

An Event Notice is composite data that is being submitted through a flow port. It is also
possible to map these to static callback interfaces.

4.8 Mapping from the Business Process Profile

This mapping is described in more detail in Chapter 5.

This model is organized with three main model elements to describe a business process:
BusinessProcess, CompoundTask and Activity as shown in Figure 14 where the derivation
from the CCA is shown. BusinessProccess is the outermost layer of composition
representing a complete process specification. It is a ProcessComponent for the purpose of
its usage inside other CCA Compositions, but its Composition is constrainedin the same
way as a CompoubdTask.In other words, BusinessProcesses are the entry point from CCAto
a process definition. CompoundTasks arealsospecializations of CCA ProcessComponents,
but their Ports are constrained specializations of CCA Ports whichrepresent the data
required to initiate an enactment itsComposition,which defines how itexecutes. The only
ComponentUsages CompoundTasks and BusinessProcesses may contain are Activities,
whichare specializations of CCA ComponentUsages. Activities are the pieces of work
required to complete a Process, and CompoundTasks are the containers for a logical set of
Activities and the DataFlows that define the temporal and data dependencies between them.
DataFlows are specializations of CCA Flows that connect the PortConnectors on the
Activities. Activities are always usages of a CompoundTask definition, which defines the

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II E-53

Port types and their correlation semantics. CompoundTasks defining an Activity either
compose additional Activities and DataFlows to show how this Activity is performed, or the
Activity also refers to a Performer ProcessRole via the performedBy association, which is
a binding to aProcessComponent that fulfils the requirements of the ProcessRole. Performer
ProcessRoles are the exit point from a process defintion which allows it to invoke
ProcessComponents (and their specializations, such as Entities). Many Activities may be
usages of the same CompoundTask definition, and many activities in the same
CompoundTask may be performed by the same ProcessRole.

Process models capture information at a level of abstraction which is complimentary to the
information captured in Capsule/Port models such as CCA. Capsule/Port models define
component composition and collaboration – the configuration/wiring of signals, data, and
interactions between components. The Process profile, using information that describes
enterprise processes, specifies what to wire and compose from the enterprise perspective.

The process models describes a higher level usage model for components. This information
can be used by a workflow engine for sequencing the use of components. Mapping of the
process profile to a technology must utilise available services on the target platform, e.g.
CORBA workflow management facility on CORBA/CCM, IBMs web services flow language
or possibly forthcoming process/workflow support for the J2EE-platform. The mapping
below gives a possible mapping to the CCM and CORBA Workflow Management Facility.

Metamodel element name Mapping Comment CCM/ CORBA Workflow
Management Facility

CompoundTask CompoundTasks have only a type
nature.

WorkflowModel : WfProcessMgr and
WorkflowModel :
WfProcessObject

Activity Activity WorkflowModel : WfActivity
Activity : : usesArtifact The usesArtifact association

between Activity and ProcessRole
is a way of defining access
requirements of Activities to entities
residing outside the process model.

Each link of this association kind is
mapped as the existence of a
NameValue member of the
process_context attribute of the
WfExecutionObject which implements
this Activity

Activity::performedBy The performedBy association
specifies the ProcessRole which
represents the behaviour to be
executed by this Activity.

The association is implemented as a
WorkflowModel::WfAssignment. The
ProcessRole with which it is associated
must support the type
WorkflowModel::WfResource.

Activity::responsibleFor The responsibleFor association
between Activity and ProcessRole
is a way of defining a party,
represented by an object, which is
responsible for the actions
undertaken by this Activity.

Each link of this association kind is
mapped as the existence of a
NameValue member of the
process_context attribute of the
WfExecutionObject which implements
this Activity

ProcessRole ProcessRole A set of CORBA object references in
use from the context of a CORBA
object.

BusinessProcess A BusinessProcess is the

implementation of a root
CompoundTask in a tree of
composed CompoundTask usages

CCM component

BusinessProcessEntity BusinessProcessEntity CORBAEntity

ad/2001-08-20 – UML for EDOC Part II

E-54 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

Metamodel element name Mapping Comment CCM/ CORBA Workflow
Management Facility

ProcessFlowPort ProcessFlowPort Maps to the creation and transmission
of an event from an CCM event
publisher/emitter.

ProcessPortConnector ProcessPortConnector Mapped to the representation of a
logical link between an event sink and
event publisher/emitter.

DataFlow DataFlow Dataflows of type source is mapped to
CCM event publishers/emitters.
Dataflows of types sink of mapped to
CCM event sinks.

ProcessMultiPort ProcessMultiPort Maps to a CCM emitter of events.
InputGroup InputGroup Maps to
OutputGroup OutputGroup
ExceptionGroup ExceptionGroup
Performer Performer Maps to a CCM component that

excetutes responsible a task.
Artifact Artifact Maps to a CCM component (e.g.

CORBAEntity) representing the artifact.
ResponsibleParty ResponsibleParty Map to a CCM component responsible

for the task.

Table 19 Mapping of process profile

4.9 Mapping from the Patterns Profile

The Patterns profile describes and examplifies the use of patterns fo rmodel specification.
These are used in the other modeling profiles, but the patterns are typically unfolded before
mapping to the platform specific models.

5. Mapping From EDOC Business Process to
CORBA

5.1 Common Base Types for the Business Process Model

The Workflow Management Facility defines a number of interfaces for the execution,
monitoring and meta-data query of what we have modeled as Activities, CompoundTasks
and Business Processes. These are used as a common basis for the alternative mappings of
the Business Process Model.

5.1.1 BusinessProcess

A BusinessProcess is the implementation of a root CompoundTask in a tree of composed
CompoundTask usages, and as such, it is implemented by a
WorkflowModel::WfProcessMgr object, as defined in the mapping of CompoundTask.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II E-55

5.1.2 CompoundTask

CompoundTasks have only a type nature. CompoundTask is therefore mapped to a type
manager, which in the Workflow Management facility are WorkflowModel::WfProcessMgr
objects.

5.1.3 Activity

Activities are mapped to WorkflowModel::WfActivity objects. Through the mapping of the
Activity's InputGroups and usesArtifact and repsonsibleFor associations, it will be able to
pass Input values and references to bound entities.

During execution the enabling of an Activity whose ports and their contracts are defined by
a CompoundTask causes an Activity instance to be created. The external contract nature of
this instance is mapped as a WorkflowModel::WfProcess object. The key attribute of the
WfProcess must be an instance identifier. This identifier is used (as a parent Task Id) in the
mappings of the DataGroups and DataFlows in the following sections.

When the WfProcess implementing the Activity is run, it must also create instances of
WorkflowModel::WfActivity for each Activity that is defined by its CompoundTask's
Composition.

The complete mapping of an Activity depends on whether it has a performedBy association
to a ProcessRole or whether its execution is defined by the Composition of its
CompoundTask definition; Activities that represent a Composition are mapped to objects
that also implement the WorkflowModel::WfRequester interface.

Associations

usesArtifact

The usesArtifact association between Activity and ProcessRole is a way of defining
access requirements of Activities to entities residing outside the process model. Each
link of this association kind is mapped as the existence of a NameValue member of the
process_context attribute of the WfExecutionObject which implements this Activity;
the_name in the NameValue is given the ProcessRole's name, and the_value is an
object reference of the same type as the ProcessRole. At runtime the object referred
to will be chosen (using the type association and the SelectionRule or CreationRule
Expressions). See the mapping of ProcessRole in Section 5.1.4 for details.

performedBy

The performedBy association specifies the ProcessRole which represents the
behaviour to be executed by this Activity. The nominated ProcessRole may represent
the interface to a person or group of people, or it may be a fully automated program
that processes the Activity's inputs and produces some outputs. The association is
implemented as a WorkflowModel::WfAssignment. The ProcessRole with which it is
associated must support the type WorkflowModel::WfResource.

The WfResource's resource_key and resource_name attributes may be used by the
ProcessRole to locate and bind an entity of the appropriate application type to
perform the Activity. Often this entity will represent a work list that will use the
Activity's name, inputs, and the ProcessRoles participating in usesAtrifact and

ad/2001-08-20 – UML for EDOC Part II

E-56 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

repsonsibleFor associations with this Activity, to create a work item which is sent to
a person, or group of people for processing.

repsonsibleFor

The repsonsibleFor association between Activity and ProcessRole is a way of
defining a party, represented by an object, which is responsible for the actions
undertaken by this Activity. Each link of this association kind is mapped as the
existence of a NameValue member of the process_context attribute of the
WfExecutionObject which implements this Activity; the_name in the NameValue is
given the ProcessRole's name, and the_value is an object reference of the same type
as the ProcessRole. At runtime the object referred to will be chosen (using the type
association and the SelectionRule or CreationRule Expressions). See the mapping of
ProcessRole in Section 5.1.4 for details.

5.1.4 ProcessRole

A ProcessRole is mapped in CORBA as a set of object reference variables in use in some
context. This is a novel modeling concept in the OMA, as specifications of clients of
CORBA objects, and the binding process by which client code comes to refer to the "right"
objects, has been impossible until now.

The ProcessRole concept recognizes that interface type compatibility is not sufficient to
ensure that an object implementing the correct behavioral semantics is invoked by a client.
ProcessRole is a kind of abstract behavior, with both an interface type slot, and two kinds of
criteria for selection of object instances to fill the role:

• Its SelectionRule attribute - which allows the behaviour specification to express criteria
by which objects that may fill the ProcessRole may be selected.

• Its CreationRule attribute - which allows creation of objects which may then fill the
ProcessRole.

5.1.4.1 Binding

The mapping for filling a ProcessRole is as follows. For each ProcessRole, an instance of a
business entity (a CORBA Object) must be located. The model elements provide a number of
options to modelers to specify their binding constraints. Here are some of them:

The SelectionRule expression of the ProcessRole may provide:

• a key for use with a factory/finder (type manager) in order to locate an appropriate
object;

• an Interoperable Naming iiopname or iioploc URL which nominates a specific object;

• a Naming Context or hierarchy of Contexts which contain appropriate objects;

• a Trader Service Type and Constraint expression which will match appropriate objects in
the Business Domain's Trader.

The CreationRule expression of the ProcessRole may provide:

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II E-57

• a key for use with a factory/finder (type manager) in order to create an appropriate
object;

• appropriate parameters for passing to a Factory to construct a new object.

All of these options are available as mechanisms for Tool Vendors to allow modelers to
expose the requirements for the objects filling their ProcessRoles in the Model, and allow
code to be generated that satisfies these requirements, rather than having programmers write
magic bootstrapping code.

5.2 Notification-based Mapping for the Business Process Model

In addition to the base interfaces defined in Section 5.1, the following implementations must
be provided for the elements in a Business Process Model. We envisage that they will
eventually be implemented as CORBA Components with a separate facet for each of the
interfaces required to be supported. However, in the absence of a Component-based ORB,
they will usually be implemented by a number of cooperating servants in the same address
space that each expose one or more object references. The desire to avoid name mangling of
element names from the model to avoid operation and attribute name clashes means that
multiple inheritance is impossible in some cases.

In this mapping, a number of model elements are subsumed into behaviors of the mappings
of other model elements. The general approach is that DataFlows between Ports are
implemented as Structured Event transmissions between Activities. As any ProcessFlowPort
usage may be a source or a sink for a DataFlow, all the mapping is done at the level of the
abstract model elements ProcessMultiPort (represented by a PortUsage in the Activity
which instantiates it) and ProcessFlowPort (represented by ProcessPortConnector). The
conditions under which DataFlows are transmitted, and the semantics of the arrival of a
DataFlow are well defined in the Business Process Model, and this mapping (as well as the
Interface-based mapping in Section 5.3) concentrates only on the method of transmission of
DataFlows.

5.2.1 CompoundTask (as represented by Activity)

5.2.1.1 DataFlow source

Each Activity which directly contains DataFlow sources must implement the
CosNotifyComm::StructuredPushSupplier interface and connect to a Notification Channel
created for the use of this BusinessProcess instance. The mapping of a DataFlow source's
ProcessFlowPort (represented by a ProcessPortConnector) (Section 5.2.2) prescribes the
events types to be emitted by the Activity to represent the DataFlows that these ports are
sources for.

5.2.1.2 DataFlow sink

Each Activity which directly contains DataFlow sinks must implement the
CosNotifyComm::StructuredPushConsumer interface and connect to a Notification Channel
created for the use of this BusinessProcess instance. It mu st create and attach a Filter to the
ProxySupplier of the Event Channel to which it is attached. The mappings of a DataFlow
sink's ProcessFlowPort (represented by a ProcessPortConnector) (Section 5.2.2) provides
constraints to be added to the Filter to ensure that the events representing DataFlows will be
consumed at these sink elements.

ad/2001-08-20 – UML for EDOC Part II

E-58 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

5.2.2 ProcessFlowPort (represented by
ProcessPortConnector)

5.2.2.1 DataFlow source

Any ProcessPortConnector, representing a ProcessFlowPort, that is the source of a
DataFlow, will create and transmit a Structured Event of the following type using the Event
Channel to which its containing Activity is connected.

domain = "EDOC"
name = "data_flow"
properties =
 flow_id : string // contains the data flow's fully qualified name
 source : string // contains <FlowPort's fully qualified Name>
 parent : string // contains <Containing Activity's Instance ID>
 payload : any // contains the value(s) of the DataElement

Note that the flow_id for an ordinary flow is fixed in the model, and in the event it is scoped
by the source property.

5.2.2.2 DataFlow sink

Any ProcessPortConnector, representing a ProcessFlowPort, that is the sink of a DataFlow,
must create a subscription to add to its containing Activity's Filter which subscribes to the
event type EDOC/data_flow, and has a constraint which selects events with the right
flow_id, and source name. The parent property must also be the same as the parent of the
Activity containing this ProcessPortConnector.

5.2.3 Activity(representing a CompoundTask with a
Composition)

5.2.3.1 ExceptionGroup handling

An Activity representing a CompoundTask with a Composition has responsibilities in
addition to those of leaf node Activities. Each such Activity must have a subscription to
Events of the EDOC/exception type. The only constraint is that the exception event was
emitted by a Activity instance contained directly by this Activity. This can be expressed as:

"parent == <My Instance Id>"

Upon receipt of such an event the Activity must terminate all its contained Activities, and
then pass the payload of the event to the ProcessPortConnector in its PortUsage
representing its CompoundTask's system ExceptionGroup.

5.2.4 ExceptionGroup

PortUsages representing ExceptionGroups are special OutputGroups that indicate a failure in
the Activity that contains them. An Activity's ExceptionGroup may either be handled, or the
data values from its Outputs must be propagated to its containing Activity's system
ExceptionGroup.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II E-59

If an ExceptionGroup is unhandled, that is its ProcessFlowPorts are not sources for any
DataFlows, then the following event type, which will be subscribed to by the containing
Activity, must be emitted when the PortUsage representing the ExceptionGroup is enabled:

domain = "EDOC"
name = "exception"
properties =
 source : string // contains <ExceptionGroup's fully qualifiedName>
 parent : string // contains <Parent's Instance ID>
 payload : CosNotification::PropertySeq // contains name/value
 // corresponding to its Outputs

If an ExceptionGroup is handled (any of its Outputs are the source of a DataFlow), then it
only emits ordinary EDOC/data_flow events as specified in Section 5.2.2.1.

5.3 Interface-based Mapping for the Business Process Model

This section is an alternative to the mappings provided in Section 5.2, but it still requires the
mappings in Section 5.1 as a basis.

The approach taken in this mapping is to implement all DataFlows as invocations on
operations representing DataFlow sinks. The source of the DataFlow therefore is
represented as an object reference to the PortUsage representing the ProcessMultiPort
containing these sink points. To facilitate design (and mapped implementation) re-use, every
potential DataFlow sink (i.e. every ProcessMultiPort) will be represented as an interface, so
that the only runtime configuration required is the finding of object references to the objects
implementing PortUsages instantiating these ProcessMultiPort interfaces. The
ProcessFlowPort usages in the ProcessMultiPort instances then contain operations
represent the sinks to the actual DataFlows in the Business Process Model.

5.3.1 Activity (representing CompoundTask instance)

A CompoundTask's external port contract is represented by an IDL interface type, and an
Activity is implemented as an instance of this type, including the inherited Workflow
interfaces defined in Section 5.1, and an object reference for a PortUsage representing the
ProcessMultiPorts contained by the Activity's defining CompoundTask.

ad/2001-08-20 – UML for EDOC Part II

E-60 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

5.3.1.1 Containment

An Activity may need to be aware of its parent:

module EDOC {
 interface TaskNavigation {
 TaskNavigation my_container();
 };
};

The role of an Activity in this mapping is to provide a NameSpace for the objects it contains.
As before, CompoundTasks are the IDL types we define, and Activities will the object
instances at runtime. In a CORBA interface mapping this is done via modules:

module <CompoundTask Name> {

 interface <CompoundTask Name>Navigation : EDOC::TaskNavigation;

 // interface definitions for contained DataGroups go here

 // statically generated DataFlow sources interface goes here

 // interface containing attributes pointing to contained
 // Activities go here

};

5.3.1.2 DataFlow source

All CompoundTasks support a generic interface that allows their runtime Containers to
provide them with the object references that they require to send out their DataFlows.

module EDOC {
 interface TaskDataFlowSource {
 add_data_flow_sink(
 in string source_data_element_name,
 in Object sink_obj_ref,
 in string sink_data_element_name);
 };
};

This allows a DataFlow to be described in terms of the source name (of the form
ProcessMultiPortName::ProcessFlowPortName), and the object which defines its sink
ProcessFlowPort, as well as the name of the method to be called on that object. The method
to be invoked is named the same as the sink ProcessFlowPort, and it always has a single
parameter called "values", which is of the same type as the source DataElement.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II E-61

In addition, the mapping may generate static interfaces of the form:

interface <CompoundTaskName>Sources {
 add_<ProcessFlowPortName>_sink(
 in <CompoundTask Module>::<sink ProcessFlowPort Name> sink);
 // etc...

};

There will be an operation per DataFlow for which this CompoundTask is a source. The
generated code will be able to statically invoke the right operation on the sink object
reference passed in to each of these operations.

5.3.2 ProcessMultiPort

5.3.2.1 ProcessFlowPort Container

A ProcessMultiPort contains a fixed (possibly empty) set of ProcessFlowPorts, each with a
unique name. The following interface is generated to map the ProcessMultiPort:

 interface <ProcessMultiPort Name> {

 // Contained ProcessFlowPort Mappings go here

 };

There is no distinction in the interfaces between synchronous and asynchronous
DataGroups; the objects implementing the interfaces must provide the appropriate
semantics.

5.3.3 ProcessFlowPort

Each ProcessFlowPort is represented as an operation of the form:

 void <ProcessFlowPort Name> (in values <type attribute mapping>);

The type of the "values" parameter should be a collection type (i.e., a sequence) to support
ProcessFlowPort multiplicities other than {1,1}.

5.3.4 CompoundTask (instantiated to give Activities)

5.3.4.1 DataFlow Container

A CompoundTask contains all the DataFlows that connect the Activities which it contains.
This means that the Activity instantiating the CompoundTask interface is responsible for
passing object references of the ProcessMultiPort interface instances (which are sinks of
DataFlows) to the Activity containing the PortUsages representing the ProcessMultiPorts
that are the sources of these DataFlows.

It may do this by making calls to the generic TaskSource interface (assuming that Activities
making calls can use the DII), or to the statically typed generated

ad/2001-08-20 – UML for EDOC Part II

E-62 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

<CompoundTaskName>Sources interfaces that may be generated after this
CompoundTask's usage context in the Model is known.

5.3.4.2 Exception Catcher

All CompoundTasks support an interface derived from:

module EDOC {

 interface CompoundTask {
 void system_exception(
 in payload CosNotification::PropertySeq);
 };
};

The interface is defined as:

 interface <CompoundTask Name>Compound :
 EDOC::CompoundTask;

The payload contains a Property for each ProcessFlowPort in the ExceptionGroup.

5.3.5 ExceptionGroup

Unhandled ExceptionGroups must call the system_exception() operation on their Container's
CompoundTask interface. Handled ExceptionGroups (ones with DataFlows proceeding from
their Outputs) behave the same as ordinary OutputGroups.

5.3.6 BusinessProcess

5.3.6.1 Containment

In this mapping a Business Process indicates which Task Containment level (indicated by its
realizes association with a CompoundTask) is significant enough to give an outer-level
module scope to.

module <BusinessProcess Name> {

 // realized CompoundTask declarations go here
};

6. Mapping from EDOC Business Process to FCM

6.1 Overview of FCM Concepts

The Flow Composition Model (FCM) is presented in part I, chapter 5 section 2.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II E-63

6.2 Mapping from the Business Process Profile to the FCM

This section describes mappings from the Business Process Profile to the FCM Profile. This
is shown by means of

• A mapping for each of the concrete EDOC elements

• a diagram demonstrating the use of FCM concepts to draw the procurement example
introduced in the business process profile section.

6.2.1 Mapping CompoundTask

A CompoundTask is mapped to an FCMComposition, allowing it to compose the
FCMNodes and FCMConnections that result from the mapping of the CompoundTask’s
Activities, ProcessPortConnectors, DataFlows, and ProcessRoles.

If an Activity ‘uses’ a CompoundTask, then it maps to an FCMFunction that is
‘performed_by’ a dummy FCMComponent whose sole purpose is to bind to the
FCMComposition mapped by the CompoundTask. Alternateively, if the Activity is
‘performed by’ a PerfomerRole, it is mapped to an FCMCommand that is ‘performed by’ the
FCMcomponent mapped to by the PerformerRole.

6.2.2 Mapping Activity

An Activity is mapped to an FCMFunction, allowing it to have as its interfaces the
FCMTerminals that result from the mapping of the Activity’s ProcessPortConnectors, and to
be performed by the FCMComponents that result from the mapping of its ProcessRoles and
the CompoundTask that it uses.

6.2.3 Mapping ProcessPortConnector

A ProcessPortConnector is mapped to an FCMTerminal, unless the ProcessFlowPort to
which it refers is a ProcessMultiPort. If this is the case, the ProcessPortConnector is not
mapped, although it does have implications as detailed in the mapping for the various
concrete subtypes of ProcessMultiPort.

If a ProcessPortConnector is attached to an Activity, then the FCMTerminal that it maps to
will be attached to an FCMFunction. If a ProcessPortConnector is attached to a
CompoundTask, then the FCMTerminal that it maps to will be attached to either an
FCMSource or an FCMSink, depending on whether the direction attribute of the
ProcessPortConnector’s represented ProcessFlowPort is ‘responds’ or ‘initiates’
respectively.

6.2.4 Mapping ProcessFlowPort

The mapping of a ProcessFlowPort depends on its direction attribute. If the direction is
‘responds’, then the ProcessFlowPort maps to an FCMSource, if the direction is ‘initiates’,
the ProcessFlowPort maps to an FCMSink.

ad/2001-08-20 – UML for EDOC Part II

E-64 A UML Profile for Enterprise Distributed Object Computing – Part II 2001-08-22

6.2.5 Mapping DataFlow

A DataFlow maps to an FCMControlLink and an FCMDataLink. The source and target of the
FCMDataLink are the FCMTerminals that result from the mapping of the DataFlow’s source
and target ProcessPortConnectors. The source of the ControlLink is the FCMTerminal that
results from the mapping of the DataFlow’s source ProcessPortConnector. The target of the
ControlLink is the FCMNode that holds the FCMTerminal that results from the mapping of
the DataFlow’s target ProcessPortConnector, unless indicated otherwise by the mapping for
InputGroup, OutputGroup, and ExceptionGroup.

If more than one DataFlows emerge from a single PPC, then this is mapped to a single
FCMControlLink, which leads into an FCMBranchNode, from which will emanate the newly-
mapped FCMControlLinks.

6.2.6 Mapping InputGroup

The AND semantics over the ProcessPortConnectors of the InputGroup is expressed by
inserting an (FCMJoinNode,FCMControlLink) pair on a path between the incoming
FCMControlLinks and the FCMNode which holds the target FCMTerminals.

Asynchronous InputGroups can be mapped on a special kind of FCMTerminal – that reflects
asynchronous behaviour semantics. However, since there is no explicit inclusion of such an
FCMTerminal, we leave this unspecified. In the example attached, these are shown with
separate rounded symbols, in a similar manner as in the EDOC Business Process notation.

6.2.7 Mapping OutputGroup

The AND semantics over the ProcessPortConnectors of the OutputGroup is expressed by
inserting an (FCMControlLink, FCMBranchNode) pair on a path between the
FCMControlLinks emanating from the FCMTerminals mapped from the OutputGroup’s
ProcessPortConnectors, and the target FCMNode.

Asynchronous OutputGroups can be mapped on a special kind of FCMTerminal – that
reflects asynchronous behaviour semantics. However, since there is no explicit inclusion of
such an FCMTerminal, we leave this unspecified. In the example attached, these are shown
with separate rounded symbols, in a similar manner as in the EDOC Business Process
notation.

6.2.8 Mapping BusinessProcess

A BusinessProcess is mapped as an FCMComposition.

6.2.9 Mapping ProcessRole

A ProcessRole is mapped as an FCMCommand and a corresponding FCMComponent.

6.2.10 Mapping Performer

A Performer is mapped as an FCMCommand and a corresponding FCMComponent.

ad/2001-08-20 – UML for EDOC Part II

2001-08-22 A UML Profile for Enterprise Distributed Object Computing – Part II E-65

6.2.11 Mapping Artifact

An Artifact is mapped as an FCMCommand and a corresponding FCMComponent.

6.2.12 Mapping ResponsibleParty

A ResponsibleParty is mapped as an FCMCommand and a corresponding FCMComponent.

6.2.13 Procurement Example

Procurement

Resource
RequirementsData

Resource
Requirements

Resource
RequirementsData

Sourcing

ListofSourcesData

Source
Frieight-dependent

Request

PurchasingOfficer
- doPurchase

purchasingOfficer

Award

Evaluation

Release

Freight No

Resource
Requirements

Monitor

Maintain
Authorising Officer
- doAuthorise

authorising Officer

AccountingArtifact
- update()

accounting

OrderArtifact
- update()

orderContract

CostingArtifact
- update()

accountingCosting

Process
Order

Receipt
Approve

PayableArtifact
- update()

InventoryArtifact
- update()

inventory accounts Payable

Supplier
- doProcessOrder

supplier

Figure 19 Procurement example

