
UML™ for EAI

UML™ Profile and Interchange Models for
Enterprise Application Integration (EAI)

ad/2001-09-17

Updated Revised Submission to ADTF RFP ad/2000-03-07
UML™ Profile for Event-based Architectures in

Enterprise Application Integration (EAI)

OMG EAI SIG
Joint Submission

DSTC

Hitachi, Ltd.

International Business Machines Corporation

Oracle Corporation

Rational Software Corporation

Unisys Corporation

Supported by

CBOP

Charles Schwab & Co.

Data Access Technologies

IONA

OMG Document Number ad/2001-09-17

Copyright 2001 DSTC

Copyright 2001 Hitachi, Ltd.

Copyright 2001 IBM Corporation

Copyright 2001 Oracle Corporation

Copyright 2001 Rational Corporation

Copyright 2001 Unisys Corporation

The companies listed above hereby grant a royalty-free license to the Object Management Group, Inc.
(OMG) for worldwide distribution of this document or any derivative works thereof, so long as the
OMG reproduces the copyright notices and the below paragraphs on all distributed copies.

The material in this document is submitted to the OMG for evaluation. Submission of this document
does not represent a commitment to implement any portion of this specification in the products of the
submitters.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE
COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND WITH REGARD TO
THIS MATERIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. The companies listed
above shall not be liable for errors contained herein or for incidental or consequential damages in
connection with the furnishing, performance or use of this material. The information contained in this
document is subject to change without notice.
This document contains information which is protected by copyright. All Rights Reserved. Except as
otherwise provided herein, no part of this work may be reproduced or used in any form or by any means
— graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage
and retrieval systems — without the permission of one of the copyright owners. All copies of this
document must include the copyright and other information contained on this page.

The copyright owners grant member companies of the OMG permission to make a limited number of
copies of this document (up to fifty copies) for their internal use as part of the OMG evaluation process.
RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to
restrictions as set forth in subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software
Clause at DFARS 252.227.7013.

CORBA, OMG, and Object Request Broker are trademarks of Object Management Group.

ad/2001-09-17 UML for EAI i

Table of Contents
Part 1 Introduction.. 1
1 Introduction and Guide .. 2

1.1 Introduction... 2

1.2 Guide to the Document ... 2

1.3 Submission Contact Points ... 3

1.4 Contributors .. 4

2 Scope... 5
2.1 Scenario 1: Connectivity... 5

2.2 Scenario 2: Information Sharing... 5

2.3 Scenario 3: Process Collaboration .. 7

3 Modeling Approach .. 9
3.1 Metamodel .. 9

3.2 UML Profile.. 9

3.3 Four-layered Architecture... 10

3.4 Semantics.. 10

4 Compliance .. 11
4.1 Overview... 11

4.2 Compliance with the UML Collaboration Profile .. 11
4.2.1 General Compliance .. 11
4.2.2 Visualization.. 11

4.3 Compliance with the UML Activity Profile ... 12
4.3.1 General Compliance .. 12
4.3.2 Visualization.. 12

4.4 Compliance with the MOF-based EAI Metamodel .. 12

4.5 Compliance Statement Examples ... 13

5 Requirements and Areas for Discussion ... 14
5.1 Mandatory Requirements.. 14

5.1.1 Event-Based Architecture.. 14
5.1.2 Heterogeneous Environment ... 15
5.1.3 XML.. 15
5.1.4 XMI... 15
5.1.5 UML Profile for EDOC... 15
5.1.6 MOF alignment ... 16
5.1.7 Proof of Concept of Profile ... 16
5.1.8 Demonstration that Models are Implementable... 17

5.2 Discussion issues .. 17
5.2.1 Development and Management Aid .. 17

ad/2001-09-17 UML for EAI ii

5.2.2 Tool Support.. 17

5.3 Relationship to Envisioned OMG Technology... 18
5.3.1 Real-time ... 18

5.4 Relationship to Existing Standards ... 18
5.4.1 UML.. 18
5.4.2 Meta Object Facility (MOF).. 18
5.4.3 Common Warehouse Metamodel (CWM) .. 18

5.5 Other Related Activities ... 19

Part 2 Metamodel .. 20
6 EAI Integration Metamodel ... 21

6.1 EAI Integration specializes FCM ... 21

6.2 FCM Derived Associations... 21
6.2.1 Motivation ... 21
6.2.2 FCM diagrams... 22
6.2.3 Composite nodes ... 24
6.2.4 Composite nodes and their contents .. 24
6.2.5 Relationship between the interface of a composite node and its contents ... 25

6.3 EAI Specializations of the FCM... 25
6.3.1 Motivation ... 25
6.3.2 EAILink... 26
6.3.3 EAITerminal.. 27
6.3.4 EAIMessageContent.. 27
6.3.5 EAIMessageOperation .. 30
6.3.6 EAISource and EAISink ... 31
6.3.7 EAIQueue.. 32
6.3.8 EAIQueuedInputTerminal and EAIQueuedOutputTerminal... 32
6.3.9 EAIQueuedSource and EAIQueuedSink... 33
6.3.10 Operators ... 34
6.3.11 Adapters .. 37

6.4 Kinds of Operator ... 41
6.4.1 Operators ... 41
6.4.2 Topic-based publish/subscribe .. 54

6.5 CCA Component Library for EAI .. 56
6.5.1 Operators ... 56
6.5.2 Adapters .. 61
6.5.3 CCA and EAI Metamodel Mapping Tables .. 64

7 EAI Common Application Metamodel.. 67
7.1 Business Requirements and Value.. 67

7.2 Common Application Metamodel for Applications Interfaces... 68
7.2.1 End-to-End Connector Usage Using EAI Common Application Metamodel ... 69

7.3 Common Application Metamodel .. 69
7.3.1 Enterprise Application Interface Metamodels ... 70
7.3.2 Language Metamodels .. 70
7.3.3 Physical Representation Model: Type Descriptor Metamodel .. 71
7.3.4 Type Descriptor Metamodel Descriptions... 74
7.3.5 Type Descriptor Formulas... 76
7.3.6 Type Descriptor Formula Examples.. 77

ad/2001-09-17 UML for EAI iii

7.3.7 Physical Representation Model: TDLang Metamodel... 84
7.3.8 TDLang Metamodel Descriptions ... 85
7.3.9 Physical Representation Model: Convergent Metamodel ... 86
7.3.10 Convergent Metamodel Descriptions .. 87
7.3.11 Sample Serialization of Convergent Metamodel ... 88

Part 3 Profile Definition.. 90
8 Collaboration Modeling.. 91

8.1 Overview... 91

8.2 Terminals .. 92

8.3 Operators... 94
8.3.1 Primitive operator.. 94
8.3.2 Transformers and Database Transformers... 94
8.3.3 Filters... 95
8.3.4 Streams.. 96
8.3.5 Post Daters .. 96
8.3.6 Source Adapters .. 97
8.3.7 Target Adapters ... 98
8.3.8 Call Adapters... 99
8.3.9 Request/Reply Adapters .. 100
8.3.10 Sources and Queued Sources... 101
8.3.11 Sinks and Queued Sinks .. 102
8.3.12 Aggregators ... 102
8.3.13 Timers ... 103
8.3.14 Routers .. 104
8.3.15 Subscription Operators .. 105
8.3.16 Publication Operators .. 105
8.3.17 Topic Publishers.. 106
8.3.18 Compound Operators .. 107

8.4 Resources.. 114

8.5 Message Formats .. 114
8.5.1 MessageContent core .. 114
8.5.2 Basic MOM Message Structure... 116

8.6 Mapping with Metamodel... 118
8.6.1 Terminals... 118
8.6.2 Operators ... 119
8.6.3 Resources .. 124
8.6.4 Message Formats... 124

9 Activity Modeling .. 126
9.1 Modeling Integration Processes.. 126

9.2 An Integration Process Scenario... 126
9.2.1 The Exchange Process... 126
9.2.2 Modeling message flow explicitly... 127
9.2.3 Modeling control flow... 129
9.2.4 Abstracting detail by decomposition ... 129
9.2.5 Further fragmentary examples... 130

9.3 Profile Element Summary... 132
9.3.1 Stereotypes .. 132
9.3.2 Tagged Values... 134

ad/2001-09-17 UML for EAI iv

9.3.3 Mapping to EAI Metamodel.. 135

Part 4 Proof of Concept .. 137
10 Example: Connectivity and Information Sharing.. 138

10.1 The Brokerage Business ... 138

10.2 Connection of Enterprises to the Online Brokerage System... 139

10.3 The On-line Brokerage System... 143

10.4 International Brokerage Server... 146
10.4.1 Orders.. 146
10.4.2 Notifications .. 146

10.5 Investment Manager Server .. 149
10.5.1 Orders.. 149
10.5.2 Notifications .. 149

10.6 Middleware Server and Back-End Brokerage System.. 149

10.7 Publication .. 151

11 Example using the EDOC CCA ... 153
Part 5 Implementation Mappings.. 161
12 Mapping to WebSphere MQ Integrator ... 162

12.1 WebSphere MQ Messaging .. 162
12.1.1 WebSphere MQ Messages .. 162
12.1.2 WebSphere MQ Message Queuing ... 163

12.2 WebSphere MQ Integrator Message Flows.. 164
12.2.1 Summary ... 164
12.2.2 WMQIMessageFlow ... 165
12.2.3 WMQICompoundNode ... 166
12.2.4 WMQIPrimitiveNode.. 167
12.2.5 Supplied WMQIPrimitiveNodes ... 167
12.2.6 The Role of the WMQI message-broker topology .. 168

13 Java Message Service (JMS) .. 170
13.1 PTP Domain.. 170

13.2 Pub/Sub Domain... 171

14 Language Metamodels .. 175
14.1 COBOL Metamodel.. 175

14.1.1 COBOL Metamodel Descriptions ... 176

14.2 PL/I Metamodel .. 179
14.2.1 PL/I Metamodel Descriptions.. 181

14.3 C Metamodel .. 186
14.3.1 C Metamodel Descriptions .. 189

14.4 C++ Metamodel .. 190
14.4.1 C++ Metamodel Descriptions ... 191

15 Appendix: Non-Normative Enterprise Application Interface Metamodels............................. 193

ad/2001-09-17 UML for EAI v

15.1 IMS Transaction Message Metamodel ... 193
15.1.1 IMS Transaction Message Metamodel Descriptions ... 196

15.2 IMS MFS Metamodel ... 208
15.2.1 IMS MFS Metamodel Descriptions... 212

15.3 CICS BMS Metamodel... 232
15.3.1 CICS BMS Metamodel Descriptions .. 234

Attachments
XMI and DTD files for the EAI MetamodelsOMG Document Number ad/2001-08-25

ad/2001-09-17 UML for EAI vi

Table of Figures
Figure 1 FCMComponent metamodel diagram (from ad/2001-06-09) .. 22
Figure 2 Flow Composition Model main diagram (from ad/2001-06-09) .. 23
Figure 3 Flow Composition Model datatypes ... 23
Figure 4 Derived association between FCMCommand and FCMComposition 24
Figure 5 Derived association between a composite node, its content nodes and its composed connections

... 25
Figure 6 Derived association between FCMTerminal and FCMParameter.. 25
Figure 7 Definition of EAILink .. 26
Figure 8 EAITerminal ... 27
Figure 9 EAI MessageContent .. 28
Figure 10 EAIHeader .. 29
Figure 11 EAIExceptionNotice... 29
Figure 12 XML message elements.. 30
Figure 13 MessageOperation .. 31
Figure 14 Sources and sinks.. 31
Figure 15 EAIQueue ... 32
Figure 16 EAIQueuedOutputTerminal and EAIQueuedInputTerminal.. 33
Figure 17 QueuedSource and QueuedTarget .. 34
Figure 18 Definitions of PrimitiveOperator and CompoundOperator .. 35
Figure 19 EAIMessageFlow.. 36
Figure 20 Derived association between a terminal inside a composite node and the corresponding

terminal outside ... 37
Figure 21 SourceAdapter .. 38
Figure 22 EAITargetAdapter .. 38
Figure 23 EAICallAdapter .. 39
Figure 24 EAIRequestFormat ... 40
Figure 25 EAIRequestReplyAdapter .. 41
Figure 26 Filter.. 41
Figure 27 Stream ... 42
Figure 28 EAIPostDater .. 43
Figure 29 Transformer .. 44
Figure 30 EAIDBTransformer .. 44
Figure 31 EAIAggregator.. 45
Figure 32 EAIRouter... 46
Figure 33 EAIRouter and EAIRouterUpdate .. 47
Figure 34 EAIRouterUpdateFormat.. 48
Figure 35 SubscriptionOperator .. 49
Figure 36 EAISubscriptionFormat .. 49
Figure 37 EAISubscription.. 50
Figure 38 SubscriptionFilter.. 50
Figure 39 EAISubscriptionRule, EAITopicRule and EAIContentRule.. 50
Figure 40 EAIPublicationOperator and EAISubscriptionOperator .. 51
Figure 41 Example SubscriptionTable instance diagram.. 51
Figure 42 TimeSetOperator... 52
Figure 43 EAIMessageTimerCondition .. 52

ad/2001-09-17 UML for EAI vii

Figure 44 EAIExpiryFormat ... 53
Figure 45 EAITimeCheckOperator... 53
Figure 46 Topics allowed by an EAITopicRule.. 54
Figure 47 Relationship between a terminal and the topics for which it has a subscription 55
Figure 48 Relationship between publishers, subscribers and topics ... 56
Figure 49 CCA notation for a sample generic EAIPrimitiveOperator.. 57
Figure 50 CCA notation for sample EAITransformer .. 58
Figure 51 CCA notation for a sample EAIFilter ... 59
Figure 52 CCA notation for a sample EAIStream .. 60
Figure 53 CCA notation for sample EAICompoundOperator .. 61
Figure 54 CCA notation for a sample EAISourceAdapter.. 61
Figure 55 CCA notation for a sample Pull mode EAISourceAdapter .. 62
Figure 56 CCA notation for a sample EAITargetAdapter .. 62
Figure 57 CCA notation for sample EAICallAdapter... 63
Figure 58 Multiple Application and Development Environments .. 67
Figure 59 Application Interface Metamodel ... 68
Figure 60 Type Descriptor metamodel.. 72
Figure 61 TDLang to Type Descriptor.. 73
Figure 62 Type Descriptor Stereotypes... 73
Figure 63 TDLang Metamodel.. 85
Figure 64 Convergent Metamodel... 87
Figure 65 Class diagram for prototypical primitive operator with terminals.. 93
Figure 66 Class diagram for prototypical transformer .. 94
Figure 67 Class diagram for prototypical database transformormer... 95
Figure 68 Class diagram for prototypical filter... 95
Figure 69 Class diagram for prototypical stream.. 96
Figure 70 Class diagram for prototypical post dater ... 97
Figure 71 Class diagram for prototypical source adapter ... 98
Figure 72 Class diagram for prototypical target adapter... 98
Figure 73 Class diagram for prototypical call adapter .. 99
Figure 74 Class diagram from prototypical request/reply adapter .. 100
Figure 75 Class diagram for prototypical source .. 101
Figure 76 Class diagram for prototypical queued source.. 101
Figure 77 Class diagram for prototypical sink .. 102
Figure 78 Class diagram for prototypical aggregator.. 102
Figure 79 Class diagram for prototypical timer .. 103
Figure 80 Class diagram for prototypical router ... 104
Figure 81 Class diagram for prototypical subscription operator... 105
Figure 82 Class diagram for prototypical publication operator .. 106
Figure 83 Class diagram for prototypical topic publisher... 106
Figure 84 Class diagram for example compound operator ... 107
Figure 85 Class diagram for a compound operator with compound components................................... 108
Figure 86 Terminals for example of compound operator ... 108
Figure 87 Collaboration diagram for example compound operator .. 109
Figure 88 Synchronous and asynchronous links ... 110
Figure 89 Class diagram for example with components of same type.. 110

ad/2001-09-17 UML for EAI viii

Figure 90 Collaboration diagram for example with components of same type. 111
Figure 91 Configuration of call and request/reply adapters.. 112
Figure 92 Configuration of publication and subscription operators ... 113
Figure 93 A simple message content class.. 115
Figure 94 A model of a message containing a table ... 116
Figure 95 Example of the use of the ExceptionNotice and MOMHeader stereotypes 117
Figure 96 Example of the use of the MOMHeader stereotype ... 118
Figure 97 Basic way of modeling message based integration with Activities (Exchange example)...... 127
Figure 98 Application of the «messageFlow» stereotype to emphasize data-flow aspects 128
Figure 99 Application integration example with «messageflow» stereotype (partial) 128
Figure 100 Optional control flow transitions between activities within a single system........................ 129
Figure 101 Decomposition of the integration step “Place Quote” in the context of the Exchange example

... 130
Figure 102 Modeling multiple inputs and outputs with join and fork pseudo-states. 130
Figure 103 Modeling internal data flow with object flow states... 131
Figure 104 Example of a decision node to model rule-based routing... 131
Figure 105 Synchronization with forks and joins ... 131
Figure 106 Dynamic concurrent invocation of an activity.. 132
Figure 107 Explicit modeling of an event for an adapter implementation.. 132
Figure 108 As-is architecture for international and investment managers.. 139
Figure 109 Brokerage company — component connections .. 140
Figure 110 Brokerage company — components... 141
Figure 111 International brokerage systems — terminals .. 142
Figure 112 Investment-manager systems — terminals ... 142
Figure 113 On-line brokerage system — terminals .. 143
Figure 114 On-line brokerage system — components.. 144
Figure 115 On-line brokerage — component connections ... 144
Figure 116 International brokerage server — terminals ... 145
Figure 117 Investment-manager server — terminals.. 145
Figure 118 Middleware server — terminals ... 146
Figure 119 Back-end brokerage system — terminals ... 146
Figure 120 Pub/sub server — terminals.. 146
Figure 121 IBS — components... 147
Figure 122 IBS — component connections .. 148
Figure 123 Back-end brokerage system — components... 150
Figure 124 Back-end brokerage system — component connections .. 151
Figure 125 Back-end processing system — terminals .. 151
Figure 126 Pub/sub server — components ... 152
Figure 127 Pub/sub server — component connections... 152
Figure 128 BrokerageCompany component connections ... 153
Figure 129 Ordering Components... 154
Figure 130 OnlineBrokerage Component ... 154
Figure 131 2000IMSystemOrdering Protocol... 154
Figure 132 1999IMSystemOrdering Protocol... 155
Figure 133 JapanOrdering Protocol .. 155
Figure 134 StandardInternationalOrdering Protocol... 155

ad/2001-09-17 UML for EAI ix

Figure 135 Detail of OnlineBrokerage Component .. 156
Figure 136 Detail of InvestmentManagerServer Component ... 156
Figure 137 Detail of 2000IMIBSHandler Component.. 157
Figure 138 Detail of 1990IMIBSHandler Component.. 158
Figure 139 Detail of InternationaBrokerageServer Component ... 158
Figure 140 Detail of JapanIMIBSHandler Component... 159
Figure 141 Detail of StandardInternationalIMIBSHandler Component ... 160
Figure 142 WMQRemoteQueue and WMQAliasQueue .. 164
Figure 143 Summary of the main usage of operator stereotypes.. 165
Figure 144 WMQIMessageFlow... 165
Figure 145 Compound and primitive nodes in WMQI ... 166
Figure 146 WMQIntegrator class diagram.. 169
Figure 147 JMS QueueSender... 170
Figure 148 JMS QueueReceiver ... 171
Figure 149 JMS QueueBrowser .. 171
Figure 150 A JMSSubscriberListener expects incoming messages.. 172
Figure 151 Model for the content of the JMS subscription table.. 172
Figure 152 JMSTopicSubscriberCreator... 172
Figure 153 JMSSubscriptionInfrastructure ... 173
Figure 154 A JMS TopicPublisher.. 173
Figure 155 JMSPublicationInfrastructure ... 174
Figure 156 COBOL Metamodel.. 175
Figure 157 TDLang to COBOL .. 176
Figure 158 COBOL Stereotypes ... 176
Figure 159 PL/I Metamodel .. 180
Figure 160 TDLang to PL/I... 181
Figure 161 PL/I Stereotypes.. 181
Figure 162 C Metamodel... 186
Figure 163 TDLang to C ... 187
Figure 164 C Derivation.. 187
Figure 165 C Names.. 188
Figure 166 C Datatype – Model Types ... 188
Figure 167 C User Types .. 188
Figure 168 CPP Metamodel .. 191
Figure 169 CPP Model Types ... 191
Figure 170 IMS Transaction Message Metamodel ... 194
Figure 171 IMS Transaction Message Prefix.. 195
Figure 172 OTMA Prefix - Defined Types... 195
Figure 173 OTMA Prefix – State Data Defined Types... 195
Figure 174 OTMA Prefix – Security Data Defined Types ... 196
Figure 175 IMS Messages Primitive Types .. 196
Figure 176 MFS Inheritance View.. 210
Figure 177 MFS Relationship View.. 211
Figure 178 MFS Attribute View ... 212
Figure 179 CICS BMS Relationship View ... 233
Figure 180 CICS BMS Inheritance View ... 233

ad/2001-09-17 UML for EAI x

Figure 181 CICS BMS Attributes ... 234

ad/2001-09-17 UML for EAI xi

ad/2001-09-17 UML for EAI 1

Part 1 Introduction

ad/2001-09-17 UML for EAI 2

1 Introduction and Guide

1.1 Introduction

As enterprises adapt to business change and new opportunities, they seek to build on their existing
strengths and assets for competitive advantage. Electronic trading with consumers and other businesses
is one of these trends. This frequently entails building new applications by coupling existing ones,
which is known as Enterprise Application Integration (EAI). This is most often done with some form of
messaging that provides loose coupling to make it easy to change, to link heterogeneous systems and
operating environments, and to maximize resilience and robustness in cases of partial failure.

Enterprise Application Integration technology is being promoted to integrate legacy systems with new
packages. But integrating legacy applications with new software is a difficult and expensive task due, in
large part, to the necessity of customizing each connection that ties together two disparate applications.
There is no single mechanism to describe how one application may allow itself to be invoked by
another.

We intend to solve this problem by defining and publishing a metadata interchange standard for
information about accessing application interfaces. The goal is to simplify application integration by
standardizing application metadata for invoking and translating application information. Once these
standards exist, tools may be constructed to facilitate the development, execution, and management of
these integration points.

Such connected systems are inherently complex to define and manage. A well-known approach to
managing complexity is to define levels of concern. Modeling with UML has been shown to be
successful at representing differing levels of detail. The appropriate level for EAI is application
architecture — the treatment of the interfaces and interactions between applications. UML has been
used successfully for modeling at this level, and this submission presents the authors' view of best
practice for using the existing UML for modeling application architectures, i.e., architectures composed
by enterprises to enable application integration.

1.2 Guide to the Document

In Section 2, the submission defines its scope as the modeling of connectivity and information sharing
between applications. These are key enablers for defining processes that entail collaboration between
applications, including those that involve dealing between enterprises.

Section 3 explains that the approach uses existing UML but draws on metamodeling work being done
for the Enterprise Distributed Object Computing (EDOC) submission to provide semantic underpinning.

In Section 5, mandatory requirements are listed and addressed.

ad/2001-09-17 UML for EAI 3

The sections in Part 2 describe the EAI Integration Metamodel and Common Application Metamodel
(CAM). The Integration metamodel defines the modeling elements used in the profile. CAM supports
the definition of application interfaces.

The sections in Part 3 define a profile that uses collaboration diagrams and activity diagrams, based on
the Integration Metamodel.

The sections in Part 4 give a proof of concept for the profile by showing through samples how the
elements of the profile can be used to model application architectures.

The sections in Part 5 provide non-normative mappings to implementation technologies and normative
mappings (Section 14) to programming-language data structures.

XMI and DTD files for the metamodels are attached to the document as EAIIMXMIDTD.zip and
EAICAMXMIDTD.zip.

1.3 Submission Contact Points
Cory B. Casanave
Data Access Technologies
14000 SW 119 Av., Miami, FL 33186, USA
Email: cory-c@enterprise-component.com

Keith Duddy
CRC for Enterprise Distributed Systems Technology (DSTC)
University of Queensland, Brisbane 4072, Australia
Email: dud@dstc.edu.au

Dai Clegg
Oracle Corporation
520 Oracle Parkway, Thames Valley Park, Reading, Berkshire RG6 1RA, England
E-mail: dai.clegg@oracle.com

David Frankel
IONA
741 Santiago Court, Chico, CA 95973
E-mail: david.frankel@iona.com

Hajime Horiuchi
Tokyo International University
1-13-1 Matoba-kita, Kawagoe-shi, Saitama 350-1102, Japan
Email: hori@tiu.ac.jp

Sridhar Iyengar
Unisys Corporation
25725 Jeronimo Rd., Mission Viejo, CA 92691
E-mail: Sridhar.Iyengar2@unisys.com

John Knapman

mailto:cory-c@dataacces.com
mailto:dgawlick@us.oracle.com
mailto:dgawlick@us.oracle.com

ad/2001-09-17 UML for EAI 4

IBM
Hursley Park, Winchester, SO21 2JN, England
E-mail: knapman@uk.ibm.com

Wojtek Kozaczynski
Rational Corporation
4900 East Pearl Cir., Boulder, CO 80301-6108
E-mail: wojtek@rational.com

Chalon Mullins
Charles Schwab & Co.
211 Main St., San Francisco, CA 94105
E-mail: Chalon.Mullins@schwab.com

Akira Tanaka
Hitachi, Ltd., Software Division, Enterprise Business Planning, Product Planning Dept.,
5030 Totsuka-cho, Totsuka-ku, Yokohama 244-8555, Japan
E-mail: tanakaak@soft.hitachi.co.jp

1.4 Contributors

In addition to the contacts, the following people contributed to this submission:

Steve Brodsky (IBM), Antonio Carrasco (Data Access), Dieter Gawlick (Oracle), Shyh-Mei Ho (IBM),
Stuart Kent (McLellan Kent Associates for IBM), Rob Phippen (IBM), Barbara Price (IBM), Guus
Ramackers (Oracle) and Ed Seidewitz (formerly of Concept Five).

mailto:knapman@uk.ibm.com
mailto:wojtek@rational.com
mailto:tanakaak@soft.hitachi.co.jp

ad/2001-09-17 UML for EAI 5

2 Scope

The scope is described with three generic scenarios representing the evolution of the integration
requirements:

• Scenario 1. Application integration through connectivity.

• Scenario 2. Application integration through information sharing.

• Scenario 3. Application integration through process collaboration.

For each scenario major characteristics and requirements are described. Obviously, scenario 2 requires
the functionality described in scenario 1 and scenario 3 requires the functionality described in scenario
2. However, as we move forward from scenario 1 to scenario 2 and scenario 3, the underlying
functionality becomes less visible and more and more hidden in the infrastructure.

As the industry moves forward, scenario 3—or an updated version of scenario 3—will most likely
become the dominant scenario.

2.1 Scenario 1: Connectivity

A small set of applications has to communicate synchronously or asynchronously with each other to
provide business functions.

It must be possible to model the following abstractions:

• Service requester and provider

• Synchronous and asynchronous service request

• Request, reply and notification

In this scenario, the participating applications share a common architecture. They share the data model
of the communication and they are able to activate the appropriate applications to obtain a service.

There is a need for additional abstractions such asqueues (local or remote) and topics. At one level,
queues and topics should be invisible, but at a lower level of detail they may well be required.

2.2 Scenario 2: Information Sharing

This scenario comes from handling securities.

An investor orders a stock trade, typically by sending a message describing the stock trade to be
carried out. (We discuss the creation of the message in the next scenario.) This stock trade order
triggers a set of autonomous actions: checking the investor’s account, checking the position of

ad/2001-09-17 UML for EAI 6

the institution, notifying a broker if the trade is large, and notifying a broker as well as the
investor if there are any issues.

If the order is accepted the market place is selected and an institution such as a market maker
executes the trade. After execution, the investor records are updated. Information about the
executed trade is sent to the investor via pager and e-mail and to internal systems such as
bookkeeping that require the information.

The securities firm is not only interested in handling requests properly but also in answering
questions from investors, regulators and other interested parties, both internal and external, at
any stage during or after a trade.

A key requirement is that it should be easy to add new participants and new functionality with no or
minimal impact to existing participants and services.

A good way to deal with this scenario is to model it as information sharing between applications and
actors, such as investors and brokers. Such information sharing can be implemented through publishing
and subscribing to business events enabling communication between the participants. We assume that
all applications reflect a shared understanding about the meaning and sequence of the individual
business events and act according to this shared understanding. However, we will assume that
applications and actors participating in these processes are isolated from knowledge about who will
consume their information and in which topic and format the recipients expect it.

It must be possible to model the following abstractions:

• Messages representing business events. (We are much less interested in messages that do not
represent business events.)

• Publication of messages and business events—the ability to share information.

• Queues and topics—it must be possible to separate output containers of sending applications from
input containers of receiving applications

• Data transformation—each program must be able to create or consume messages in its own format.
Applications should be able to use data structures suitable to their own language, e.g., a C++
program should not have to handle SWIFT or XML formats. Data transformation has to include
data verification.

• Propagation—the ability to use any protocol to receive or deliver a message, including the allocation
of a received message to a queue.

• Subscriptions to determine the receiving programs, their input containers or propagation routes, and
their transformations. Subscriptions should be able to represent various cases, including interest of
users, data routing, activation of programs.

• Retention to keep the history of relevant messages from creation through stages of processing,
transformation, and consumption.

ad/2001-09-17 UML for EAI 7

• Auditing, tracking, and mining—the ability to find and relate messages, both consumed and in flight.

In this scenario, the applications share a common business event and process model at the conceptual
level. However, details of the layout of the data may vary, e.g., one program may use SWIFT
structures, while another uses XML.

The term information sharing is used to characterize the interaction between participants providing
information for the right recipients. Where time is of the essence and information is communicated with
messaging/event technology we refer to zero latency information sharing.

2.3 Scenario 3: Process Collaboration

Company A offers its merchandise through the Internet. While some customers order goods using a
browser interface, the majority of the orders are communicated business-to-business (B2B) using one of
the B2B protocols. In simplified form, a B2B protocol consists of the following business events:

• RFQ (Request For Quotation)

• Offer

• Acceptance

• Shipment notice

• Bill

• Payment

Other events involved in negotiations, inquiries, changes, cancellation, and other additional steps (e.g.,
steps involving communications problems) are not considered in this simplification.

Company A communicates with business partners over secure Internet channels. Non repudiation, high
reliability (including disaster tolerance), exactly once semantics, fully automated user-accessible
application-independent auditing and tracking are basic requirements. Outgoing communication will
use the requested protocol. Messages representing business events are carefully checked for process,
sequence and data accuracy. Any error will raise an exception condition. Incoming communication is
checked carefully as well. Some errors may need manual correction, which needs careful
documentation.

Company A offers the flexibility for customers to use their favorite B2B protocols as long as they can
represent a proper order process.

Applications should be independent of the specifics of the business protocols, but it is assumed that the
desired interaction with an application can be achieved using its interfaces. At least three levels of
interface support can be distinguished in applications:

• Applications that are only able to react through activation of their interfaces

ad/2001-09-17 UML for EAI 8

• Applications that can accept requests and can notify the outside world using events. At least some of
these applications have to be configured to activate the desired events.

• Applications that additionally provide a process interface. These applications have to be configured
to use the desired process structure.

In any of these cases it can not be assumed that the process as seen by the application is the process as
seen by the selected B2B protocol. Actually it is desirable to hide the internal processes from business
partners, so they can be changed without impact to the outside world and potential competitive
advantages can be hidden. To achieve this, a mediation service has to be available to transform the
process and data semantics embedded in the B2B protocols to the process and data semantics of an
enterprise's internal processes. This transformation will be called semantic mediation. Semantic
mediation is part of the core functionality required for the integration of autonomous applications.

Flexibility in B2B communication requires a repository of information that governs communication with
a particular trading partners. This information includes security (including application security),
notifications, subscriptions, B2B protocols and their extensions and adaptations, and indications for
internal routing. It should be possible to group trading partners according to various criteria. This
information comprises what is often termed a trading community agreement.

To model this level of integration it must be possible to model the following abstractions in addition to
the abstractions defined in the previous scenarios:

• Semantic mediation—the ability to transform process and data structures between applications and
B2B protocols

• Propagation between enterprises—secure, with non repudiation, exactly once semantics, and disaster
protection

• B2B-level auditing, tracking, and mining—a business event can be reviewed, analyzed in its process
context, and mined for insight into business behavior

• B2B protocols—processes based on the communication of business events or business events in the
context of process and customer relations

• Trading community agreements in a repository containing information about trading partner and the
communications with them.

This submission addresses primarily the first two scenarios. It provides enablement for scenario 3, but
this scenario requires other elements that go beyond its scope. Scenario 3 is included here to clarify the
relationship to work going on in ebXML and elsewhere.

ad/2001-09-17 UML for EAI 9

3 Modeling Approach

The EAI specification is delivered as a complete MOF-based metamodel and a UML profile. This
approach facilitates exchange with both UML tools and MOF-based tools/repositories.

3.1 Metamodel
As is the common practice, the MOF-based metamodel is captured as an object-oriented model
expressed using a suitably restricted subset of the UML notation. The UML elements used in this
submssion are:

• Classes with attributes and (query) operations.

• Binary associations, where composite and navigation adornments are permitted. Association classes
and qualified associations are not permitted.

• Packages, including nesting and imports.

• The object constraint language, OCL, for expressing well-formedness constraints.

The EAI metamodel is documented using the following conventions:

• The overall structure of the metamodel is shown as one or more package diagrams, depending on the
level of nesting required.

• Packages are limited in size so that only one class diagram per package is required.

• In explaning a package, the important collaborations between classes are identified and described as
one. Individual classes are described separately where this enhances the overall understanding of the
model.

• Well-formedness constraints are also grouped with the collaborations to which they are relevant.

• The semantics of each collaboration is described as specified below.

3.2 UML Profile
The UML profile allows modelers to use UML as a concrete notation for producing EAI models using
UML modeling tools which support the UML extensions mechanisms, chiefly stereotypes, tagged values
and custom icons. Some tools are available, e.g., [ref objecteering], which can accept a profile
definition and configure a modeling tool to force modelers to conform to that profile by using only
elements of the UML subset and only the stereotypes, tagged values and icons declared in the profile.

A mapping between the metamodel and the UML profile is defined as part of the EAI specification. This
is intended as a basis for the development of tools that will transform models expressed using the UML
profile into models conforming to the metamodel, and vice versa. The details of the mapping are given
as part of the definition of the profile.

ad/2001-09-17 UML for EAI 10

3.3 Four-layered Architecture
The relationship of the EAI specification to the four-layered architecture defined by the OMG is as
follows. MOF is at level 3, so the EAI metamodel is at level 2. The EAI UML profile is also at this
level – it is just a set of additional cosntraints (what stereotypes, tagged values, etc.) on how UML is to
be used when notating EAI models. The EAI metamodel should be thought of as the definition of the
abstract syntax of EAI models. An EAI model, which is at level 1, is an expression of this abstract
syntax. An EAI model is a specification of the architecture of an event-based system and the allowable
information flows through that system. Level 0, then, represents actual behaviors of an event-based
system, for example a particular instantiation of the architecture or a particular message flow through
that system. These behaviors and instantiations must conform to the specification of behavior captured
by the EAI model.

3.4 Semantics

There are a number of approaches to semantics. One is to describe how a model (in this case an EAI
model) constrains the set of possible behaviors at M0 which satisfy that model. This can be captured
formally by explicitly modeling (in some formal language) the structure of the abstract syntax, the
structure of M0 behaviors and the relationship between the two. However, a formal definition can be
somewhat inaccessible. The approach taken in this specification is to describe the semantics in English,
using a model of M0 behaviors to help clarify the explanation where appropriate.

ad/2001-09-17 UML for EAI 11

4 Compliance

4.1 Overview

Compliance with this standard by a vendor can be partial. To facilitate this the compliance points have
been defined separately (sections 4.2, 4.3, and 4.4) and examples of plausible compliance statements are
provided (section 4.5).

References to other OMG standards are abbreviated in the compliance point definitions, but in all cases
refer to the specific revisions listed in the table below:

Standard Version Referenced
UML 1.4
XMI 1.2
MOF 1.3

4.2 Compliance with the UML Collaboration Profile

The UML Collaboration Profile is defined in Section 8.

4.2.1 General Compliance
A compliant implementation supports the UML XMI exchange mechanism for the UML packages
extended by the Collaboration Profile. It also supports the UML exchange mechanism for the
stereotypes and tagged values defined by the Profile. Furthermore it checks the well-formedness
constraints that the Profile defines.

The UML packages that the Profile extends are "Behavioural Elements::Collaborations" plus the
transitive closure of all of the packages upon which that package depends.

An implementation that satisfies the General Compliance point can be described as one that "complies
with the UML Collaboration Profile for EAI."

4.2.2 Visualization
A compliant implementation supports the UML notation for the packages extended by the Collaboration
Profile and for the EAI extensions to those packages. An implementation that complies with the
Collaboration Profile may or may not satisfy the Visualization compliance point.

An implementation that complies with the Collaboration Profile and that satisfies the Visualization
compliance point for the Profile can be described as one that "complies with the UML Collaboration
Profile for EAI including UML notation."

ad/2001-09-17 UML for EAI 12

4.3 Compliance with the UML Activity Profile

The UML Activity Profile is defined in Section 9.

4.3.1 General Compliance
A compliant implementation supports the UML XMI exchange mechanism for the UML packages
extended by the Activity Profile. It also supports the UML XMI exchange mechanism for the
stereotypes and tagged values defined by the Profile. Furthermore it checks the well-formedness
constraints that the Profile defines.

The UML packages that the Profile extends are "Behavioural Elements::Activity Graphs" plus the
transitive closure of all of the packages upon which that package depends.

An implementation that satisfies the General Compliance point can be described as one that "complies
with the UML Activity Profile for EAI."

4.3.2 Visualization
A compliant implementation supports the UML notation for the packages extended by the Activity
Profile and for the EAI extensions to those packages. An implementation that complies with Activity
Profile may or may not satisfy the Visualization compliance point.

An implementation that complies with the Activity Profile and that satisfies the Visualization
compliance point for the Profile can be described as one that "complies with the UML Activity Profile
for EAI including UML notation."

4.4 Compliance with the MOF-based EAI Metamodel
There is a separate and independent compliance point for each of the MOF metamodels defined in this
submission.

A compliant implementation of a metamodel supports exchange based on the XMI DTD generated from
the metamodel. It also checks the well-formedness constraints defined by the metamodel.

The metamodels defined by the submission and the corresponding generated XMI DTDs are as follows:

EAI MOF based
metamodel

Chapter in which the
metamodel is defined

XMI DTD

Integration 6 FCM4EAI
COBOL 14 COBOLtdlang
PL/I 14 pliTDLang
C 14 ctdlang
C++ 14 cpptdlang

The language metamodels depend on the TDLang and typedescriptorTDLang XMI DTDs.

There are no specific requirements for visualization of the EAI Metamodel.

ad/2001-09-17 UML for EAI 13

A compliant implementation of the Integration metamodel can be described as one that "complies with
the EAI Integration metamodel;" a compliant implementation of the COBOL metamodel can be
described as one that "complies with the EAI COBOL metamodel;" etc.

4.5 Compliance Statement Examples
Any combination of the compliance points can be used. Examples of compliance statements follow:

• Tool XXX complies with the UML Collaboration Profile for EAI.
• Tool XXX complies with the UML Collaboration Profile for EAI including UML notation.
• Tool XXX complies with the UML Activity Profile for EAI.
• Tool XXX complies with the UML Activity Profile for EAI including UML notation.
• Tool XXX complies with the UML Collaboration and Activity Profiles.
• Tool XXX complies with the UML Activity Profile including UML notation and with the UML

Collaboration Profile.
• Tool XXX complies with the UML Collaboration Profile including notation and with the UML

Activity Profile including notation.
• Tool XXX complies with the UML Collaboration and Activity Profiles, including UML notation for

both. (Note: this statement is equivalent to the previous one.)
• Tool XXX complies with the EAI C Metamodel.
• Tool XXX complies with the EAI C++ Metamodel .
• Tool XXX complies with the EAI Integration, C, C++, and PL/1 metamodels.
• Tool XXX complies with the UML Collaboration and Activity Profiles including notation for both.

It also complies with the EAI Integration, COBOL, and PL/1 metamodels.

ad/2001-09-17 UML for EAI 14

5 Requirements and Areas for Discussion

5.1 Mandatory Requirements

The RFP requirements are quoted in italics, followed by a summary of the submission’s response.

Responses shall propose a UML profile suitable for modeling at the architectural level, as distinct from
business modeling or application system design. The purpose is to represent IT systems (existing
systems, vendor-supplied packages and newly developed application systems) at the level appropriate
for integration between them.

This UML profile is suitable for modeling at the architectural level because it is based on a metamodel
that supports composition and decomposition, and it defines interfaces to systems, applications and
packages, both new and existing.

5.1.1 Event-Based Architecture
Proposals shall provide the means for specifying architectures and processes based on the flow of
business events. They shall provide for:

• Integration of applications based on the occurrence of events

• Description of a process or information flow as a series of business events

• Architectural decomposition of the defined processes or information flows into their implementing
applications, each the sender or receiver of events

The principal means used for showing event-based flows is in UML collaboration diagrams (Section 8).
An alternative representation using activity graphs is given (Section 9). The modeling elements defined
are well known in the industry as popular means for constructing event-based flows. The Integration
metamodel (Section 6) inherits the composition mechanism of the Flow Composition Model (FCM) in
the UML Profile for EDOC, which models senders and receivers as sources and sinks.

5.1.1.1 Modeling Elements
They shall provide for loose coupling including, but not necessarily restricted to, the use of messaging
and message brokers. At least the following elements shall be included:
� Publish and Subscribe – distribution of messages based on dynamically varying subscriptions
� Routing, fanout and filtering of messages – distribution based on rules or attributes
� Validation and transformation (mapping) of messages
� Augmentation (enrichment) and correlation (fan-in) – adding data (e.g., from a database) and

accumulating data from related messages
� Deadline and post-dating – checking on-time arrival and avoiding early delivery
� Exception processing

All these elements are defined in the metamodel and mapped into the profile. In addition, the basic
semantics of messaging and queueing are defined, as this paradigm is commonly used for loosely

ad/2001-09-17 UML for EAI 15

coupling systems. The use of message brokers is demonstrated in the non-normative mapping to a
commercial product (Section 12).

5.1.2 Heterogeneous Environment

Proposals shall be generally applicable to heterogeneous networks of programming systems, operating
systems, application sytems, servers and packages. They shall show how they apply to mixtures that
include ORBs, Internet servers and other subsystems.

The message-based approach adopted in this submission is well known to be applicable across a wide
variety of systems and servers. Heterogeneity of programming systems is shown in the non-normative
language models (Section 14). Interfaces to several subsystems are given in Section 15. The sample in
Section 10 illustrates the use of several servers and protocols (both networking and data interchange
protocols) across more than one enterprise.

5.1.3 XML

Proposals shall show how they are compatible with the use of XML in message formats for business
data.

The model allows messages to be in different formats, including XML. The message metamodel
includes a format specification that acknowledges the distinction between self-defining and separately
defined message formats (see Section 6.3.4). In the case of XML, generic DTDs or schemas can be
defined as a domain, or a message format may comply with a specific DTD in another domain.

5.1.4 XMI

Proposals shall show how they are compatible with the rendering of metadata in XMI. Models shall be
interchangeable between different tools through the use of XMI. This shall include the use of XMI to
define message formats and the CWM metamodel for transformations.

Because we have not extended the OMG MOF, XMI can be used to interchange EAI models. XMI files
for the EAI metamodels are provided as supplementary material to this submission.

The EAI transformation operator neither prescribes nor proscribes the way in which transformations can
be defined. Rather, the metamodel and profile furnish the means by which interfaces may be modeled.
The architect or designer can simply name the salient attributes of messages or define interfaces in
greater detail using the EAI Common Application Metamodel (CAM, see Section 7). The
transformation details are left to the implementation, and this includes the case where a transformation
tool is based on XMI and the CWM.

5.1.5 UML Profile for EDOC

Proposals shall show how they are aligned consistently with the UML Profile for EDOC.

The joint submission to the EDOC RFP includes a model for composing flow components (see OMG
document ad/01-06-09, UML Profile for Enterprise Distributed Object Computing). This Flow

ad/2001-09-17 UML for EAI 16

Composition Model (FCM) unifies component composition and coordination both for events and for
other styles of communication. This model is at a higher level of abstraction than the message flows,
sources, targets, adapters, and operators in EAI. The model is applicable to EAI, and the EAI
Integration metamodel (see Section 6) is a specialization of it. In particular, we use it to represent:

• Simple and compound flow components

• Input and output data sets

• Data flows, control flows and guard conditions

The EAI Integration metamodel includes publish/subscribe elements, and these are related to the Events
Profile in EDOC as follows:

EAI Integration metamodel EDOC Events Profile metamodel
EAISubscription Subscription
EAISubscriptionFilter NotificationRule
EAIMessage (in context of PublicationOperator
and SubscriptionOperator)

PubSubNotice

The UML Profile for EDOC defines a Component Collaboration Architecture (CCA), part of the
Enterprise Collaboration Architecture (ECA). Section 6.5 presents a mapping between the CCA and
the EAI Integration metamodel.

In the EAI CAM (Section 7) the links are as follows:

• Both the Java language metamodel and the FCM metamodel in EDOC require CAM to tie
parameters into the data typing and type composition structure that the metamodel provides.

• The Java metamodel has associations to the TDLang metamodel. Java typed elements implement
the TDLangElement class, while the associated simple and complex Java data types inherit from
TDLangClassifier class. Java classes will implement the TDLangComposedType.

• The FCM metamodel contains FCMParameter class, which associates to TDLangElement class.
FCMParameter represents a data bytestring of the elements. Contents of the bytestring are mapped
to the associated element by TDLangElement.

5.1.6 MOF alignment

Proposals shall conform to the OMG MOF.

No extensions to the OMG MOF are proposed.

5.1.7 Proof of Concept of Profile

Submissions shall provide sample models expressed in terms of the profile.

ad/2001-09-17 UML for EAI 17

Part 4 shows sample models that use class diagrams and collaboration diagrams of the profile. These
come from from the financial services industry. Section 9 shows an example of activity graph usage
with the profile. The presentation in behavioral diagrams will be considered non-normative.

5.1.8 Demonstration that Models are Implementable

Submissions shall show that models built using the profile will map to practical implementations using
generally available products and services. An acceptable example of such a demonstration for the
publish/subscribe elements of the profile would be consistency with one or more of the CORBA
Notification Service, JMS or OAMAS. For other elements, an example would be a mapping to a
commercially available class of products, e.g., message brokers or mail routers.

A non-normative mapping to an implementation in JMS is given in Section 13. This demonstrates not
only the publish/subscribe elements but also those that support direct messaging. A non-normative
mapping to IBM’s WebSphere MQ (formerly MQSeries) and WebSphere MQ Integator (formerly
MQSeries Integrator) is given in Section 12 which is, in fact, a specialization of the metamodel on
which the UML Profile for EAI is based.

5.2 Discussion issues

5.2.1 Development and Management Aid
Submissions should discuss how the submitted profile aids or simplifies the architecture, development
and management of EAI systems and solutions.

The profile defines the principal modeling elements needed for an IT architect or designer to take a
business-level model or view and create an event-based architecture for EAI. Tools can be built to
enable a designer take such a model to the next level of refinement (see below). With suitable
instrumentation of run-time infrastructure, middleware and applications, monitoring and reporting of the
behavior of executing systems is possible in a way that highlights bottlenecks, inconsistencies and other
management problems by relating and comparing to the original or revised models. Such a feedback
loop enables continuous process improvement.

5.2.2 Tool Support
Submissions should discuss how the submitted profile enables tool support for EAI definition and
management and how such tools can be judged more or less compatible with the profile.

Tool compliance is discussed in Section 4. By providing a metamodel as the underpinning to the
profile, the submission enables UML-based modeling and design tools to be coupled with
implementation and configuration tools. A model developed with this profile can be converted to a
high-level implementation model. For example, as a result of the mapping from the Integration
metamodel to WebSphere MQ Integrator (WMQI) in Section 12, a UML tool can be written that exports
an architectural model defined with this profile to an outline model in WMQI. A designer could then
use the WMQI tool to complete the lower-level and implementation details of the model prior to testing
and deployment.

ad/2001-09-17 UML for EAI 18

5.3 Relationship to Envisioned OMG Technology
This section describes the relationship, in terms of alignment, reuse or overlap with OMG standards for
which RFPs have been issued but which have not yet been adopted.

5.3.1 Real-time
The UML Profile for Scheduling, Performance and Time (from the Real-time PSIG, OMG document
number ad/01-06-14) emphasizes the definition of quality of service (QoS). The UML Profile for EAI
makes provision for QoS specifications in the provision of streams (Section 6.4.1.2) and resources
(Section 6.3.7). These are left non-specific in this submission and can be augmented with specifications
from the UML Profile for Scheduling, Performance and Time.

5.4 Relationship to Existing Standards

5.4.1 UML

As a UML profile, this submission defines uses of UML 1.4 for the purposes of application integration.
This includes classes and stereotypes.

5.4.2 Meta Object Facility (MOF)

UML is MOF compliant. This submission defines UML elements and adds additional semantics
appropriate to the context of event-based architectures in EAI. Section 6 presents a metamodel in which
each class is a MOF Class instance at the M2 level.

5.4.3 Common Warehouse Metamodel (CWM)

The Common Warehouse Metamodel (CWM) defines and publishes a metadata interchange standard for
data warehousing and business intelligence tools and resources, e.g., relational databases, IMS DL/I
databases and OLAP systems.

CWM gives metamodels for generic data structures that include XML documents, COBOL records, C
structures and SQL schemas. These are aimed at data stores but are generic. They could be applied to
message content descriptions. This level of refinement is a natural progression from the architectural
designs supported by the UML Profile for Event-based Architectures in EAI.

CWM is highly reusable and is independent of any particular tool or data resource. It reduces the work
required to integrate data warehousing and business intelligence tools. DB2 Data Warehouse
Center/Warehouse Manager (V7) now supports CWM. DB2 Information Catalog Manager plans to
support CWM in V8.

CWM is needed for data transformation in a data warehousing and business intelligence environment. It
provides data type mapping between a mix of different data resources, facilitates data translations from
one data resource into another, allows data driven impact analysis for data lineage and allows data
resource schemas to be viewed by developers.

ad/2001-09-17 UML for EAI 19

The EAI Common Application Metamodel (CAM), which is described in 7, defines and publishes a
metadata interchange standard for information about accessing enterprise applications such as CICS and
IMS. CAM is reusable and is independent of any particular tool or middleware. It is likely to provide an
incentive to connector suppliers by reducing the work required to create and develop connectors and/or
connector builder tools.

CAM is needed for data transformation in an enterprise application integration environment. It provides
data type mapping between mixed languages and facilitates data translations from one language and
platform domain into another, it will allow data driven impact analysis for application productivity and
quality assurance, and it will allow programming language data declarations to be viewed by developers.

In CAM a language metamodel, such as the COBOL metamodel, is used by enterprise application
programs to define data structures which represent connector interfaces. It is important for connector
tools to show a connector developer the source language, the target language and the mapping between
the two. The CAM language metamodel also includes the declaration text in the model. This permits the
connector/adapter developer to see the entire COBOL data declaration, including comments and any
other documentation that would help him/her understand the business role played by each field in the
declaration.

While CWM focus on data resources, CAM is for applications. CWM and CAM complement each
other; both are needed in an enterprise IT environment.

5.5 Other Related Activities

The RFP states that submissions may deal with business-to-business (B-to-B) models as well as intra-
enterprise models. However, there are other significant standards activities in B-to-B, and this
submission does not address the area directly. EAI is a valuable underpinning to B-to-B along with
other facets such as process modeling, which is addressed to a certain extent in the UML Profile for
EDOC Business Processes Profile. To offer public services and interfaces to trading partners, an
enterprise has to ensure that it has well-defined interfaces and well-architected systems. Much trading is
inherently event based, and so streams, messages, publications, sources, targets, filters, transformations
and other operations are natural modeling elements for the intra-enterprise systems that are needed to
support both internal and public electronic trading.

B-to-B modeling is dealt with in ebXML, which is based on a particular approach to B-to-B
implementation. However, there are other approaches, including web services (SOAP, WSDL, UDDI,
the draft web services flow language – WSFL – and XLANG) at W3C and OASIS, RosettaNet, OBI,
EDI, OAG BODs and several industry-specific formats and protocols. There continues to be a high
volume of activity and a rapid rate of change.

ad/2001-09-17 UML for EAI 20

Part 2 Metamodel
This part describes the EAI metamodel, which, as explained in Part 1, is MOF compliant. The
metamodel captures the essential EAI concepts. It may also be viewed as the abstract syntax of a
language for specifying architectures for enterprise application integration. The metamodel is in two
sections:

• The Integration Metamodel dealing with connectivity, composition and behavior

• The Common Application Metamodel dealing with interfaces and formats

Part 3 describes a UML profile for the language of the Integration Metamodel. It defines how UML
(and therefore UML modeling tools) can be used as a concrete notation for this language.

ad/2001-09-17 UML for EAI 21

6 EAI Integration Metamodel

6.1 EAI Integration specializes FCM

The EAI Integration metamodel is a specialization of the Flow Composition Model from the UML
Profile for EDOC (OMG Document Number: ad/2001-06-09, Part I, Chapter 5 Section 2). The
following sections make extensive use of terms described in the FCM, and consequently it is assumed
that the reader is familiar with it.

The UML Profile for EDOC also presents the Component Collaboration Architecture (CCA), part of the
EDOC Enterprise Collaboration Architecture (ad/2001-06-09, Part I, Chapter 3, Section 2). In Section
6.5 a mapping is presented between EAI Integration metamodel and the CCA. The mapping introduces
the concept of a CCA “Component Library.” Many of the concepts in EAI are represented as standard
components that may be used in EAI compositions.

The EAI Integration metamodel reuses the concepts of flow, flow node and composition. It adds the
following basic concepts which are required in EAI architectural modeling:

• Asynchronous communication

• Message queuing

• Message content and format

It additionally uses the FCM to define as flow components a number of concepts common to the
message oriented middleware used in EAI, such a message routing, transformation, and
publish/subscribe communication.

6.2 FCM Derived Associations

6.2.1 Motivation

EAI modeling makes extensive use of the compositional aspects of the FCM. Consequently, and in order
to simplify the rendering of the EAI metamodel as a UML profile, this section names some derived
associations that are computable from (but not manifest in) the FCM. These are:

• Composite/implementingComposition

• CompositeNode/contents

• CompositeNode/ComposedConnections

• Representation/parameter

Note that these derived associations, although specifically part of the EAI metamodel package, do not
require additional specializations or constraints beyond those already present in the FCM. Since derived

ad/2001-09-17 UML for EAI 22

associations can be computed from information already in the metamodel, a tool that manipulates the a
model need not save derived associations when saving a model.

6.2.2 FCM diagrams

The metamodel diagrams from the FCM are included for the reader’s reference without further
comment. The reader is referred to ad/2001-06-09 for explanatory text.

FCMCompositi on

TDLangElement
(f rom TDL ang)

FCMComponent

FCMCompositionBinding

0..1 +composition0..1

FCMParameter

1+languageElement 1

FCMType

0..1 +instanceOf0..1

1 +type1

FCMOperation
name : St ri ng 0..n+faults 0..n

0..n+outputs 0..n

0..n+inputs 0..n

0..n

+operations

0..n

Figure 1 FCMComponent metamodel diagram (from ad/2001-06-09)

ad/2001-09-17 UML for EAI 23

FCMSinkFCMSource

0..n1

+sink

0..n

+source

1

FCMOp eration
name : String1

+implements

1

FCMFunction

1 +invokes1
FCMTerminalToTerminalLink

FCMTerminalToNodeLink

FCMTerminal
terminalKind : TerminalKind

1
+targetTerminal

1

1
+sourceTerminal

1

FCMCommand

FCMConnection

FCMNode

1

0..n

+sourceNode 1

+outbound
0..n

1

0..n

+targetNode 1

+inbound
0..n

0..n

1

+in te rfa ce 0..n

1

<<derived>>

FCMComponent

1+performedBy 1

FCMComposition

0..n

+components

0..n

0..n
+connections
0..n

0..n+nodes 0..n

FCMAnnotation
nameInComposition : String

1 +annotates1

0..n

+annotations

0..n

Figure 2 Flow Composition Model main diagram (from ad/2001-06-09)

TerminalKind

In Out Fault

String
<<datatype>>

Figure 3 Flow Composition Model datatypes

ad/2001-09-17 UML for EAI 24

6.2.3 Composite nodes

FCMCommand
(from FCMCore)

FCMComposition
(from FCMCore)

0..1

+implementingComposition

0..1

<<derived>>

FCMNode
(from FCMCore)

0..n+nodes 0..n

FCMFunction
(from FCMCore)

+composite

Figure 4 Derived association between FCMCommand and FCMComposition

Definition

The composition method in the FCM is to construct an FCMCommand (which is an FCMNode) from an
FCMComposition (Figure 4). In the derived association, the FCMCommand is a composite node, and
the FCMComposition is its implementingComposition. An FCMComposition can be regarded as fully
specifying the externals of the composite node constructed from it; the FCMSource and FCMSink nodes
contained in the implementingComposition specify the FCMType and FCMCompositionBinding of the
composite FCMCommand

More than one instance of an FCMCommand can use the same instance of an FCMComposition to
define its behavior. Some of the EAI operators are defined via compositions of ‘primitive’ EAI
behaviors. We define them as subclasses of FCMCommand, each with a constraint that they use a
particular implementingComposition.

Constraint

An FCMCommand is performedBy an FCMComponent (see Figure 2). An FCMComponent may be
linked via its FCMType and an FCMCompositionBinding to an FCMComposition (see Figure 1)

In the derived association FCMCommand is associated with zero or one implementingComposition.

6.2.4 Composite nodes and their contents

Using the derived association above, we further document the relationship between an FCMCommand
(compositeNode) that is implemented as an FCMComposition, and the nodes (contents) and connections
(composedConnections) contained in the FCMComposition. We note that there are further derivable
relationships (not shown here) between an FCMCommand and the FCMAnnotations and
FCMComponents that are helped by the FCMComposition.

ad/2001-09-17 UML for EAI 25

FCMFunction
(from FCMCore)

FCMNode
(from FCMCore)

FCMConnection

FCMCommand
(from FCMCore)

0..n +contents0..n +compositeNode

<<derived>>

0..n+composedConnections 0..n

+compositeNode
<<derived>>

Figure 5 Derived association between a composite node, its content nodes and its composed connections

Constraint

FCMCommand.contents = FCMCommand.implementingComposition.nodes

FCMCommand.composedConnections = FCMCommand.implementingComposition.connections

6.2.5 Relationship between the interface of a composite node and its contents

An FCMNode has FCMTerminals as interfaces, but the FCM ties type information to the
FCMParameters of an FCMOperation. We say that an FCMTerminal is the representation of an
FCMParameter.

FCMParameter
FCMTerminal

terminalKind : TerminalKind
1

+parameter

1

+representation

<<derived>>

Figure 6 Derived association between FCMTerminal and FCMParameter

In a composite node (i.e., a node created from an FCMComposition) the interface offered is defined by
the FCMSource and FCMSink nodes contained within the FCMComposition. An FCMSource
implements (see Figure 2) an FCMOperation. FCMSink nodes represent the population of a single
output parameter of this FCMOperation.

6.3 EAI Specializations of the FCM

6.3.1 Motivation

Section 6.3 defines a set of specializations of the FCM. Each of these introduces a new concept required
for EAI architectural modeling.

ad/2001-09-17 UML for EAI 26

6.3.2 EAILink

Definition

Links between entities in an EAI architecture are often treated as event channels, and the occurrence of
an event on such a channel initiates processing of the information associated with the event. As such,
these links represent the flow of both data and control. In the FCM, data and control links are separate,
so we introduce EAILink, which consists of one of each.

Links may have their synchronization specified as synchronous, in which case a link between a pair of
terminals implies a synchronous (call) invocation of the relevant FCMOperation, or asynchronous in
which case a link between a pair of terminals implies an asynchronous invocation of the relevant
FCMOperation (the FCMOperation which owns the parameter that the terminal represents).

FCMDataLink
(from FCM)

FCMControlLink
(from FCM)

EAILink
synchronization : EAISyncMode

1

+data

1 1

+control

1

FCMTerminalToTerminalLink
(from FCMCore)

EAISyncMode

unspecified |
synchronous |
asynchronous

Figure 7 Definition of EAILink

Constraints

An instance of an EAILink between an output terminal and an input terminal implies that there is an
FCMDataLink between the two terminals, and an FCMControlLink from the output terminal to the node
that owns the input terminal.

ad/2001-09-17 UML for EAI 27

6.3.3 EAITerminal

EAITerminal

FCMTerminal
terminalKind : TerminalKind

Figure 8 EAITerminal

Definition

An EAITerminal is a specialization of FCMTerminal.

Constraints

EAITerminal can be connected to other instances of terminals only via instances of EAILink.

An EAITerminal is the representation (see Figure 6) of an FCMParameter that is of type
EAIMessageContent.

An EAITerminal on the exterior of a node constructed from an FCMComposition has a derived
association with a single source or sink.

6.3.4 EAIMessageContent

Description

EAIMessageContent gives a generic metamodel for message content. Messages may have multiple
parts, which may be nested. Each message part may have two distinct elements:

1. A message header which contains metadata about the message. This is used by the MOM
infrastructure to decide how to process the message.

2. Message body, which contains the business content of the message.

The header and the body are EAIMessageElements. These are associated with a single languageElement
of class TDLangElement

Constraints

Each message element (including the message header) conforms to a messageFormat specification,
which may be physically manifest in the message (as, for example, with an inline XML DTD) or may

ad/2001-09-17 UML for EAI 28

need to be inferred by the MOM infrastructure. Distinctions of this kind may be made by designation of
the messageDomain (e.g., generic DTD, external schema or COBOL copy book).

FCMParameter
(from FCMCore)

EAIPara
meter

TDLangElement
(from TDLang)

EAIMessageContent
domain : St ring
name : String1..1

+message

1..1

EAIComposedM
essagePart

EAIMessagePart

1..n

+part

1..n

0..n

+nestedPart

0..n

EAIMessageElement

1..1
+languageElement
1..1

0..1

+body

0..1

0..1

+header

0..1

Figure 9 EAI MessageContent

EAIMessageElement Format Specification

The format of a message element is defined in the MessageContent metamodel by its association to a
TDLangElement, which is a class in the CAM (see Section 7). This link into the CAM provides all of
the following for message elements:

1. The TDLang metamodel provides an abstract view of the message element’s structure. It may be
used to represent both primitive and more complex data structures.

2. TDLang provides access to the language-specific representation of the message element (via the
COBOL, PL/I, and other language metamodels in CAM), as well as its physical wire format (via the
Type Descriptor Metamodel in CAM).

EAIHeader

EAIHeader is a subclass of EAIMessageElement; it has two associations to EAIMessageElement;

• replyTo: an EAIMessageElement that is required to specify the terminal to which replies to an
instance of a message should be sent

• exceptionTarget: an EAIMessageElement that is required to specify the terminal to which
exception notices should be sent

The requirement that EAIHeader should specify the information required to locate replyTo and
exceptionTarget terminals is recorded via derived associations with EAITerminal. These derived
associations do not form part of the message itself.

ad/2001-09-17 UML for EAI 29

EAIMessageElement

EAIHeader

0..1

+exceptionTarget

0..1

0..10..1

+replyTo

FCMTerminal
0..1

0..1

<<derived>>

<<derived>>

0..1

0..1

+specifiedReplyToTerminal

+specifiedExceptionTarget

Figure 10 EAIHeader

EAIExceptionNotice

This is message that is sent by the MOM infrastructure if some exception occurs in processing a
message. An instance of an ExceptionNotice will normally contain the original message, with additional
exception-specific information in a separate message part.

EAIMessageContent
domain : String
name : String

EAIExceptionNotice

EAIMessagePart
0..10..1+originalMessagePart 1

+exceptionNoticePart
1

Figure 11 EAIExceptionNotice

ad/2001-09-17 UML for EAI 30

XML Message Elements

Message elements can be data structures defined by traditional language specifications like COBOL and
PL/I. They can also be XML documents, for which the natural specification language is XML Schema.
The OMG XMI Production of XML Schema submission provides an XML Schema Metamodel. Figure
12 shows a linkage between the XML Schema Metamodel and the TDLang Metamodel that supports
XML Schema as a specification language for message elements.

TDLangClassifier
(from TDLang)

TDLangComposedType
(from TDLang)

TDLangElement
(from TDLang)

XSDComplexType
(from xmlschema)

XSDElement
(f ro m xml schema)

XSDType
(f rom xml schema)

Figure 12 XML message elements

6.3.5 EAIMessageOperation

Description

EAIMessageOperation is a subclass of FCMOperation used to describe operations for which all the
inputs and outputs are messages.

Constraints

Every input and output of an EAIMessageOperation is an EAIParameter that has a 1:1 relationship with
EAIMessageContent or a subclass of EAIMessageContent.

ad/2001-09-17 UML for EAI 31

EAIMessageOperation

FCMOperation
name : String

Figure 13 MessageOperation

6.3.6 EAISource and EAISink

Description

EAISource and EAISink represent points in an EAI architecture where messages appear (EAISource)
and disappear (EAISink).

Sources and sinks may make use of EAIResources. An EAIResource represents a usable and sharable
entity such as a queue (Section 6.3.7) or a database (Section 6.4.1.5).

Constraints

EAISource is a subclass of FCMSource. Its sinks must be EAISink, and its implements operation must
be an FCMOperation.

EAISink is a subclass of FCMSink. Its source must be an EAISource.

FCMSource
FCMSink

EAISource EAISinkEAIResource

0..n 0..n
+resources

0..n

+resources

0..n

Figure 14 Sources and sinks

ad/2001-09-17 UML for EAI 32

6.3.7 EAIQueue

Description

EAIQueue is a queue of finite length, and is modeled as a subclass of EAIResource.

EAIQueue has an ordered collection messages of EAIMessageContent. A queue has a name, and the
maximum number of messages it can hold is specified by maxLength.

EAIQueue is intended to be an abstraction of queuing infrastructure. We note that most MOM
implementations allow machine-to-machine communication via a remote queuing infrastructure that can
specify a number of different queue types and relationships between then. This can be modeled as
refinement or realization of EAIQueue or (see Section 6.4.1.2) of the EAIPrimitiveOperator EAIStream.

EAIQueue
maxLength : int
name : String

EAIResource

Figure 15 EAIQueue

Constraints

maxLength >= messages->size()

6.3.8 EAIQueuedInputTerminal and EAIQueuedOutputTerminal

A common means of implementing an asynchronous link between a pair of entities in EAI is for them to
share a queuing infrastructure. In this case, the entity in which an event occurs places a message into a
queue and then continues processing. The entity that is to act on this information can remove the
message from the queue at any time. This normally involves the receiving entity doing one of the
following:

1. Polling the queue for the arrival of a message

2. Blocking execution awaiting the arrival of a message

3. Being triggered by the arrival of a message

ad/2001-09-17 UML for EAI 33

We represent the fact that an Operator uses queueing via the use of EAIQueuedInputTerminal and
EAIQueuedOutputTerminal, which are subclasses of EAITerminal.

EAITerminal
name : String

EAIQueuedOutputTerminal EAIQueuedInputTerminalEAIQueue

1..n 1

+targetQueues

1..n

+inputQueue

1

Figure 16 EAIQueuedOutputTerminal and EAIQueuedInputTerminal

An EAIQueuedInputTerminal has an association with the single queue that it reads from, while an
EAIQueuedOutputTerminal has an association with each of the queues used by its target
EAIQueuedInputTerminals.

Any operator that has an EAIQueuedOutputTerminal is understood to place a single copy of its output
message on each of its targetQueues.

Queued input and output terminals may be used on any of the EAI constructs that have terminals
(EAIPrimitiveOperator, EAICompoundOperator, EAISource, EAISink).

Constraints

All EAILinks from an EAIQueuedOutputTerminal must be instances of EAIQueuedInputTerminal.

The EAILink from an EAIQueuedOutputTerminal to an EAIQueuedInputTerminal must have
synchronization=asynchronous.

An EAILink between an EAIQueuedOutputTerminal and an EAIQueuedInputTerminal implies that the
inputQueue of the inputTerminal is in the targetQueues of the output terminal.

All EAIQueuedInputTerminals have EAILinks with all EAIQueuedOutputTerminals that use the same
queue instance.

6.3.9 EAIQueuedSource and EAIQueuedSink

Description

EAIQueuedSource and EAIQueuedSink are used to model the internal elements of an EAIMessageFlow
(see Section 6.3.10.2.1) that is associated with EAIQueuedInputTerminals and
EAIQueuedOutputTerminals.

When viewing the internals (i.e., the EAIMessageFlow) of a CompoundOperator, the element of the
flow that receives messages (and passes them on to the rest of the flow) is a source of messages to the

ad/2001-09-17 UML for EAI 34

rest of the EAIMessageFlow, and vice versa. Hence, the part that reads from a queue is modeled as a
EAIQueuedSource and the part that writes to a queue as EAIQueuedSink.

EAISourceEAISink

EAIQueuedSourceEAIQueuedSink
EAIQueue

maxLength : int
name : String 1

+inputQueue

11..n

+outputQueues

1..n

Figure 17 QueuedSource and QueuedTarget

Note that EAIQueuedSink and EAIQueuedSource could themselves be specialized to use queued
terminals. This would imply that queueing is used both outside and inside the EAIMessageFlow.

Constraints

The outputQueues of an EAIQueuedSink must be the same as the targetQueues of the
EAIQueuedOutputTerminal that it is associated with

The inputQueue of an EAIQueuedSource must be the same as the inputQueue of the
EAIQueuedInputTerminal that it is associated with.

Refinement relationships

An EAILink with synchronization of unspecified is refined by an EAILink with synchronization of
either synchronous or asynchronous.

Where there is an instance of an EAILink with a synchronization of asynchronous linking a pair of
FCMTerminals, this is refined by the substitution of EAIQueuedInputTerminal and
EAIQueuedOutputTerminal for the FCMTerminals.

6.3.10 Operators

Operators act upon messages as they flow between systems. We define EAIPrimitiveOperator to be a
subclass of FCMFunction, which invokes an EAIMessageOperation. Subclasses of
EAIPrimitiveOperator are used to represent particular types of message processing behavior.

We define CompoundOperator to represent the behavior of compositions of operators. This document
defines subclasses of either kind of operator that perform specific kinds of operation on a message.
Message operations may act on the message header and body and may change their content, their format
or both. They may also provide routing behavior.

ad/2001-09-17 UML for EAI 35

FCMCommand
FCMFunct ion

EAICompoundOperator

EAIResource
0..n

+resources

0..n

EAIPrimitiveOperator

0..n

+resources

0..n

FCMType
1

0..1

1

0..1

+type

+defines<<derived>>

<<derived>>

Figure 18 Definitions of PrimitiveOperator and CompoundOperator

6.3.10.1 EAIPrimitiveOperator

Description

Instances of EAIPrimitiveOperator enact a simple message processing operation. It is ‘opaque’ in that its
operation is specified but its internal workings are not modeled. It may optionally make use of
EAIResources to enact the operation.

Constraints

The EAIPrimitiveOperator invokes an EAIMessageOperation.

EAIPrimitiveOperator has a derived association type with FCMType. It subclasses FCMFunction, which
invokes an FCMOperation. FCMOperation is composed by FCMType.

When used in an EAIMessageFlow, an EAIPrimitiveOperator also defines a type.

6.3.10.2 EAICompoundOperator

Description

An instance of an EAICompoundOperator composes more complex message processing behavior from
EAIPrimitiveOperators, from other EAICompoundOperators or both. It may optionally make use of
EAIResources to enact its operations.

ad/2001-09-17 UML for EAI 36

Constraints
EAICompoundOperator can only compose EAIPrimitiveOperator or other EAICompoundOperators.
The implementingComposition (a derived association inherited from FCMCommand, see Figure 4) must
be an EAIMessageFlow.

6.3.10.2.1 EAIMessageFlow

An EAIMessageFlow is a subclass of FCMComposition. Each of its nodes (see Figure 2) must be one of
the operator classes (EAIPrimitiveOperator or EAICompoundOperator), and its connections must be
EAILinks. In addition it allows nodes to have explanatory annotations attached to them.

FCMComposition

EAIMessageFlow

FCMAnnotation
nameInComposition : String

EAIPrimitiveOperator

EAIAnnotation

+operatorAnnotations

0..1
EAICompoundOperator

0..1 0..10..1
{xor}

Figure 19 EAIMessageFlow

6.3.10.2.2 ‘Exposing’ terminals in an EAIMessageFlow

When forming an EAICompoundOperator from EAIPrimitiveOperators, the means of connecting the
external representation of an FCMCommand (i.e., its terminals) to the FCMComposition that
implements it is via FCMSource and FCMSink nodes. These jointly define the input and output
parameters of the composite node, and consequently the input and output terminals of the
EAICompoundOperator.

An input EAITerminal in an FCMComposition can be ‘exposed’ by attaching an EAISource to it via an
EAILink. The message type of the input terminal to be exposed determines:

• The type of the output terminal of the EAISource

• The type in the (single) input parameter to the implements FCMOperation

ad/2001-09-17 UML for EAI 37

This consequently determines the type of that the external EAITerminal represents. We introduce a
derived association promotedTerminal from EAITerminal to EAITerminal that models this relationship
between a terminal on the interior of a composite node and a terminal on its exterior.

EAITerminal

0..1

0..1
+externalTerminal

+promotedTerminal

0..1

0..1

<<derived>>

Figure 20 Derived association between a terminal inside a composite node and the corresponding terminal outside

Constraints

The promotedTerminal and the externalTerminal represent FCMParameters that have the same type.

6.3.11 Adapters

An integration architecture provides paths for the flow of messages between the systems being
integrated. Adapters provide the points at which the message-flow paths are actually connected to those
systems. An adapter converts a specific kind of message from some system-specific format into a
specified message-content type, or vice versa. EAIAdapter is modeled as a specialization of
FCMFunction.

6.3.11.1 EAISourceAdapter

An EAIourceAdapter obtains information from a system, translates it into (some subclass of)
EAIMessageContent and then sends it. Source adapters are modeled as a subclass of FCMFunction. The
mapping between the internal format and the message is specified by an internalToMessage
FCMMapping.

ad/2001-09-17 UML for EAI 38

FCMFunction

EAISourceAdapter FCMMapping

11

+internalToMessage

Figure 21 SourceAdapter

Constraints

The output terminals of a SourceAdapter are instances of EAITerminal

Output parameters of the invokes FCMOperation of SourceAdapter must be EAIParameters, which are
associated with EAIMessageContent.

There is no constraint on the type of input terminals.

There is no constraint on the type of input and fault FCMParameters. It is noted that the faults
FCMParameters may be EAIParameters (with EAIMessageContent) but that this is unlikely to be the
case for input because adapters are used to link messaging to other (internal) interfaces.

6.3.11.2 EAITargetAdapter

An EAITargetAdapter has a single input EAITerminal (“in”). It receives a message with content of a
given input type, maps the message content to the format required for a system and then delivers the
information to the system. The transformation is specified by a messageToInternal FCMMapping.

FCMMapping

FCMFunction

EAITargetAdapter

1

+messageToInternal

1

Figure 22 EAITargetAdapter

Constraints

The input parameters of the FCMFunction that EAITargetAdapter invokes must be EAIParameters (with
associated EAIMessageContent).

ad/2001-09-17 UML for EAI 39

There is no constraint on whether the outputs and faults of the invokes FCMFunction are
FCMParameters or EAIParameters. However, they are unlikely to have associated EAIMessageContent
because adapters are used to link messaging to other (internal) interfaces.

6.3.11.3 EAICallAdapter

An EAICallAdapter is invoked synchronously by an application that wishes to make use of a service
made available via a server; the server accepts a request message and sends a response message back to
the service requester. It has two input terminals:

• “call”: an FCMTerminal that a requesting application can use to invoke the call adapter

• “handleReply”: an EAITerminal that handles a reply

It has two output terminals:

• “request”: the EAITerminal from which the request message is sent

• “out”: an FCMTerminal to which the reply message is mapped

EAICallAdapter is a subclass of FCMFunction.

FCMFunction

EAICallAdapter FCMMapping

11

+callToRequestMapping

1

+replyToOutputMapping

1

Figure 23 EAICallAdapter

The call adapter has two mappings, one of which specifies how the call input parameters are mapped to
the request message; the other specifies how the return message is mapped to output parameters
represented by the “out” terminal.

When invoked via its “call” terminal, the EAICallAdapter maps the call parameters into a request
message and sends it to the input terminal of an EAIRequestReplyAdapter. It waits for a reply. On
receipt of a reply it maps the message as specified in the replyToOutputMapping, and puts out the result
on the “out” terminal.

Constraints

ad/2001-09-17 UML for EAI 40

The “out” terminal of EAICallAdapter must be connected via an EAILink to the “requestIn” terminal of
an EAIRequestReplyAdapter.

The “handleReply” terminal of EAICallAdapter is the target of connections via an EAILink from the
“replyOut” terminal of an EAIRequestReplyAdapter.

6.3.11.3.1 EAIRequestFormat

EAIRequestFormat is a subclass of EAIMessageContent. A message that conforms to
EAIRequestFormat specifies a terminal to which replies should be sent (specifiedReplyTerminal). The
association with the terminal is not explicit in the message but may be computed from information in the
message.

EAIMessageContent

EAIRequestFormat

EAITerminal
name : String

1 +specifiedReplyTerminal1

<<derived>>

Figure 24 EAIRequestFormat

6.3.11.4 EAIRequestReplyAdapter

An EAIRequestReplyAdapter is a subclass of FCMCommand. It has a single input terminal “requestIn”
and a single output terminal “replyOut”.

On receipt of a message that conforms to the EAIRequestFormat, it maps the request message into the
format required by the system it interfaces to, calls an operation on that system, synchronously receives
a result, and formats the result for return to the “handleReply” terminal specified in the request message.

This effectively creates dynamic and temporary instances of EAILink between the “replyOut” terminal
and the “handleReply” terminal of the EAICallAdapter that sent the request messaage.

ad/2001-09-17 UML for EAI 41

EAIPrimitiveOperator

EAIRequestReplyAdapter
FCMMapping
11

+requestToCallMapping

1

+returnToReplyMapping

1

Figure 25 EAIRequestReplyAdapter

Constraints

The “requestIn” terminal expects to receive a message of that conforms to EAIRequestFormat.

6.4 Kinds of Operator

6.4.1 Operators

We define several specializations of EAIPrimitiveOperator and EAICompoundOperator.
EAICompoundOperators combine more than one of the primitive EAI concepts represented by the
PrimitiveOperators. Implementations of them do not need to follow this internal representation, provided
that they obey the signature (in terms of the messages they receive and send) and the documented
semantics.

6.4.1.1 EAIFilter

An EAIFilter is a subclass of EAIPrimitiveOperator.

EAIPrimitiveOperator

FCMConditionEAIFilter +filterCondition

Figure 26 Filter

ad/2001-09-17 UML for EAI 42

A filter’s output is a copy of its input. No output occurs if the input message does not satisfy the filter
condition.

6.4.1.2 EAIStream

EAIStream is an operator that allows ‘quality of service’ on a communication channel to be expressed.

The flow of control and data via EAILink between EAITerminals assumes that messages are always
received in the order that they are sent and that there is basically no delay in their transmission.

In some implementations, a stream of messages may be received in a different order from that in which
they are sent, and they may be received at a different rate from that at which they are sent. An
EAIStream operator can be used to model this.

An EAIStream can be used to model reordering of incoming messages by maintaining a buffer.

In an implementation, an incoming message is may be added to the buffer in a place determined by the
streaming algorithm. An outgoing message may be sent at the same or different time as an incoming
message is received. The streaming algorithm determines when to place messages from the top of the
buffer onto the “out” terminal. Typically, this will be when the buffer contains a sufficient block of
messages in the correct order.

All of this behavior is abstracted via an emissionCondition that determines under what circumstances a
message is emitted from the stream. The message emitted may be any element of the buffer. Once
emitted from the stream, the message is removed from the buffer.

EAIPrimitiveOperator

EAIMessageContent
domain : String
name : String

FCMCondition

EAIStream

0..n +buffer0..n
+emissionCondition

Figure 27 Stream

ad/2001-09-17 UML for EAI 43

6.4.1.3 EAIPostDater

EAIPostDater is a subclass of EAIStream with a single input terminal (“in”) and a single output terminal
(“out”).

On receipt of a message at its input terminal, it adds the message to the buffer, and creates an individual
timingCondition for it. The timingCondition may entail a derivation from the content of the input
message by a timerMapping. EAIPostDater holds the message until its individual timing condition is
met, then emits it from its “out” terminal.

EAIStream

FCMMappingEAIPostDater

1

+timerMapping

1

EAIMessageContent

0..n+buffer 0..n

FCMCondition
0..n
+timingCondition
0..n

1 11 1

Figure 28 EAIPostDater

6.4.1.4 EAITransformer

A Transformer is a subclass of PrimitiveOperator with a single input terminal and a single output
terminal.

ad/2001-09-17 UML for EAI 44

FCMMapping

EAITransformer

0..n+transformation 0..n

EAIPrimitiveOperator

Figure 29 Transformer

The output message is a transformation of the input message, as dictated by the transformation
FCMMapping.

6.4.1.5 EAIDBTransformer

An EAIDBTransformer is a subclass of EAITransformer that has access to an EAIDatabase.

EAIDatabase is modeled as a subclass of EAIResource and has the property databaseName. Subclasses
of EAIDatabase may specify further properties such as information required to connect to the database.

Access to a database as a resource allows the transformation to make use of information contained in
the database. In particular, it allows the message to be augmented (or enriched) with data from the
database.

EAITrans former EAIResource

EAIDBTransformer EAIDatabase
databaseName : String

1

+database

1

Figure 30 EAIDBTransformer

ad/2001-09-17 UML for EAI 45

6.4.1.6 EAIAggregator

An EAIAggregator is a subclass of PrimitiveOperator. It has a single input terminal (“in”) and a single
output terminal (“out”). Its purpose is to combine several messages (comprising an aggregate) into a
single output message (EAIMessageAggregation). It is commonly used in conjunction with EAITimer,
which can check for deadlines.

On receipt of a message, if there are no existing message aggregates, the aggregator creates one and
adds the message to it.

On receipt of a subsequent message, the aggregator examines each existing aggregate, evaluating the
addToAggregate condition (which will depend on the message header or body contents). If an aggregate
exists for which addToAggregate evaluates to true, then the message is added to it.

Each time a message is added to an aggregate, the aggregateComplete condition is evaluated. If it
evaluates to true, then a message is constructed from the messages it holds and is sent on the output
terminal. The mapping from the messages contained in the aggregate to the message sent is specified by
the aggregationMapping.

If the aggregateComplete condition does not evaluate to true, then no message is sent.

EAIPrimitiveOperator

EAIMessageContent
domain : String
name : String

FCMCondition
(from FCM)

EAIMessageAggregation

1..n1..n

1+addToAggregate 1

1+aggregateComplete 1

FCMMapping
(from FCM)EAIAggregator

0..n+aggregate 0..n

1..n

+aggregationMapping

1..n

Figure 31 EAIAggregator

ad/2001-09-17 UML for EAI 46

6.4.1.7 EAIRouter

Description

When a router receives a message, it resends a copy via its single output terminal so that all connected
input terminals receive the message. In addition, a router can accept dynamic addition or removal of
target terminals, and so it can be used to model a simple publication channel for messages.

Modeling

EAIRouter is modeled as an EAICompoundOperator. The composition that defines an EAIRouter
contains an EAIRouterUpdate and an EAIBroadcaster operator. It has the constraint that they share the
same instance of EAIRoutingTable.

EAIRouterUpdateEAIBroadcaster

EAICompoundOperator FCMComposition

EAIRouter EAIRouterComposition

1111

11

Figure 32 EAIRouter

6.4.1.7.1 EAIRouterUpdate and EAIBroadcaster

ad/2001-09-17 UML for EAI 47

EAIBroadaster

EAIPrimitiveOperator

EAIRouterUpdate

EAIRoutingTable

1
+routingTable

1 1
+currentRoutingTable

1

EAITerminal
name : String

+routingTargets

Figure 33 EAIRouter and EAIRouterUpdate

EAIBroadcaster routes a message to destinations listed in the EAIRoutingTable, which is maintained by
EAIRouterUpdate.

EAIRouterUpdate is a primitive operator with a single input terminal (“control”) and no output
terminals. It expects to receive a message that conforms to the EAIRouterUpdateFormat content type.
Such a message can specify either the addition (adds) or removal (removes) of a single terminal from the
routing table.

ad/2001-09-17 UML for EAI 48

EAIMessageContent

EAIRouterUpdateFormat

EAIRemoveTargetFormat

EAITerminal
name : String

1+removes 1

<<derived>>

EAIAddTargetFormat

1 +adds1

<<derived>>

Figure 34 EAIRouterUpdateFormat

An EAIBroadcaster has a single input terminal (“in”) and a single output terminal (“out”). The “in”
terminal represents any input message. This is copied to the output terminal for routing to all connected
EAITerminals. The output terminal is connected via an EAILink to each EAITerminal in the
EAIRoutingTable.

6.4.1.8 EAISubscriptionOperator

An EAISubscriptionOperator is a subclass of EAIPrimitiveOperator with a single input terminal
(“subscribe”) and no output terminals. It expects an EAISubscriptionFormat as input. It adds a single
EAISubscription to a subscriptionTable on receipt of an EAISubscriptionFormat.

ad/2001-09-17 UML for EAI 49

EAIPrimitiveOperator

EAISubscriptionEAISubcriptionOperator
0..n

+subscriptionTable

0..n

Figure 35 SubscriptionOperator

A message that conforms to the EAISubscriptionFormat specifies a target EAITerminal and a set of
EAISubscriptionRules. In Figure 36, this is shown as a pair of derived associations. This indicates that
the target and associated subscription rules can be computed from the message content. (There could be
some indirection in the specification of the rules and terminal, indicated by subscriptionModes.)

EAIMessageContent

EAITerminal
name : String

EAISubscriptionFormat
subscriptionMode : SubscriptionModes

1

EAISubscriptionRule
1..n

+specifiedTarget
+specifiedRules

<<derived>><<derived>>

1
1..n

Figure 36 EAISubscriptionFormat

An EAISubscription relates an EAITerminal to a collection of EAISubscriptionRules. Subsequently the
EAIPublicationOperator (Section 6.4.1.9) will forward messages that satisfy the subscriptionRules to the
subscribingTerminal.

ad/2001-09-17 UML for EAI 50

EAITerminal
name : String

EAISubscription

11

EAISubscriptionRule

1..n +subscriptionRules1..n
+subscribingTerminal

Figure 37 EAISubscription

An EAISubscriptionFilter is a subclass of EAIFilter. Its filterCondition is a set of EAISubscriptionRules.

EAIFilter

EAISubscriptionFilter EAISubscriptionRule

1..n1..n

+fi lterCondition

Figure 38 SubscriptionFilter

An EAISubscriptionRule has subclasses EAITopicRule and EAIContentRule.

FCMCondition

EAITopicRule

EAISubscriptionRule

EAIContentRule

Figure 39 EAISubscriptionRule, EAITopicRule and EAIContentRule

6.4.1.9 EAIPublicationOperator

Description

ad/2001-09-17 UML for EAI 51

The EAIPublicationOperator models the semantics of the publish/subscribe mode of information
sharing. It forwards each message to the targets specified in its currentSubscriptions, if they pass the
relevant filter.

It is modeled as a subclass of EAIPrimitiveOperator, with a single input terminal (“in”), and a single
output terminal. Messages sent to the input terminal are sent from the output terminal (“out”) to each
subscriber (EAITerminal) if the message conforms to the EAISubscriptionRule for that subscriber.

This output behavior is not the same as that of EAITerminal, which sends a copy of the message to
every target terminal. Therefore a subclass of EAITerminal is introduced called
EAIPublicationTerminal.

EAISubcriptionOperator

EAISubscription
0..n

+subscriptionTable

0..n

EAIPrimit iveOperator

EAIPublicationOperator
0..n

+currentSubscriptions

0..n
EAIPublicationTerminal

1

+out

1

Figure 40 EAIPublicationOperator and EAISubscriptionOperator

The diagram below shows the instance diagram for the EAISubscriptionTable after two subscriptions
have been added.

 : (EAISubscriptionTable)

s1 :
EAISubscription

t1In :
EAITerminal

s2 :
EAISubscription

t2In :
EAITerminal

t1Rule :
EAISubscriptionRule

t2rule :
EAISubscript ionRule

Figure 41 Example SubscriptionTable instance diagram

6.4.1.10 EAITimer

6.4.1.10.1 EAITimeSetOperator

ad/2001-09-17 UML for EAI 52

The TimeSetOperator is a subclass of PrimitiveOperator, with a single input terminal (“set”) and zero
output terminals. It processes a message (EAIMessageTimerCondition) that specifies a timerCondition
and a means of identifying the messages to which the condition will apply. It uses this information to
add to a list of timeSetConditions.

+t imeSetConditions

EAIPrimitiveOperator

EAITimeSetOperator

EAIMessageTi
merCondition

0..n0..n

Figure 42 TimeSetOperator

An EAIMessageTimerCondition is composed of two FCMConditions:

• timerCondition specifies a deadline (a time constraint). This may be relative or absolute.

• correlationCondition specifies the messages to which the timerCondition applies. This is often a
condition on an element of a message header, such as the commonly used ‘correlation identifier.’

FCMCondition

EAIMessageTimerCondition

+timerCondition
1

+correlationCondition
11 1

Figure 43 EAIMessageTimerCondition

Constraints

No more than one EAIMessageTimerCondition can apply to any single message in the
timeSetConditions.

6.4.1.10.2 EAITimeCheckOperator

ad/2001-09-17 UML for EAI 53

EAITimeCheckOperator is a subclass of PrimitiveOperator with a single input terminal (“check”) and
three output terminals (“ontime”, “expiry” and “late”). On receipt of a message, it examines its set of
timeCheckConditions to see if any of the correlationConditions apply. If there is a condition that applies,
it checks the appropriate timerCondition. If the timerCondition is met, then the message is passed to the
“ontime” terminal; if not, it is passed to the “late” terminal.

EAIMessageContent
domain : St ring
name : String

EAIExpiry
Format

Figure 44 EAIExpiryFormat

At the time that a particular timeCheckCondition expires, a message of format EAIExpiryFormat is sent
from the “expiry” terminal.

EAIPrimitiveOperator

EAITimeCheckOperator

EAIMessageTimerCondition

0..n +timeCheckConditions0..n

Figure 45 EAITimeCheckOperator

6.4.1.10.3 EAITimer

EAITimer is formed from a composition of EAITimeSetOperator and EAITimeCheckOperator.

It has two input terminals, “set” and “check,” and two output terminals “out”, “expiry” and “late”, all of
which map to terminals of the same name owned by the two primitive operators. Consequently, the “set”
terminal causes the EAITimeSetOperator to be invoked, while messages sent to the “check” terminal
cause the EAITimeCheckOperator to be invoked.

ad/2001-09-17 UML for EAI 54

EAICompoundOperator

EAITimeCheckOperator
EAITimeSetOperator

EAITimer

11

<<derived>>

11

<<derived>>

Constraints

The instance of EAITimeCheckOperator and EAITimeSetOperator from which an EAITimer is formed
share the same collection of EAIMessageTimerCondition.

6.4.2 Topic-based publish/subscribe

6.4.2.1 EAITopicPublisher

An EAITopicPublisher is a subclass of EAISource. It sends messages for publication to an
EAIPublicationOperator. The set of topics that it publishes messages on is denoted by publishesOn. This
is a derived association, since a topic publisher need not declare the set of topic it publishes on.

EAITopicPublisher EAITopic

0..n

+publishesOn

<<derived>> 0..n

EAISource

6.4.2.2 Topics ‘allowed’ by an EAITopicRule

An abstract representation of an EAITopicRule is the set of Topics that it allows.

EAITopicRule EAITopic

0..n

+allows

0..n

<<derived>>

Figure 46 Topics allowed by an EAITopicRule

ad/2001-09-17 UML for EAI 55

6.4.2.3 Relationship between topic-based publishers and subscribers

Topic-based publishers and subscribers are related to each other via the topics that they produce and
consume.

For a input terminal representing a subscriber connected to a particular PublicationOperator, the set of
topics it is interested in (subscribesTo) is determined by the topic which its filterCondition allows.

EAISubscript ionRule

EAITopicRule

EAITerminal
name : String

EAITopic

0..n+allows 0..n

<<derived>>
<<derived>>

+subscribesTo

EAISubscription

11

1..n +filterCondition1..n

Figure 47 Relationship between a terminal and the topics for which it has a subscription

ad/2001-09-17 UML for EAI 56

EAITopicPublisher

EAITopic

0..n

0..n

+publisher

+publishesOn 0..n

<<derived>>

EAITerminal
name : String

+subscribesTo

+subscriber 0..n

0..n

<<derived>>

0..n

0..n

0..n

Figure 48 Relationship between publishers, subscribers and topics

6.5 CCA Component Library for EAI

This section specifies the CCA component library for EAI. It is an informational supplement to the EAI
Integration metamodel.

 For each of the listed EAI model elements a corresponding library component is defined. In each case
the library component has the same name as the corresponding EAI model element.

6.5.1 Operators

6.5.1.1 EAIPrimitiveOperator
EAIPrimitiveOperator corresponds to an unconstrained CCA ProcessComponent.

The Terminal of the EAIPrimitiveOperator corresponds to Port of the CCA ProcessComponent.
Input Terminal corresponds to a CCA FlowPort with metaattribute direction = responds.
Output Terminal corresponds to a CCA FlowPort with metaattribute direction = initiates.
The handled ContentFormat of a Terminal in the EAIPrimitiveOperator corresponds to the type
DataElement of the CCA FlowPort.

The Choreography of the CCA ProcessComponent corresponding to an EAIPrimiveOperator will have
CCA PortActivity. This represents each CCA FlowPort corresponding to EAI input Terminal, followed
by CCA Transition with target on CCA PortActivity that represents each CCA FlowPort corresponding
to EAI output Terminal.

A CCA ProcessComponent, corresponding to an EAIPrimitiveOperator, can be utilized in a CCA
Composition as a CCA ComponentUsage that uses the CCA ProcessComponent. For each CCA Port in
the CCA ProcessComponent, there will be a CCA PortConnector corresponding to the CCA FlowPort of
the used ProcessComponent.

ad/2001-09-17 UML for EAI 57

In CCA, there is no fundamental distinction between primitive and non-primitive ProcessComponents.
Rather, the “primitiveness” of a ProcessComponent is not externally observable. The CCA
ProcessComponent may optionally have internal Composition detail, using other ProcessComponents.

Sample_EAIPrimitiveOperator

Y1 Y2

Y3
Y4

Y1 input Y3 input

Y2 output Y4 output

Figure 49 CCA notation for a sample generic EAIPrimitiveOperator

6.5.1.2 EAITransformer
EAITransformer is a specialized EAIPrimitiveOperator. It corresponds to a CCA ProcessComponent
with one CCA FlowPort with direction = responds and one CCA FlowPort with direction = initiates.

The Choreography of the CCA ProcessComponent corresponding to an EAITransformer will show a
CCA PortActivity on the FlowPort with direction = responds, followed by a CCA PortActivity on the
FlowPort with direction = initiates.

The input and output CCA FlowPort will have different DataElement types. The ProcessComponent will
transform from the input DataElement type to the ouput DataElement type.

The transformation to be performed on the DataElement contents can be specified in a Property of the
CCA ProcessComponent as an expression, script or tranformation specification in any of the
transformation languages available. Alternatively, the tranformation can be delegated into usages of
other technology-specific transformation ProcessComponents in the internal Composition.

ad/2001-09-17 UML for EAI 58

Sample_EAITransformer

Y1 Y2

Y1 input

Y2 output

Sample_EAITransformer

Y1 Y2

transform XSLT xsl:template
....

Figure 50 CCA notation for sample EAITransformer

6.5.1.3 EAIFilter
EAIFilter is a specialized EAIPrimitiveOperator. It corresponds to a CCA ProcessComponent with one
CCA FlowPort with direction = responds and two CCA FlowPort with direction = initiates.

The Choreography of the CCA ProcessComponent corresponding to an EAIFilter will show a CCA
PortActivity on the FlowPort with direction = responds, followed by a choice vertex, followed by a
CCA PortActivity on each of the FlowPort with direction = initiates.

The input and each output CCA FlowPort will have the same DataElement type.

The criteria for the choice of true or false output terminal Port can be specified in a Property of the CCA
ProcessComponent as an expression in any of the languages available. Criteria logic can also be
delegated into usages of other ProcessComponents in the internal Composition.

ad/2001-09-17 UML for EAI 59

Sample_EAIFilter

Y1 true Y1

false Y1 Y1 input

true Y1 ouput false Y1 ouput

Sample_EAIFilter

Y1 true Y1

false Y1

criteria OCL ... an OCL
expression

Figure 51 CCA notation for a sample EAIFilter

6.5.1.4 EAIStream
EAIStream is a specialized EAIPrimitiveOperator. It corresponds to a CCA ProcessComponent with a
single CCA FlowPort with direction = responds and a single CCA FlowPort with direction = initiates.

The Choreography of the CCA ProcessComponent corresponding to an EAIStream will show a CCA
PortActivity on the FlowPort with direction = responds, followed by a Fork, followed by CCA
PortActivity on the FlowPort with direction = initiates, followed by a Join.

The input and output CCA FlowPort will have the same DataElement type. The ProcessComponent will
store inputs to be sent later, possibly in a different order, through the output terminal FlowPort.

The algorithm used to determine when, and in which order, the incoming messages will be posted in the
output terminal FlowPort can be specified as a Property of the EAIStream component, or it can be
delegated into usages or other ProcessComponents in the internal Composition.

ad/2001-09-17 UML for EAI 60

Sample_EAIStream

Y1 Y1

Y1 input

Y1 ouput

Figure 52 CCA notation for a sample EAIStream

6.5.1.5 EAICompoundOperator
EAICompoundOperator corresponds to an unconstrained CCA component. It will use other EAI
Operator or Adapter ProcessComponents in the internal Composition.

The ProcessComponent for EAICompoundOperator will have externally connectable Ports that will be
delegated into Ports of the internally used ProcessComponent.

Incoming messages on the external Port of the EAICompoundOperator ProcessComponent will be
delivered to the internally connected Port of the ProcessComponent operators and adapters used.
Outgoing messages from the internally connected Port of the used ProcessComponent operators and
adapters will be forwarded to the external outgoing Port of the EAICompoundOperator
ProcessComponent.

This recursive composition capability of CCA corresponds to FCM and EAI recursive composition of
nodes, operators and adapters.

For the user of an EAICompoundOperator ProcessComponent, there is no difference between using a
Compound or a Primitive Operator. The internal composition of the Compound Operator remains
encapsulated by the ProcessComponent. The user can only observe the external Port and Choreography
of the ProcessComponent.

ad/2001-09-17 UML for EAI 61

Sample_EAICompoundOperator

Y1 Y3
Sample_EAICallAdapter

Y1 Y2
Sample_EAITransformer

Y2 Y3

transform XSLT xsl:template
....

Y1 input

Y3 output

Figure 53 CCA notation for sample EAICompoundOperator

6.5.2 Adapters

6.5.2.1 EAISourceAdapter
EAISourceAdapter is a specialized EAIPrimitiveOperator. It corresponds to a CCA ProcessComponent
with a single CCA FlowPort with direction = initiates.

The Choreography of the CCA ProcessComponent corresponding to an EAISourceAdapter will show a
CCA PortActivity on the FlowPort with direction = initiates.

Sample_EAISourceAdapter

Y1
Y1 output

Figure 54 CCA notation for a sample EAISourceAdapter

When the EAISourceAdapter is to be utilized in Pull mode, an additional FlowPort will respond to a
generic “Get” message that will trigger retrieval from the system and initiate the output.

ad/2001-09-17 UML for EAI 62

Sample_Pull_EAISourceAdapter

Get Y1

receive Get

Y1 ouput

Figure 55 CCA notation for a sample Pull mode EAISourceAdapter

6.5.2.2 EAITargetAdapter
EAITargetAdapter is a specialized EAIPrimitiveOperator. It corresponds to a CCA ProcessComponent
with a single CCA FlowPort with direction = responds.

The Choreography of the CCA ProcessComponent corresponding to an EAITargetAdapter will show a
CCA PortActivity on the FlowPort with direction = responds.

Sample_EAITargetAdapter

Y1

Y1 input

Figure 56 CCA notation for a sample EAITargetAdapter

6.5.2.3 EAIQueuedTargetAdapter
EAIQueuedTargetAdapter is a specialized EAIPrimitiveOperator. It corresponds to a CCA
ProcessComponent with a single CCA FlowPort with direction = responds.

An EAIQueuedTargetAdapter offers the same externally observable contract as the EAITargetAdapter
but with different internal behavior, namely, queued delivery of messages to the system.

Queueing of messages can be directly implemented or delegated into usages of technology-specific
message-queue ProcessComponents in the internal composition.

ad/2001-09-17 UML for EAI 63

6.5.2.4 EAICallAdapter
EAICallAdapter is a specialized EAIPrimitiveOperator. It corresponds to a CCA ProcessComponent
with a CCA FlowPort with direction = responds and a CCA FlowPort with direction = initiates.

Alternatively, an EAICallAdapter may correspond to a CCA ProcessComponent with a ProtocolPort,
with subPorts obeying a Protocol having a CCA FlowPort with direction = responds and a CCA
FlowPort with direction = initiates. This aggregation in a single ProtocolPort of the FlowPorts for the
call and response messages provides as single connection point for the full call-response, which is
similar to the conventional functional invocation in programming languages.

The Choreography of the CCA ProcessComponent corresponding to an EAICallAdapter will show a
CCA PortActivity on the FlowPort with direction = responds, followed by a CCA PortActivity on the
FlowPort with direction = initiates.

An EAICallAdapter accepts synchronous calls that are not externally observable. It converts these to
asynchronous messages that are sent on the output terminal initiating FlowPort. It receives a response on
the input terminal responding FlowPort and passes an equivalent response to the caller. The
EAICallAdapter must implement the logic and mechanisms to wait for the asynchronous response and
rebind to the thread of the calling process.

The input and output CCA FlowPort may have the same or different DataElement type. The
ProcessComponent will convert the input to the type required by the system. The system will respond
with information of a certain type that the ProcessComponent must convert into the ouput DataElement
type.

The transformation to be performed on the DataElement contents can be specified in Properties of the
CCA ProcessComponent as an expression, script or tranformation specification in any of transformation
languages available. Alternatively, the tranformation can be delegated into usages of other technology-
specific transformation ProcessComponents in the internal Composition.

Y1 input

Y2 output

Sample_EAICallAdapter

call

Y1
Y2

Sample_EAICallAdapter

Y1 Y2

Figure 57 CCA notation for sample EAICallAdapter

ad/2001-09-17 UML for EAI 64

6.5.2.5 EAIRequestReplyAdapter
EAIRequestReplyAdapter is a specialized EAIPrimitiveOperator. It corresponds to a CCA
ProcessComponent with a CCA FlowPort with direction = responds and a CCA FlowPort with direction
= initiates.

Externally, an EAIRequestReplyAdapter exposes similar contract and behaves like the EAICallAdapter.

The EAIRequestReplyAdapter accepts asynchronous messages. It invokes a system synchronously and
returns the response as a message that other applications can process asynchronously. The
RequestReplyAdapter presents an asynchronous interface on a synchronous invocation.

6.5.3 CCA and EAI Metamodel Mapping Tables

The following table shows the mapping between EAI and CCA model elements. In many cases the EAI
library component is also part of the mapping.

EAI metamodel element CCA metamodel element Library Component
(Component Used)

EAIFlow ProcessComponent

EAIRouterComposition ProcessComponent

EAIPrimitiveOperator ComponentUsage EAIPrimitiveOperator

EAICompoundOperator ComponentUsage EAICompoundOperator

EAITargetAdapter ComponentUsage EAITargetAdapter

EAISourceAdapter ComponentUsage EAISourceAdapter

EAICallAdapter ComponentUsage EAICallAdapter

EAIRequestReplyAdapter ComponentUsage EAIRequestReplyAdapter

EAIFilter ComponentUsage EAIFilter

EAIStream ComponentUsage EAIStream

EAIPostDater ComponentUsage EAIPostDater

EAITransformer ComponentUsage EAITransformer

EAIDBTransformer ComponentUsage EAIDBTransformer

EAIAggregator ComponentUsage EAIAggregator

EAIRouter ComponentUsage EAIRouter

EAIBroadcaster ComponentUsage EAIBroadcaster

EAIRouterUpdate ComponentUsage EAIRouterUpdate

EAISubscriptionOperator ComponentUsage EAISubscriptionOperator

ad/2001-09-17 UML for EAI 65

EAI metamodel element CCA metamodel element Library Component
(Component Used)

EAISubscriptionFilter ComponentUsage EAISubscriptionFilter

EAIPublicationOperator ComponentUsage EAIPublicationOperator

EAITimeSetOperator ComponentUsage EAITimeSetOperator

EAITimeCheckOperator ComponentUsage EAITimeCheckOperator

EAITimer ComponentUsage EAITimer

EAISource Port with direction = responds

EAIQueuedSource Port with direction = responds

EAITopicPublisher

EAISink Port with direction = initiates

EAIQueuedSink Port with direction = initiates

EAILink Connection

EAIMessageOperation FlowPort or OperationPort

EAITerminal PortConnector

EAIQueuedInputTerminal PortConnector

EAIQueuedOutputTerminal PortConnector

EAIPublicationTerminal

EAISubscriptionRule

EAITopicRule

EAIContentRule

EAIMessageTimerCondition

EAIMessageContent CompositeData

EAIExceptionNotice CompositeData

EAIRequestFormat

EAIQueue

EAIContent

EAIRouterUpdateFormat

EAIAddTargetFormat

EAISubscriptionFormat

EAIResource

EAIMessageAggregation

EAISubscription

EAITopic

Table 1 Model elements mapping table

ad/2001-09-17 UML for EAI 66

Examples of the CCA modeling elements are presented in Section 11.

ad/2001-09-17 UML for EAI 67

7 EAI Common Application Metamodel

7.1 Business Requirements and Value
The current trend for new applications is to embrace open Web standards that simplify construction and
scalability. As new applications are built, it is crucial to integrate seamlessly with existing systems while
introducing new business models and new business processes.

SAP on AIX

Windows2000

Oracle,
DB2, ...

Netscape
IE

CICS/390
IMS/390

DB2,
DL/I on
S/390

Net.Commerce
Netscape

Sun Solaris

Baan on
HP/UX

Figure 58 Multiple Application and Development Environments

Analysts from the Meta Group estimate that more than 70 % of corporate data lives on the mainframe,
much of that on the S/390. Many transactions may be initiated by a Windows/NT or Unix server, but
they will be completed on the mainframe under applications, such as CICS, or IMS applications. It is
important to leverage and reuse these existing assets, including stored procedures, to provide
interoperability with existing applications.

The above figure depicts multiple application components with multiple development teams and
environments. Where is the application in this picture? Everywhere! How is the application assembled?
With connectors!

Connectors are a central part of the application framework for e-business. The demand is to connect to
anything interesting as quickly, and as easily, as possible.

A connector is required to match the interface requirements of the adapter and the legacy application. It
is also required to map between the two interfaces. Standardized metamodels for application interfaces
allow reuse of information in multiple connector tools. It will not only reduce work to create a
connector, but also reduce work needed to develop connector builder tools, thus an incentive to
connector suppliers.

ad/2001-09-17 UML for EAI 68

7.2 Common Application Metamodel for Applications Interfaces
Business integration technology requires connectors to provide interoperability with existing
applications. Connectors support leveraging and reuse of data and business logic held within existing
application systems. The job of a connector is to connect from one application system server "interface"
to another; it is not meant for an individual application program. Therefore, an application-domain
interface metamodel describes signatures for input and output parameters and return types for a given
application system domain (e.g. IMS, MQSeries); it is not for a particular IMS or MQSeries application
program. The metamodel contains both syntactic and semantic interface metadata.

The following figure showing the EAI metamodel for application interfaces enables integration of
application components into event-based messaging model including Flow models.

 Existing Application
ProgramInvocation &

Transformation

Metadata
Repository

runtime
connector

Middleware

Interface
Definition

Flow and
Messaging
Metamodel Application Interface

Metamodel

Interface

Figure 59 Application Interface Metamodel
The flow and messaging middleware invokes applications through the application interfaces. These
interfaces are the access points to the applications through which all input and output is connected to the
middleware. The interfaces are described in terms of the Application Interface Metamodels.
Transformation processing according to the metamodel could take place in source/client applications,
target applications, or a gateway.

ad/2001-09-17 UML for EAI 69

7.2.1 End-to-End Connector Usage Using EAI Common Application Metamodel
The EAI Common Application Metamodel (CAM) consists of meta-definitions of message signatures,
independent of any particular tool or middleware. Different connector builder tools can use this
information to ensure the “handshaking” between these application programs, across different tools,
languages, and middleware. For example, if you have to invoke an MQSeries application, you would
need to build a MQ message using data from a GUI tool and deliver it using the MQ API. Similarly,
when you receive a message from the MQSeries application, you would need to get the buffer from
MQSeries, parse it and then put it into a GUI tool data structure. These functions can be designed and
implemented efficiently by a connector builder tool using EAI CAM as standardized metamodels for
application interfaces.

EAI CAM can be populated from many sources, including copy books, to generate HTML forms and
JavaServer Page (JSP) for gathering inputs and returning outputs. An example of a connector as depicted
in the previous figure is that the flow and message middleware makes a function call to an enterprise
application by calling the connector that then calls the enterprise application API. The connector does
language and data type mappings, for example, to translate between XML documents and COBOL input
and output data structures based on EAI CAM. Connectors and EAI CAM provide the end-to-end
integration between the middleware and the enterprise applications.

Using IMS as an example: Let’s say that you must pass an account number to an IMS transaction
application program from your desktop to withdraw $50.00. With EAI CAM and a connector builder
tool, you will first generate an input HTML form and an output JSP; and develop a middleware code
necessary to support the request. The desktop application fills the request data structure (i.e. an input
HTML form) with values and calls the middleware. The middleware service code will take the data from
the GUI tool, build an IMS Connect XML-formatted message, and deliver the message to the IMS
gateway (i.e. IMS Connect) via TCP/IP. IMS Connect translates between the XML documents and the
IMS message data structures in COBOL using the metadata definitions captured in EAI CAM. It then, in
turn, sends the IMS message data structures to IMS via Open Transaction Manager Access (OTMA).
The IMS COBOL application program runs, and returns the output message back to the middleware
service code via IMS Connect. The middleware service code gets the message and populates the output
JSP page (i.e. previously generated GUI tool reply data structures) with the reply data. The transaction
output data will then be presented to the user.

7.3 Common Application Metamodel
CAM is a group of interface metamodels that consist of enterprise application interface metamodels,
language metamodels and physical representation metamodels. These include C, C++, Java, COBOL,
PL/I, Type Descriptor, TDLang, IMS transaction messages, IMS MFS, and CICS BMS, etc. Note that
the Java metamodel is defined in the OMG EDOC (Enterprise Distributed Object Computing)
submission.

CAM is highly reusable and independent of any particular tool or middleware. CAM is an incentive to
connector suppliers. It reduces work to create and develop connector and/or connector-builder tools.
With CAM, tools can now easily access enterprise applications, e.g. IMS and CICS applications; and

ad/2001-09-17 UML for EAI 70

tools can also access any CAM enabled applications. CAM is used to describe information needed to
easily integrate applications developed in common programming models with other systems. CAM can
be used for both synchronous and asynchronous invocations.

Because CAM also provides physical representation of data types and storage mapping to support data
transformation in an enterprise application integration environment, it enables Web services for
enterprise applications.

In a nutshell, CAM is needed for

• connector and/or connector-builder tools (Development time)
• data transformation in an enterprise application integration environment (Execution time)
• data type mapping between mixed languages
• data translations from one language and platform domain into another
• data driven impact analysis for application productivity and quality assurance
• viewing of programming language data declarations by developers

CAM uses MOF and UML class modeling mechanisms. All CAM models are instances of MOF classes
at the M2 level.

7.3.1 Enterprise Application Interface Metamodels
The Enterprise Application Interface metamodel describes signatures for input and output parameters
and return types for application system domains.

The Enterprise Application Interface Metamodels listed as follows are non-normative and can be found
in Section 15.

• IMS Transaction Message
• IMS MFS
• IMS CICS BMS

7.3.2 Language Metamodels
The language metamodel, e.g. COBOL metamodel, is used by enterprise application programs to define
data structures (semantics) that represent connector interfaces. An association between language
metamodels (semantics) and the physical layout metamodel (syntactic) is necessary in order for the
marshaller to correctly format the byte string. This association between language metamodels and Type
Descriptor metamodel is further detailed in Section 7.3.9 under Physical Representation Model:
Convergent Metamodel. It is important to connector developers that connector tools show the source
language, the target language, and the mapping between the two languages. The CAM language
metamodel also includes the declaration text in the model that is not editable (i.e. read-only model).
Because the connector/adapter developer would probably prefer to see the entire COBOL data
declaration, including comments and any other documentation that would help him/her understand the
business role played by each field in the declaration.

ad/2001-09-17 UML for EAI 71

The language metamodel is also to support data driven impact analysis for application productivity and
quality assurance. (But, it is not the intention of the CAM to support reproduction of copybooks.)

The language metamodels describing application interface data are listed as follows:

• C
• C++
• COBOL
• PL/I
• Java (Java metamodel is in the OMG EDOC final submission document.)

These language metamodels are found in Section 14.

7.3.3 Physical Representation Model: Type Descriptor Metamodel
Type Descriptor metamodel presents a language and platform independent way of describing
implementation types, including arrays and structured types. This information is needed for marshaling
and for connectors that have to transform data from one language and platform domain into another.
Inspections of the type model for different languages can determine the conformance possibilities for the
language types. For example, a long type in Java is often identical to a binary type
(computational-5) in COBOL, and if so, the types may be inter-converted without side effect. On
the other hand, an alphanumeric type in COBOL is fixed in size and if mapped to a Java type, loses this
property. When converted back from Java to COBOL, the COBOL truncation rules may not apply,
resulting in computation anomalies. In addition, tools that mix languages in a server environment (e.g.,
Java and COBOL in CICS and IMS) should find it useful as a way to determine how faithfully one
language can represent the types of another. Therefore, an instance of the Type Descriptor metamodel
describes the physical representation of a specific data type for a particular platform and compiler. The
following figures illustrate the classes that constitute the Type Descriptor metamodel and show how the
classes relate to each other. Following the diagrams is a brief explanation of what each class represents.

ad/2001-09-17 UML for EAI 72

NumberTD

base : int
baseWidth : int
baseInAddr : int
baseUnits : int
signCoding : SignCodingValue
checkValidity : Boolean
packedDecimalSign : PackedDecimalSignValue
baseUnitEncoding : Encoding
format : Boolean
sign : SignFormat

FloatTD

floatType : FloatValue

StringTD

encoding : String
lengthEncoding : LengthEncodingValue
maxLengthFormula : String
checkValidity : Boolean
format : String
stringJustification : StringJustificationKind = LeftJustify
paddingCharacter : String
characterSize : int

AggregateInstanceTD

union : Boolean = false

Bi_DirectionStringTD

textType : String = Implicit
orientation : String = LTR
Symmetric : Boolean = true
numeralShapes : String = Nominal
textShape : String = Nominal

SimpleInstanceTD

BaseTDType

addrUnit : AddrUnitValue
width : int
alignment : int
nickname : String
bigEndian : Boolean

1..1

0..*

+sharedType 1..1

+simpleType 0..*

AddressTD

permission : String
bitModePad : AddressMode
absolute : Boolean

1..1
+referenceType

1..1

ArrayTD

arrayAlign : int
strideFormula : String
strideInBit : Boolean
upperBoundFormula : String
lowerBoundFormula : String

InstanceTDBase

offsetFormula : String
contentSizeFormula : String
allocSizeFormula : String
accessor : AccessorValue
formulaInBit : Boolean = false

0..*

1..1

+arrayDescr0..*

1..1<<Ordered>>

PlatformCompilerInfo

platformCompilerType : String
compilerName : String
compilerVersion : String
compilerFlags : String
operatingSystem : String
osVersion : String
hardwarePlatform : String
defaultEncoding : String
defaultBigEndian : Boolean
defaultFloatType : FloatValue
addressSize : AddressMode

1..1

+platformInfo

1..1

BinaryTD

length : int

DateTD

Figure 60 Type Descriptor metamodel

ad/2001-09-17 UML for EAI 73

I n s t a n c e T D B a s e

o f f s e t F o r m u l a : S t r i n g
c o n t e n t S i z e F o r m u l a : S t r i n g
a l l o c S i z e F o r m u l a : S t r i n g
a c c e s s o r : A c c e s s o r V a l u e
f o r m u l a I n B i t : B o o l e a n = f a l s e

(from Typ eDes crip tor)

T D L a n g E l e m e n t
(f rom TDLa ng)

1 . . 1

1 . . 1+ l a n g u a g eI n s t a n c e

1 . . 1+ i n s t a n c e T D B a s e

1 . . 1

Figure 61 TDLang to Type Descriptor

SignCodingValue

twosComplement
onesComplement
signMagnitude
zoneSigns
packedSigns
unsignedBinary
unsignedDecimal

<<enumeration>>
LengthEncodingValue

fixedLength
lengthPrefixed
nullTerminated

<<enumeration>>

AccessorValue

readOnly
writeOnly
readWrite
noAccess

<<enumeration>>
PackedDecimalSignValue

mvs
mvsCustom
nt_os2_aix

<<enumeration>>

AddressMode

mode16
mode24
mode31
mode32
mode64
mode128

<<enumeration>>

AddrUnitValue

bit
byte
word
doubleWord

<<enumeration>>

FloatValue

unspecified
ieeExtendedIntel
ieeExtendedAIX
ieeExtended0S390
ieeExtendedAS400
ieeeNonExtended
ibm390Hex
ibm400Hex

<<enumeration>>

Encoding

ebcdic
ascii
packed390

<<enumeration>>

StringJustificationKind

leftJustify
rightJustify

SignFormat
leading
leadingSeparate
trailing
trailingSeparate
unsigned

Figure 62 Type Descriptor Stereotypes

ad/2001-09-17 UML for EAI 74

7.3.4 Type Descriptor Metamodel Descriptions

7.3.4.1 AddressTD
AddressTD represent pointers/addresses. Addresses should be considered to be different from
NumberTD class because some languages on certain machines (e.g., IBM 400) represent addresses with
additional information, such as permission type (which is not represented in NumberTD class)

7.3.4.2 ArrayTD
ArrayTD holds information for array types. Data element instances may be defined as repeating groups
or arrays. This is modeled as a one-to-many association between InstanceTDBase and the ArrayTD
model type. One instance of ArrayTD is created for each dimension, subscript, or independent index of
the data element. Each instance holds information about the bounds and accessing computations. The
association order between ArrayTD and InstanceTDBase is the same as the order for the corresponding
association in the language model, and reflects the syntactic ordering of the indices as defined by the
programming language.

7.3.4.3 BaseTDType
BaseTDType is the abstract parent class of all types in the TD Metamodel. BaseTDType holds
implementation information common to all data types of the same runtime environment, as specified by
PlatformCompilerInfo.

7.3.4.4 Bi-DirectionalStringTD
Bi-DirectionStringTD is a subclass of StringTD. Bi-DirectionStringTD represents strings with extended
properties and formats such as numeral shapes and right-to-left reading direction.

7.3.4.5 BinaryTD
BinaryTD represents a string of binary bits whose format is not to be modified.

7.3.4.6 DateTD
DateTD represents date types with its associated format (e.g., mm/dd/yyyy, dd/mm/yyyy)

7.3.4.7 FloatTD
FloatTD represents floating point numbers declared by a language element.

7.3.4.8 InstanceTDBase
InstanceTDBase is the most basic, fundamental core class of the Type Descriptor Metamodel. Every TD
Metamodel instance contains at least one instance of InstanceTDBase. For each instance of a CAM
language Element class there is a corresponding instance of InstanceTDBase. InstanceTDBase contains

ad/2001-09-17 UML for EAI 75

attributes that describe the physical layout of each declared variable and structure element in a program.
It is an abstract class realized by either SimpleInstanceTD or AggregateInstanceTD. To find the parent
of any instance (if it has one) navigate the association back to the CAM Language Element class (via a
language-independent element class, e.g., TDLangElement), follow the association to the language-
specific Composed class, then follow the association back to the parent InstanceTDBase.

7.3.4.9 Number TD
NumberTD represents all integer and packed decimals.

7.3.4.10 PlatformCompilerInfo
PlatformCompilerInfo captures the static compiler and program runtime environment. Since this static
information is shared by all instances of InstanceTDBase, this class only needs to be instantiated once.

7.3.4.11 SimpleInstanceTD and AggregateInstanceTD
Both SimpleInstanceTD and AggregateInstanceTD are subclasses of InstanceTDBase. InstanceTDBase
has two concrete subtypes: SimpleInstanceTD and AggregateInstanceTD. SimpleInstanceTD models
data elements without subcomponents, while AggregateInstanceTD models data elements with
subcomponents. To find the subcomponents of an AggregateInstanceTD, one must navigate back to the
corresponding data element declaration in the CAM language model. There, the association between an
aggregate type and its subcomponents may be navigated, leading to a set of subcomponent data
elements, each of which has one or more corresponding instances in the Type Descriptor model.

7.3.4.12 StringTD
StringTD represents standard left-to-right format character strings. StringTD also supports single
characters elements.

7.3.4.13 Type Descriptor Stereotypes
• AccessorValue enumerates permission rights for each TDLangElement.
• AddrUnitValue enumerates the unit associated with the value of address attributes in Type

Descriptor Metamodel.
• BitModePadValue enumerates the address size. Values in this enumeration are used to calculate

padding.
• Encoding enumerates numeric base unit encoding supported by Type Descriptor Metamodel.
• FloatValue enumerates floating types supported by Type Descriptor Metamodel.
• LengthEncodingValue enumerates string length encoding values supported by Type Descriptor

Metamodel.
• PackedDecimalSignValue enumerates platforms that support the packed decimal format.
• SignCodingValue enumerates numeric sign encoding values supported by Type Descriptor

Metamodel.
• StringJustificationKind enumerates string justification layout values supported by Type

Descriptor Metamodel.

ad/2001-09-17 UML for EAI 76

7.3.5 Type Descriptor Formulas
In the following discussion, “field” refers to a component of a language data structure described by the
Type Descriptor metamodel, while “attribute” denotes part of the model, and has a value representing a
“property” of the field. Thus the value of a field means a run-time value in a particular instance of a
language data structure, whereas the value of an attribute is part of the description of a field in a
language data structure, applies to all instances of the data structure, and is determined when the data
structure is modeled.
For most attributes in an instance of the Type Descriptor metamodel, the value of the attribute is known
when the instance is built, because the properties of the fields being described, such as size and offset
within the data structure, are invariant. But if a field in a data structure is defined using the COBOL
OCCURS DEPENDING ON construct or the PL/I Refer construct, then some properties of the field
(and properties of other fields that depend on that field’s value) cannot be determined when the model
instance is built.
Properties that can be defined using these language constructs are string lengths and array bounds. A
property that could indirectly depend on these language constructs is the offset of a field within a
structure, if the field follows a variable-size field.

In order to handle these language constructs, properties of a field that could depend on these constructs
(and thus the values of the corresponding attributes), are defined with strings that specify a formula that
can be evaluated when the model is used.
However, if a property of a field is known when the model instance is built, then the attribute formula
simply specifies an integer value. For example, if a string has length 17, then the formula for its length
is “17.”
The formulas mentioned above are limited to the following:

• Unsigned integers

• The following arithmetic integer functions

 neg(x) := -x // prefix negate
add(x,y) := x+y // infix add
sub(x,y) := x-y // infix subtract
mpy(x,y) := x*y // infix multiply
div(x,y) := x/y // infix divide
max(x,y) := max(x,y)
min(x,y) := min(x,y)
mod(x,y) := x mod y

 The mod function is defined as mod(x,y) = r where r is the smallest non-negative integer such
that x-r is evenly divisible by y. So mod(7,4) is 3, but mod(-7,4) is 1. If y is a power of 2, then
mod(x,y) is equal to the bitwise-and of x and y-1.

• The val function

The val function returns the value of a field described by the model. The val function takes one

ad/2001-09-17 UML for EAI 77

or more arguments, and the first argument refers to the level-1 data structure containing the field,
and must be either:

° the name of a level-1 data structure in the language model

° the integer 1, indicating the level-1 parent of the variable-size field. In this case, the variable-
size field and the field that specifies its size are in the same data structure, and so have a
common level-1 parent.

The subsequent arguments are integers that specify the ordinal number within its substructure of
the (sub)field that should be dereferenced.

By default, COBOL data fields within a structure are not aligned on type-specific boundaries in storage.
For example, the “natural” alignment for a four-byte integer is a full-word storage boundary. Such
alignment can be specified by using the SYNCHRONIZED clause on the declaration. Otherwise, data
fields start immediately after the end of the preceding field in the structure. Since COBOL does not have
bit data, fields always start on a whole byte boundary.
For PL/I, the situation is more complicated. Alignment is controlled by the Aligned and Unaligned
declaration attributes. By contrast with COBOL, most types of data, notably binary or floating-point
numbers, are aligned on their natural boundaries by default.

7.3.6 Type Descriptor Formula Examples

7.3.6.1 COBOL
The examples use the proposed inline comment indicator “*>” from the draft standard. It is not yet legal
COBOL usage.

1. Consider the following data description:

*> Field Offset

01 Used-Car. *> "0"
02 Summary. *> "0"

03 Make pic x(36). *> "0"
03 Model pic x(44). *> "36"
03 VIN pic x(13). *> "80"
03 Color pic x(10). *> "93"
88 Red value 'Red'.
88 White value 'White'.
88 Blue value 'Blue'.

02 History. *> "103"
03 Mileage pic 9(6). *> "103"
03 NumClaims binary pic 9. *> "109"
03 InsCode pic x. *> "111"
03 Claims. *> "112"

ad/2001-09-17 UML for EAI 78

04 Claim occurs 1 to 9 times
depending on NumClaims. *> stride(1) = "157"

05 ClaimNo pic x(14). *> "112"
05 ClaimAmt binary pic 9(5).*> "126"
05 Insurer pic x(39). *> "130"
05 Details pic x(100). *> "169"

02 Price comp pic 9(5)v99. *>
"add(112,mpy(val(1,2,2),157))"

The offset of Model is straightforward, and is given by the formula “36.” So is that of Claims,
which is “112.”
But because the array Claim can occur a variable number of times, the structure History is a
variable-size field. Thus the offset of Price, which immediately follows Claims, requires a
more complicated formula, involving the array stride (the distance between successive elements
along a specific dimension). In the case when there is only one dimension for Claim, the
formula for its stride is “157.” Thus the formula offset of Price for a single dimension
Claim is:

"add(112,mpy(val(1,2,2),157))"

The first argument of the val function is 1, meaning that the field containing the value at run-
time, NumClaims, is in the same level-1 structure, Used-Car, as the field, Price, whose
offset is specified by the formula. The other two arguments are 2 and 2. The first 2 refers to the
second immediate subcomponent, History, of Used-Car. The second 2 means that the field
to be dereferenced is the second component of History, that is, NumClaims.
In the case when NumClaims is greater than 1 (i.e., when Claims is a multi-dimension array)
the offset for each element within Claims is 157 more than the offset for the previous
dimension. For example, the offset formula for the second instance of ClaimNo is
112+157=269 while the third instance would be 269+157=426.
If the OCCURS DEPENDING ON object were in a separate structure, the third subcomponent of
level-1 structure Car-Data, say, then the val function would be “val(Car-Data,3).”

2. COBOL structure mapping is top-down, although the direction doesn’t make any difference
unless the SYNCHRONIZED clause is specified on the data declaration. Specifying
SYNCHRONIZED forces alignment of individual fields on their natural boundaries, and thus
introduces “gaps” into the structure mapping. Consider the following data structure that is
identical to the previous example, except for the SYNCHRONIZED clause:

*> Field Offset

01 Used-Car sync. *> "0"
02 Summary. *> "0"

03 Make pic x(36). *> "0"
03 Model pic x(44). *> "36"
03 VIN pic x(13). *> "80"
03 Color pic x(10). *> "93"
88 Red value 'Red'.

ad/2001-09-17 UML for EAI 79

88 White value 'White'.
88 Blue value 'Blue'.

02 History. *> "103"
03 Mileage pic 9(6). *> "103"
03 NumClaims binary pic 9. *> "110"
03 InsCode pic x. *> "112"
03 Claims. *> "113"

04 Claim occurs 1 to 9 times
depending on NumClaims. *> stride(1) = "160"

05 ClaimNo pic x(14). *> "113" plus one slack
byte after each instance of ClaimNo

05 ClaimAmt binary pic 9(5).*> "128"
05 Insurer pic x(39). *> "132"
05 Details pic x(100). *> "171" plus one slack

byte after each instance of Details and one slack byte after
each instance of Claims

02 Price comp pic 9(5)v99. *>
"add(add(113,mpy(val(1,2,2),160)),3)"

To position the binary fields on their appropriate half-word or full-word storage boundaries,
COBOL introduces padding, known as “slack bytes”, into the structure. Working top-down, this
padding is introduced immediately before the field needing alignment. So there is one byte of
padding between Mileage and NumClaims.

For an array, such as Claim, COBOL not only adjusts the padding within an element, but also the
alignment of each element of the array. In the example, the first occurrence of Claim starts one
byte past a full-word boundary. Because the field ClaimNo is three and a half words long, it ends
three bytes past a full-word boundary, so COBOL inserts one byte of padding immediately
before the binary full-word integer ClaimAmt. And to align subsequent occurrences, so that they
too start one byte past a full-word boundary like the first, and can thus have an identical
configuration, COBOL adds two bytes of padding at the end of each occurrence.

Finally, after padding, each occurrence of Claim (starts and) ends one byte past a full-word
boundary, so COBOL puts three bytes of padding before the binary field Price. As a result of all
these extra bytes, the formula for the offset of Price has changed considerably from the unaligned
example, and is now:

"add(add(113,mpy(val(1,2,2),160)),3)"

There are several differences between the OCCURS DEPENDING ON construct and PL/I’s
Refer option. Storage for COBOL structures is always allocated at the maximum size, whereas
PL/I structures are allocated at the actual size specified by the Refer option. It is legal and usual
to change the number of occurrences in a particular instance of a variable-size COBOL array,
and this has the effect of changing the location and offset of any fields that follow the array. For
PL/I, the value of the Refer object of a particular instance of a structure is intended to be fixed
during execution. Thus aligned objects following a variable-size field are always correctly
aligned for each instance of the structure, because the amount of padding is computed uniquely
for each instance, as determined by the Refer option. By contrast, the amount of padding for any

ad/2001-09-17 UML for EAI 80

aligned fields following a variable-size COBOL array is computed assuming the maximum array
size, and is fixed at compile time. If the array is smaller than its maximum size, then the
alignment will typically be incorrect. For instance in this example:

1 a sync.
2 b binary pic 9.
2 c pic x occurs 1 to 5 times depending on b.
2 d binary pic 9(9).

COBOL inserts one byte between c and d. The alignment of d is therefore correct for only two
values of b, the maximum, 5, and 2.

3. As noted above, the formulas describe not only offsets of fields within a structure, but also
properties of arrays, such as bounds and strides. COBOL does not have true multi-dimensional
arrays, although element references do use multiple subscripts. Instead, COBOL has arrays of
arrays, as in the following simple example:

1 a. *< offset = "0"
2 d1 occurs 5 times. *< offset = "0"

*< lbound(1) = "1"
*< hbound(1) = "5"
*< stride(1) = "168"

3 d2 occurs 6 times. *< offset = "0"
*< lbound(2) = "1"
*< hbound(2) = "6"
*< stride(2) = "28"

4 el binary pic 9(9) occurs 7 times. *< offset = "0"
*< lbound(3) = "1"
*< hbound(3) = "7"
*< stride(3) = "4"

The program can refer to slices of the array by subscripting the higher-level container fields, for
example, d1(2) or d2(3, 4), but the normal kind of reference is to the low-level elements
using the full sequence of subscripts, for instance, el(4, 5, 6). To locate element el(m,
n, o) using these stride formulas, one would take the address of a and add to it (m-1)*168 +
(n-1)*28 + (o-1)*4. For COBOL, the lower bound of an array subscript is always 1. That is, the
first element is always element(1), and vice versa.

Needless to say, any dimension of the array can have the OCCURS DEPENDING ON clause,
and the array can be followed by other fields that complicates the formulas a lot. Consider the
example:

1 a.
2 x1 binary pic 9. *< offset = "0"
2 x2 binary pic 9. *< offset = "2"
2 x3 binary pic 9. *< offset = "4"
2 d1 occurs 1 to 5 times *< offset = "6"

ad/2001-09-17 UML for EAI 81

depending on x1. *< lbound(1) = "1"
*< hbound(1) = "val(1,1)"

*< stride(1) =
"mpy(val(1,2),mpy(val(1,3),4))"

3 d2 occurs 1 to 6 times *< offset = "6"
depending on x2. *< lbound(2) = "1"

*< hbound(2) = "val(1,2)"
*< stride(2) = "mpy(val(1,3),4)"

4 el binary pic 9(9) *< offset = "6"
occurs 1 to 7 times *< lbound(3) = "1"
depending on x3. *< hbound(3) = "val(1,3)"

*< stride(3) = "4"
2 b binary pic 9(5). *< offset = "see below!"

Computing the address of a particular element still involves the stride formulas, but these are no
longer simple integers. The address of element el(m, n, o) in the above example is given by
taking the address of a and adding to it:

(m-1)*stride(1) + (n-1)*stride(2) + (o-1)*stride(3), i.e.,

(m-1)*4*val(1,3)*val(1,2) + (n-1)*4*val(1,3) + (o-1)*4.

Similarly, these stride formulas are used in the formula for the offset of b:

"add(6,mpy(val(1,1),mpy(val(1,2),mpy(4,val(1,3)))))

7.3.6.2 PL/I
1. Given the following structure

dcl /* offset
*/

1 c unaligned /* "0"
*/

,2 c1 /* "0"
*/

,3 c2 fixed bin(31) /* "0"
*/

,3 c3 fixed bin(31) /* "4"
*/

,2 c4 /* "8"
*/

,3 c5 fixed bin(31) /* "0"
*/

,3 c6 fixed bin(31) /* "4"
*/

ad/2001-09-17 UML for EAI 82

,3 c7 fixed bin(31) /* "8"
*/

,2 c8 fixed bin(31) /* "20"
*/

,2 c9 char(* refer(c7)) /* "24"
*/

,2 c10 char(6) /* "add(24,val(1,2,3))"
*/

,2 c11 char(4) /*
"add(add(24,val(1,2,3)),6)" */

;

The offset of c3 would be given by the simple formula “4”, but the offset of c10 would be given
by the formula:

"add(24,val(1,2,3))"

The first argument in the above val function is 1 that indicates the current structure, c. The
subsequent arguments are 2 and 3, indicating that the third element, c7, of the second level-2
field, c4, is the field to be dereferenced.
The offset of c11 is equal to the offset of c10 plus the length of c10 and would be given by the
following formula:

"add(add(24,val(1,2,3)),6)"

2. PL/I structure mapping is not top-down, and this can be illustrated by examining the mapping of
the following structure:

dcl /* offset
*/

1 a based, /* "0"
*/

2 b, /* "0"
*/

3 b1 fixed bin(15), /* "0"
*/

3 b2 fixed bin(15), /* "2"
*/

3 b3 fixed bin(31), /* "4"
*/

2 c, /*
"add(8,mod(neg(val(1,1,1)),4))" */

3 c1 char(n refer(b1)), /* "0"
*/

3 c2 fixed bin(31); /* "val(1,1,1)"
*/

The value of b1 is given by val(1,1,1), and in order to put c2 on a 4-byte boundary, PL/I puts any
needed padding before c (yes, not between c1 and c2), and hence the offset of c would be given
by the following formula:

ad/2001-09-17 UML for EAI 83

"add(8,mod(neg(val(1,1,1)),4))"

So if b1 contains the value 3, then this formula becomes add(8,mod(neg(3),4)), which evaluates
to 9. I.e., there is one byte of padding between the structure b and the structure c.

3. The model also uses these formulas to specify the bounds and strides in an array, where the stride
is defined as the distance between two successive elements in an array.

For example, in the following structure, the second dimension of a.e has a stride specified by the
formula “4”, and the first dimension by the formula “20”:

dcl
1 a, /* offset = "0" */

2 b(4) fixed bin(31), /* offset = "0" */
/* lbound(1) = "1" */
/* hbound(1) = "4" */
/* stride(1) = "4" */

2 c(4) fixed bin(31), /* offset = "16" */
/* lbound(1) = "1" */
/* hbound(1) = "4" */
/* stride(1) = "4" */

2 d(4) char(7) varying, /* offset = "32" */
/* lbound(1) = "1" */
/* hbound(1) = "4" */
/* stride(1) = "9" */

2 e(4,5) fixed bin(31); /* offset = "68" */
/* lbound(1) = "1" */
/* hbound(1) = "4" */
/* stride(1) = "20" */
/* lbound(2) = "1" */
/* hbound(2) = "5" */
/* stride(1) = "4" */

This means that to locate the element a.e(m,n), one would take the address of a.e and add to it
(m-1)*20 + (n-1)*4.
If the example were changed slightly to:

dcl
1 a(4), /* offset = "0" */

/* lbound(1) = "1" */
/* hbound(1) = "4" */
/* stride(1) = "40" */

2 b fixed bin(31), /* offset = "0" */
2 c fixed bin(31), /* offset = "4" */
2 d char(7) varying, /* offset = "8" */
2 e(5) fixed bin(31); /* offset = "20" */

/* lbound(1) = "1" */

ad/2001-09-17 UML for EAI 84

/* hbound(1) = "5" */
/* stride(1) = "4" */

then there is padding between d and e, but the user of the type descriptor can be blissfully
unaware and simply use the stride and offset formulas to locate any given array element.

The stride for a is “40”, the stride for e is “4”, and the offset for e is “20.” This means that to
locate the element a(m).e(n), one would take the address of a and add to it (m-1)*40 + 20 + (n-
1)*4.

Finally, if the example were changed again to:

dcl
1 a(4), /* offset = "0" */

/* lbound(1) = "1" */
/* hbound(1) = "4" */
/* stride(1) = "40" */

2 b fixed bin(31), /* offset = "0" */
2 c(8) bit(4), /* offset = "4" */

/* lbound(1) = "1" */
/* hbound(1) = "8" */
/* stride(1) = "4" */

2 d char(7) varying, /* offset = "8" */
2 e(5) fixed bin(31); /* offset = "20" */

/* lbound(1) = "1" */
/* hbound(1) = "5" */
/* stride(1) = "4" */

then the computations for a.e are the same as above, but the computations for a.c become
interesting.

The stride for a is still “40”, the stride for c is “4” (but this “4” is a count of bits, not bytes), and
the byte offset for c is “4.” To locate the element a(m).c(n), one needs both a byte address and a
bit offset. For the byte address, one would take the address of a and add to it (m-1)*40 + 4 + ((n-
1)*4)/8. The bit offset of a(m).c(n) would be given by mod((n-1)*4,8).

7.3.7 Physical Representation Model: TDLang Metamodel

The TDLang metamodel serves as base classes to CAM language metamodels by providing a layer of
abstraction between the Type Descriptor metamodel and any CAM language metamodel, including
higher level languages. All TDLang classes are abstract and common to all the CAM language
metamodels. All associations between TDLang classes are marked as "volatile," "transient," or "derived"
to reflect that the association is derived from the language metamodel. The TDLang model does not
provide any function on its own, but it is the type target for the association from the Type Descriptor
metamodel to the language metamodels.

ad/2001-09-17 UML for EAI 85

With the TDLang base classes, the Type Descriptor metamodel can be used as a recipe for runtime data
transformation (or marshaling) with the language-specific metamodel for overall data structures and
field names, without duplicating the aggregation (parent-child) associations present in the language
model.

The TDLang model eliminates the need to have unique associations from each language model to the
Type Descriptor model (e.g., cobolToTD and cToTD). All language models can access InstanceTDBase
by calling the instanceTDBase association through the parent TDLangElement class.

The following figure illustrates the TDLang Metamodel. TDLang connects language models to the
Type Descriptor Model. The TDLang metamodel acts as a generic placeholder for a variety of language
models to inherit from. Following the diagram is a brief explanation of what each class represents.

TDLangModelElement
name : String

TDLangComposedType

TDLangElement

0..*

0..1

+tdLangElement
0..*

+tdLangGroup

0..1

/

TDLangClassifier 0..*

1..1 +t dLangTypedElement

0..*+t dLangSharedTy pe

1..1

/

Figure 63 TDLang Metamodel

7.3.8 TDLang Metamodel Descriptions

7.3.8.1 TDLangClassifier
TDLangClassifier is the parent class of all CAM language Classifier classes and
TDLangComposedType. TDLangClassifier represents all data types of a CAM language metamodel.
Since TDLangClassifier is abstract, it is implemented by language specific classifier classes. Sample
subclasses of TDLangClassifier include String, integer, character, float, and addressable pointers for

ad/2001-09-17 UML for EAI 86

each language model. Subclasses of TDLangClassifier provide the type information declared by a
TDLangElement.

7.3.8.1.1 tdLangTypedElement : TDLangElement
Used by an element within a ComposedType to navigate back to the parent ComposedType.

7.3.8.2 TDLangComposedType
TDLangComposedType represents the type of data with subcomponents. TDLangComposedType is the
parent class of all CAM language ComposedTypes. Since TDLangComposedType is abstract, it is
implemented by language specific composed classes. Sample subclasses of TDLangComposedType are
COBOL 01-level data declarations with nested elements, C structs and unions, and PL/I structures,
unions, or elementary variables and arrays.

7.3.8.2.1 tdLangElement : TDLangElement
Used by TDLangComposedType to get a list a TDLangElements contained within the composed type.

7.3.8.3 TDLangElement
TDLangElement is the most basic, fundamental core class of the TDLang Metamodel.
TDLangeElement is the parent class of all CAM language element classes. TDLangElement represents
typed unit elements declared in a copybook or source code, that is typed data elements without a
subcomponent. Since TDLangElement is abstract, it is implemented by language specific element
classes. Sample subclasses of TDLangElement are COBOLElement, CTypedElement, and PLIElement.

7.3.8.3.1 tdLangGroup: TDLangComposedType
Used by TDLangElement to determine the TDLangComposedType it belongs to.

7.3.8.3.2 tdLangSharedType : TDLangClassifier
Used by TDLangElement to determine the type associated to the element.

7.3.8.4 TDLangModelElement

TDLangModelElement is the parent class of all TDLang classes. TDLangModelElement represents a
combination of an element and its declared data type. Since elements and user-defined types may have
associated names, TDLangModelElement has a name attribute that can be separately instantiated by
TDLangElement and TDLangClassifier.

7.3.9 Physical Representation Model: Convergent Metamodel

ad/2001-09-17 UML for EAI 87

The Type Descriptor metamodel is a language-independent model used to convert a datatype into its
expected language-specific type. This is accomplished by associating the base class, InstanceTDBase,
to TDLangElement. As the parent class of all language model element classes, TDLangElement allows
Type Descriptor to access the information regarding all language-specific data types for marshaling.
Type Descriptor's association to the language elements via TDLangElement also provides the aggregate
associations captured in the language models (i.e., the ComposedTypes associations for parent-child
relationships). This ability to navigate up to parent or sibling elements is required to determine the value
of various formula-based attributes in the Type Descriptor model. For example, in order for a child
element C to determine it's offset formula value, it will need to navigate up to element B to find B's
offset value and allocation size. The result of the adding element B’s offset value and allocation size is
element C’s offset value.

Caching and navigation are two approaches to determining the parent value, but the navigation approach
is superior to the cache approach in two respects. First, contents in the cache may become invalid as
subscript values change from one child element to the next during runtime, resulting inaccurate cache
data. Second, to fix this problem the marshaller will need to recalculate the values of each element at
runtime, resulting in a decrease in performance. In the case when we apply navigation from the Type
Descriptor model to the language models, we are able to quickly go from the child to the parent element
to determine the formula information on a real-time basis. The navigation approach provides accurate
values quickly without the need to perform recalculations.
The next diagram shows how language models associate to the Type Descriptor model via the TDLang
model. Following the diagram is a brief explanation of what each class represents.

PLIElement COBOLElement CTypedElement

InstanceTDBase
(from TypeDescriptor)

TDLangElement
+languageInstance +instanceTDBase

Interface Metamodel Parameters

1

+languageElement

1

<<Elements of other languages... >>

Figure 64 Convergent Metamodel

7.3.10 Convergent Metamodel Descriptions

7.3.10.1 Interface Metamodel Parameters
Interface Metamodel Parameters represent a variety of input and output parameter classes which map to
underlying language elements. Information on the language element’s physical representation is
captured by the Type Descriptor metamodel. Each instance of TDLangElement maps its corresponding
physical representation in InstanceTDBase. TDLangElement navigates to InstanceTDBase via the

ad/2001-09-17 UML for EAI 88

instanceTDBase association. Examples of Enterprise Application Metamodel Parameters include
ApplicationData (from IMS Transaction Message Metamodel), MFSMessageField (from IMS MFS
Metamodel), and FCMParameter (from FCM Metamodel).

7.3.10.2 TDLangElement and Language Elements
As stated in Section 7.3.8.3, TDLangElement is the parent class of all CAM language Element classes.
Figure 64 shows how any CAM language element can be modeled to support any given Interface
Metamodel Parameter.

7.3.10.3 InstanceTDBase
As stated in Section 7.3.4.8, InstanceTDBase is used to represent the physical layout of each language
element.

7.3.11 Sample Serialization of Convergent Metamodel
An example of how a marshaller might traverse the Type Descriptor-TDLang-Language model is as
follows:

Given the following COBOL Data Declaration:
01 NAME.
 02 FIRST PIC X(10).
 02 LAST PIC X(10).

The following COBOL and Type Descriptor XMI instances would be serialized:
<COBOLElement ... level="01" name="NAME">
<AggregateInstanceTDBase ... offsetFormula="0" contentSizeFormula="20"

allocSizeFormula="20" accessor="readWrite" formulaInBit="false"
defaultFloatType="ibm390Hex"/>

 <COBOLComposedType ... typedef="false"/>
 <COBOLElement ... level="02" name="FIRST"/>
 <SimpleInstanceTD ... offsetFormula="0" contentSizeFormula="10"

allocSizeFormula="10" accessor="readWrite" formulaInBit="false"
defaultFloatType="ibm390Hex"/>

 <COBOLElement ... level="02" name="LAST"/>
 <SimpleInstanceTD ... offsetFormula="10" contentSizeFormula="10"

allocSizeFormula="10" accessor="readWrite" formulaInBit="false"
defaultFloatType="ibm390Hex"/>

 </COBOLComposedType>
</COBOLElement>

Of particular interest is how the offsetFormula is determined. In order to determine the offsetFormula
value of element LAST, the model needs to be able to navigate upward from LAST's SimpleInstanceTD
to FIRST's SimpleInstanceTD to determine the offsetFormula and allocSizeFormula attributes of
FIRST. Formula-based values can either be static (serialized during import time) or dynamic (serialized

ad/2001-09-17 UML for EAI 89

during runtime). It is this capability to navigate back-and-forth from language models to Type
Descriptor that allows us to determine how to marshal each language element.

Formula-based attributes in the Type Descriptor model are typed as String in order to support both
calculation and numeric values. Runtime determined values such as COBOL's Occurs-Depending-On
clause will have calculation formulas as its value (e.g., "20+10x") while static values will use numeric
values (e.g., allocSizeFormula of FIRST is "10"). Calculation formulas will be evaluated by a "Formula
Evaluator", which takes the formula String as input and returns the calculated numeric value when
runtime information is available (e.g., once the 'x' value of formula "20+10x" is determined we can
return a numeric value). In the case of an numeric value (evaluated integer), simply pass the attribute
value into a "Formula Evaluator" program and the integer representation of the string will be returned.
The formulas in the Type Descriptor model should be generic for all languages, therefore, the "Formula
Evaluator" will cover all languages (COBOL, C, C++, PL/l, etc.).

ad/2001-09-17 UML for EAI 90

Part 3 Profile Definition
The profile presented here focuses on two main modeling approaches, based on collaborations and based
on activities. These are described in Sections 8 and 9, respectively.

The collaboration-modeling approach is based on a modeling framework of classes that provide detailed
definitions of the semantics of the collaboration. It is thus useful for providing the detailed specification
of message flows in the design of integration subsystems.

The activity-modeling approach is based on the use of activity graphs. This approach is particularly
useful for showing the overall control and data flow required for integration, typically at a higher level
than in collaboration modeling.

Casting the metamodel as a UML profile allows EAI architecture models to be notated using standard
UML notation. This means that most UML tools (specifically ones which support the extension
mechanisms of UML, such as stereotypes and tagged values) can be used to define EAI architecture
models.

Standard practice for defining UML profiles has been adopted. A mapping of metamodel classes to their
base UML classes, with accompanying stereotypes, tagged values and constraints is summarised for
each approach. An implementation of this mapping can be used, for example, to generate metadata
conforming to the EAI metamodel from XMI generated from models notated using the UML profile.
Specialized EAI tools will more likely use the metamodel than the UML profile as a basis for storing
and manipulating models.

The art of defining a UML profile is to provide the best fit possible with UML, so that the notation is
natural for a modeler in the relevant domain (EAI in this case), and fits with one’s general intuitions
about the the meaning of the elements of UML that are used in the profile. The profile described here
has been designed with these principles in mind.

ad/2001-09-17 UML for EAI 91

8 Collaboration Modeling

8.1 Overview

General approach

The collaboration profile makes use of UML class and collaboration diagrams to notate EAI models.
The main parts of the profile are:

� Notation for terminals

� Notation for operators

� Notation for resources

� Notation for message formats

Operators are notated by class diagrams, which declare the input and output terminals of the operator
and the message formats of those terminals. The class diagram can also be annotated with the definition
of the operations performed when manipulating incoming messages to generate outgoing messages.

For compound operators, class diagrams also specify the component operators of the compound, which
may, themselves, be compound operators. Collaboration diagrams are used to show how its components
are connected together.

Different kinds of terminals are defined by appropriate stereotypes on UML Class. Specific, named
terminals are identified with operators via associations.

Different kinds of operator are identified by appropriate stereotypes on UML Class.

Some operators make use of resources. Resources are notated by classes, with stereotypes used to
capture the different kinds of format.

Message formats are notated by classes, with stereotypes used to capture the different kinds of format.

Use of UML operations

There are places where UML operations have been used with specific names to 'carry' certain pieces of
metadata within a model defined by the profile. For example, when one defines a terminal, it is
necessary to define an operation called handle whose return type determines the format of message
content that the terminal can handle; when one defines a filter, it is necessary to define a boolean
operation allow which determines, for a message supplied as argument, the conditions under which a
message can pass through the filter. This approach to encoding this information was taken, because it
accords with one’s intuitions about the meaning of UML and of UML operations in particular. For
example, one is able to explain what a filter does by referring to its allow operation – only incoming
messages for which the allow operation evaluates to true get passed on.

ad/2001-09-17 UML for EAI 92

It should be stressed that the operations themselves imply nothing about the scheme used to implement
models, though clearly the information they hold will need to be carried through in some way. Indeed,
most implementations are likely to work from the metamodel direct (as this issue does not arise there)
and the profile just used as a means of defining models using UML notation, which can then get
converted to instances of the metamodel for subsequent processing.

There are many ways to show the definition of UML operations, which will depend on specific
organizational practices and/or support provided by UML CASE tools. One device that is commonly
used is to attach notes to the class containing the operation. This device has been used in all examples
used to illustrate the definition of this profile.

Concrete notation

Only raw stereotypes have been defined in this profile. The user may replace these with concrete icons
at his or her discretion.

Chapter structure

The remainder of this chapter provides a detailed description of each of the four parts of the profile.
Each part is described stereotype by stereotype, using generic examples for illustration. The constraints
that apply in the context of a particular stereotype are also defined. The detailed descriptions are
followed by a section describing the mapping of the EAI metamodel to the elements of the profile. This
section also provides a summary of the stereotypes used in the profile, and follows the format laid down
by UML 1.4.

8.2 Terminals

The terminals of an operator are shown by associations to classes with stereotypes <<input>> (for input
terminals) and <<output>> (for output terminals), from classes with operator stereotypes (see sections
below). A prototypical example showing the defintion of terminals for a primitive operator is given in
Figure 65. This shows a primitive operator with two input and two output terminals. The output
terminals are of the same kind, but the input terminals are not (one is known to be a queued terminal,
even though they both handle the same kind of message format). The names of the terminals are, in this
case, label1 and label2.

ad/2001-09-17 UML for EAI 93

Y1
<<MessageContent>>

Y2
<<MessageContent>>

Y1input

handle(content : Y 1)

<<Input>>
Y2output

handle(content : Y2)

<<Output>>

X1
<<PrimitiveO perator>>+label1 +label2

+out2Name

Some des cription
of what the
operat or does.

Figure 65 Class diagram for prototypical primitive operator with terminals

An input terminal is responsible for conveying incoming messages to the operator, while an output
terminal is responsible for conveying outgoing messages away from the operator. The names of the
terminals with respect to the operator are specified as labels on the appropriate association end. In
general, operators may have one or more input and one or more output terminals. The number and
names of the input and output terminals may be constrained for specialist primitive and compound
operators.

Terminals can handle messages with a specified content format. This is indicated by declaring an
operation handle on the class defining terminal kinds (i.e., classes with stereotypes <<input>> and
<<output>>) which takes one argument of the specified format. Formats are specified by classes with a
stereotype <<LangElement>> or one of its substereotypes, or stereotype <<MessageContent>> or one
of its substereotypes. For most operators (adapters are the exceptions), the stereotype will usually be
<<MessageContent>> corresponding to the generic format for message content.

It is not the role of this specification to say how a terminal handles its messages. However, the
stereotypes <<QInput>> and <<QOutput>> may be used to indicate that handling is performed using
a queue. Unless stated otherwise (e.g., as a constraint), it is assumed that terminals defined for any kind
of operator may be plain or queued.

Finally, dynamic connection of terminals is supported. That is, it is possible to send some operators (for
example routers) a message containing a terminal identifier, so that the operator can add or remove that
terminal from the list of targets of one or more of its output terminals. The targets of an output terminal
are the terminals connected to it.

Constraints

There should only be one input and ouput class per handle format/stereotype pairing, and the name of
this class will be a concatenation of the format name and the stereotype name.

ad/2001-09-17 UML for EAI 94

The type of the content parameter of the handle operation must have a stereotype of <<LangElement>>
or one of its sub-stereotypes, or of <<MessageContent>> or one of its substereotypes.

8.3 Operators

8.3.1 Primitive operator

Figure 65 also shows a prototypical example of the definition of a primitive operator.

Primitive operators are useful for notating operators which have no internal structure (or whose internal
structure is of no interest) such as system applications. A generic primitive operator is shown as a class
with a stereotype <<PrimitiveOperator>>. The class may have an associated note (corresponding to
EAIAnnotation in the metamodel) for recording a description of what the operator does.

Constraints

The type of content of the terminals of a generic primitive operator must have a stereotype
<<MessageContent>> or one of its substereotypes.

8.3.2 Transformers and Database Transformers

Figure 66 shows the general format of the notation used to define a transformer, which is represented by
a class with stereotype <<Transformer>>. A transformer uses the transform operation to transform the
content of the input message and then sends the transformed message via the single output terminal of
the transformer.

Definition of
transform operation .

Y2output

handle (content : Y2)

<<Output>>
Y1input

handle(content : Y1)

<<Input>>
XT

transform(content : Y1) : Y2

<<Transformer>>
+out+in

Figure 66 Class diagram for prototypical transformer

A database transformer is just like a transformer, except that it accesses a database in order to perform
the transform operation. In this case, the stereotype <<DBTransformer>> is used, and this requires a
database resource to be declared, as in Figure 67.

ad/2001-09-17 UML for EAI 95

Y1input

handle(content : Y1)

<<Input>>
Y2output

handle(con tent : Y2)

<<Output>>
XDBT

t ransform(content : Y1) : Y2

<<DBTransformer>>
+in +out

YDB
<<Database>>

+database

Definit ion of transform
operat ion, whic h m ay refer
t o the dat abase and any
int erna l struct ure whic h t hat
has.

Figure 67 Class diagram for prototypical database transformormer

Additionally, the definition of transform may make reference to this attribute.

Constraints

The input terminal must be labelled in and the output terminal out.

The content format of in and out must match the format of the parameter and result, respectively, of the
transform operation.

The type of content of the terminals of a transformer must have a stereotype <<MessageContent>> or
one of its substereotypes.

For database transformers, there must be a directed association to a database resource (i.e., a class with
stereotype <<Database>>). This should be labeled database.

8.3.3 Filters

Figure 68 shows the general format of the notation used to define a filter.

allow(content) = some
boolean expression
involving content

Y1input

handle(content : Y1)

<<Input>>
Y1output

handle(content : Y1)

<<Output>>
XF

allow(content : Y1) : Boolean

<<Filter>>
+in

+false

+true

Figure 68 Class diagram for prototypical filter

ad/2001-09-17 UML for EAI 96

A filter does not modify the content of the messages it receives. However, a filter only passes on those
messages whose content meets specific criteria. When a filter is triggered, it uses the allow operation to
test if the content of the input message meets the criteria. If so, the content is sent to the true output
terminal, otherwise it is sent to the false terminal.

Constraints

The input terminal must be labelled in, and the output terminals true and false.

The content format of all the terminals must match that of the parameter of the allow operation. This
type must have a stereotype <<MessageContent>> or one of its substereotypes.

8.3.4 Streams

For operators described so far it is assumed that messages are always received in the order that they are
sent and that there is basically no delay in their transmission. In reality, there are some cases where a
stream of messages may be received in a different order than that in which they are sent and they may be
received at a different rate than that at which they are sent. A stream operator is used to model this.
Figure 69 shows the general format of the notation used to define a stream operator.

Y1input

handle(con tent : Y1)

<<Input>>
Y1output

handle(content : Y1)

<<Output>>
XS

emi t() : Y1

<<St ream>>
+in +out

Definition of emit
operation.

Figure 69 Class diagram for prototypical stream

Messages that arrive from the input terminal do not get passed on, but instead are stored in a buffer or
some other appropriate data structure. The emit operation defines the algorithm used to decide when and
in what order messages get emitted to the output terminal. Abstractly, one can imagine a loop that
continually calls the emit operation. It returns a message to be put on the output terminal at each call.
There may be a delay between its being called and its returning a message.

Constraints

The input terminal must be labeled in and the output terminal out.

The content format of the terminals must match that of the result of the emit operation. This type must
have a stereotype <<MessageContent>> or one of its substereotypes.

8.3.5 Post Daters

Figure 70 shows the general format of the notation used to define a post dater.

ad/2001-09-17 UML for EAI 97

Y1input

handle(content : Y1)

<<Input>> XPD

emit() : Y1
setTimingCondition(content : Y1)

<<PostDater>>
+in Y1output

handle(content : Y1)

<<Output>>
+out

Definition of
setTimingCondition.

Figure 70 Class diagram for prototypical post dater

A post dater is specified using the <<PostDater>> stereotype. A special kind of stream is a post dater.
On receipt of a message at its input terminal, it adds the message to the buffer, and creates an individual
timingCondition for it. The timingCondition is derived from the content of the input message by the
setTimingCondition operation. A post dater holds the message until its individual timing condition is
met and then emits it from its out terminal.

As the definition for emit is fixed for post daters, only a definition for setTimingCondition should be
provided.

Constraints

The input terminal must be labeled in and the output terminal out.

The content format of the terminals must match that of the result of the emit operation and the parameter
of the setTimingCondition operation. This type must have a stereotype <<MessageContent>> or one of
its substereotypes.

8.3.6 Source Adapters

Figure 71 shows the general format of the notation used to define a source adapter, which is represented
by a class with stereotype <<SourceAdapter>>. A source adapter is an operator that obtains
information from a system (e.g., vendor-supplied package or legacy application system), where that
information might not be in a message content format, translates it into message content of a given
output type and then sends out a message with that content.

ad/2001-09-17 UML for EAI 98

Y3
<<LangElement>>

Y3input

handle(content : Y3)

<<Input>>
XSA

adapt(content : Y3) : Y1

<<SourceAdapter>>
+in Y1output

handle(content : Y1)

<<Output>>
+out

Definition of adapt
operation.

Figure 71 Class diagram for prototypical source adapter

When using a source adapter as a component of a compound operator (see Section 8.3.18), it is usually
the case that its input terminal will not be connected to any other terminals. How information gets placed
on that terminal is left unstated, since the internals of an application are out of scope for EAI modeling.

Constraints

The input terminal must be labeled in and the output terminal out.

The type of content in and out must match the type of the parameter and result, respectively, of the
adapt operation.

The type of content of the out terminal must have a stereotype <<MessageContent>> or one of its
substereotypes. The type of the content of the in terminal must have a stereotype <<LangElement>> or
one its substereotypes.

8.3.7 Target Adapters

Figure 72 shows the general format of the notation used to define a target adapter, which is represented
by a class with stereotype <<TargetAdapter>>. A target adapter is an operator that accepts messages
and translates them into information for a system (e.g., vendor-supplied package or legacy application
system), where that information might not be in a message content format.

Y1input

handle(content : Y1)

<<Input>>
XTA

adapt(content : Y1) : Y3

<<TargetAdapter>>
+in Y3output

handle(content : Y3)

<<Output>>
+out

Definition of adapt
operation.

Figure 72 Class diagram for prototypical target adapter

When using a target adapter as a component of a compound operator (see Section 8.3.18), it is usually
the case that its output terminal will not be connected to any other terminals. What happens to

ad/2001-09-17 UML for EAI 99

information after it leaves that terminal is left unstated, since the internals of an application are out of
scope for EAI modeling.

Constraints

The input terminal must be labeled in and the output terminal out.

The type of content in and out must match the type of the parameter and result, respectively, of the
adapt operation.

The type of content of the in terminal must have a stereotype <<MessageContent>> or one of its
substereotypes. The type of the content of the out terminal must have a stereotype <<LangElement>>
or one its substereotypes.

8.3.8 Call Adapters

Figure 73 shows the general format of the notation used to define a call adapter.

Y8
<<LangElement>>

Y3input

handle(content : Y3)

<<Input>>
Y8output

handle(content : Y8)

<<output>>

Y9
<<RequestFormat>>

Y9output

handle(content : Y9)

<<output>>

XCA

mapReplyToOut(content : Y1) : Y8
mapCallToRequest(content : Y3) : Y9

<<CallAdapter>>

+call +out

+requestY1input

handle(content : Y1)

<<Input>>
+handleReply

Y3
<<LangElement>>

Definition of
mapReplyToOut

Definition of
mapCallToRequest

Figure 73 Class diagram for prototypical call adapter

A call adapter is invoked synchronously by an application that wishes to make use of a service (made
available via a server) that can respond to a request message and send a response message back to the
service requester. It accepts a call (which is not in a standard message format) on its call terminal and
maps that call to a request message, which it sends to the request terminal. On receipt of a reply from the

ad/2001-09-17 UML for EAI 100

handleReply terminal, it maps that reply to a format understood by the application and places the result
of the mapping on the out terminal.

A call adapter is used in conjunction with a request/reply adapter. See Section 8.3.18.4 for details.

Constraints

The input terminals must be labeled call and handleReply, and the output terminals out and request.

The type of content of call and request must match the type of the parameter and result, respectively, of
the mapCallToRequest operation.

The type of content of handleReply and out must match the type of the parameter and result,
respectively, of the mapReplyToOut operation.

The type of content of the handleReply terminal must have a stereotype <<MessageContent>> or one
of its substereotypes. The type of the content of the call and out terminals must have a stereotype
<<LangElement>> or one its substereotypes. The type of content of the request terminal must have a
stereotype <<RequestFormat>>.

8.3.9 Request/Reply Adapters

Figure 74 shows the general format of the notation used to define a request/reply adapter.

Y9input

handle(content : Y9)

<<Input>> XRRA

mapRequestToCall(request : Y9) : Y8
mapReturnToReply(return : Y3) : Y1

<<RequestReplyAdapter>>

Y1output

handle(content : Y1)

<<Output>>

+requestIn

+replyOut

Definition of
mapRequestToCall.Y3

<<LangElement>> Definition of
mapReturnToReply.

Y8
<<LangElement>>

Figure 74 Class diagram from prototypical request/reply adapter

A request/reply adapter receives a request (from a call adapter) which contains both a terminal identifier
and some other content. The mapRequestToCall operation extracts the information content of the request
and converts it to a format suitable for passing to some underlying system. The mapReturnToReply
operation takes the information returned from the system and constructs a message which is placed on
the output terminal, but only after the terminal identifier in the original request has been added to the
target list of its replyOut terminal. When the message has been sent, the terminal identified in the
request message is removed from the target set of replyOut.

ad/2001-09-17 UML for EAI 101

Note that any terminal permanently connected to the replyOut terminal will have replies of all requests
broadcast to it.

A request/reply adapter is used in conjunction with a call adapter. See Section 8.3.18.4 for details.

Constraints

The input terminal must be labeled requestIn, and the output terminal replyOut.

The type of content of requestIn and replyOut must match the type of the parameter of
mapRequestToCall and the result of mapReturnToReply, respectively.

The type of content of the replyOut terminal must have a stereotype <<MessageContent>> or one of its
substereotypes. The type of content of the requestIn terminal must have a stereotype
<<RequestFormat>>. The type of the result of mapRequestToCall and the parameter of
mapReturnToReply must have a stereotype of <<LangElement>> or one of its substereotypes.

8.3.10 Sources and Queued Sources

Figure 75 shows the general format of the notation used to define a source, which is represented by a
class with stereotype <<Source>>. A source is an operator that delivers message content to an output
terminal. How that message content is constructed, or where it comes from, is not stated.

XSo
<<Sourc e>> Y1output

handle(content : Y1)

<<Output>>
+out

Figure 75 Class diagram for prototypical source

A queued source is a source that has a <<Queue>> resource. It is identified by the stereotype
<<QSource>>, as illustrated by Figure 76.

XQso
<<QSource>> Y1output

handle(content : Y1)

<<Output>>
+out

Figure 76 Class diagram for prototypical queued source

Constraints

There is a single output terminal labeled out.

The type of content of out must have a stereotype <<MessageContent>> or one of its substereotypes.

For queued sources, there must be a directed association to a queue resource (i.e., a class with stereotype
<<Queue>>). This should be labeled queue.

ad/2001-09-17 UML for EAI 102

8.3.11 Sinks and Queued Sinks

Figure 77 shows the general format of the notation used to define a sink, which is represented by a class
with stereotype <<Sink>>. A sink is an operator that receives message content from an input terminal.
What happens to that content thereafter is left unsaid.

XSi
<<Sink> >Y1input

handle(c ontent : Y1)

<<Input>>
+in

Figure 77 Class diagram for prototypical sink

A queued sink is analogous to a queued source, and is identified by the stereotype <<QSink>>.

Constraints

There is a single input terminal labeled in.

The type of content of in must have a stereotype <<MessageContent>> or one of its substereotypes.

For queued sinks, there must be a directed association to a queue resource (i.e., a class with stereotype
<<Queue>>). This should be labelled queue.

8.3.12 Aggregators

Figure 78 shows the general format of the notation used to define an aggregator.

Definition of
aggregate
operation.

aggregateCompleted(aggregate)=
boolean expression defining what
it means for aggregate to be
complete.

Y1input

handle(content : Y1)

<<Input>> XAgg

addToAggregate(content : Y1, aggregate : Seq(Y1)) : Boolean
aggregateCompleted(aggregate : Seq(Y1)) : Boolean
aggregate(aggregate : Seq(Y1)) : Y2

<<Aggregator>>

Y2output

handle(content : Y2)

<<Output>>
+in +out

aggregateToAggregate(content,aggregate)=
boolean expression defining under what
conditions content can be added to
aggregate

Figure 78 Class diagram for prototypical aggregator

An aggregator operator is indicated by the <<Aggregator>> stereotype. On receipt of a message at its
input terminal, if there are no existing message aggregates, the aggregator creates one and adds the
message to it. On receipt of a subsequent message, the aggregator examines each existing aggregate,

ad/2001-09-17 UML for EAI 103

evaluating the addToAggregate condition (which will depend on the message header or body contents).
If an aggregate exists for which addToAggregate evaluates to true, then the message is added to it.

Each time a message is added to an aggregate, the aggregateComplete condition is evaluated for that
aggregate. If it evaluates to true, then a message is constructed from the messages it holds and is sent on
the output terminal. The mapping from the messages contained in the aggregate to the message sent is
specified by the aggregate operation.

If the aggregateComplete condition does not evaluate to true, then no message is sent.

Constraints

The input terminal must be labeled in and the output terminal out.

The content format of in and out must match the format of the parameter and result, respectively, of the
transform operation.

The type of content of the terminals must have a stereotype <<MessageContent>> or one of its
substereotypes.

8.3.13 Timers

Figure 79 shows the general format of the notation used to define a timer.

Y4
<<Tim erSet Format>>

Y1input

handle()

<<Input>>
Y1output

handle(content : Y1)

<<Output >>

Y4input

handle()

<<Input>>

Y10
<<ExpiryNoticeFormat>>

XTi
<<Tim er>>

+check

+late

+ontime+set

Y10output

handle(content : Y10)

<<output>>+expiry

Figure 79 Class diagram for prototypical timer

A timer is specified using the <<Timer>> stereotype. It processes a message on its set terminal that
specifies a timer set message which contains a pair comprising a timer and a correlation condition. This

ad/2001-09-17 UML for EAI 104

gets added to the timer’s list of condition pairs. When a timer receives a message from the check
terminal, it looks through its list of condition pairs and sees if the message satisfies any of the
correlation conditions. If so, then the timer condition is examined to see if it has been met, and, if so, the
message is past onto the ontime terminal. Otherwise it is passed onto the late terminal. If it does not
meet any correlation condition, it is assumed the message is on time and therefore passed onto the
ontime terminal.

Whenever a timer condition from the list of condition pairs expires, an expiry notice is sent to the expiry
terminal.

Constraints

The input terminals must be labelled set and check. The output terminals must be labelled ontime, late
and expiry.

The content format of the check, late and ontime terminals must be the same. This type must have
stereotype <<MessageContent>> or one of its substereotypes.

The type of content of the set terminal must have a stereotype <<TimerSetFormat>>.

The type of content of the expiry terminal must have a stereotype <<ExpiryNoticeFormat>>.

8.3.14 Routers

Figure 80 shows the general format of the notation used to define a router.

Y5
<<RouterUpdateFormat>>

Y1output

handle(con tent : Y 1)

<<Output>>

Y5input

handle(content : Y5)

<<input>>

XR
<<Router>>

Y1input

handle(content : Y1)

<<Input>>

+control

+in

+out

Figure 80 Class diagram for prototypical router

A router is specified using the <<Router>> stereotype. When a router receives a message on its in
terminal it resends a copy via its out terminal, so that all connected input terminals receive the message.

ad/2001-09-17 UML for EAI 105

In addition, a router can accept dynamic addition or removal of target terminals to or from its out
terminal, and so it can be used to model a simple publication channel for messages. This is achieved by
sending a message with content that is in a router-update format to its control terminal.

Constraints

The input terminals must be labeled in and control. The output terminal must be labeled out.

The type of content of the in and out terminals of a router must have a stereotype <<MessageContent>>
or one of its substereotypes. The type of content of the control terminal must have a stereotype
<<RouterUpdateFormat>>.

8.3.15 Subscription Operators

Figure 81 shows the general format of the notation used to define a subscription operator.

Y6
<<SubscriptionTable>>

Y7
<<SubscriptionFormat>>

XSub
<<SubscriptionOperator>>

+subscrip tionTable

Y7input

handle(content : Y7)

<<input>>
+in

Figure 81 Class diagram for prototypical subscription operator

A subscription operator is specified using the stereotype <<SubscriptionOperator>>. It expects a
message of subscription format as input. This carries a subscription comprising a terminal identifier and
a filter definition. When it receives one of these messages, it adds the subscription to its subscription
table. A subscription message may also request subscriptions for a terminal to be canceled.

Constraints

The single input terminal must be labeled in.

The type of content of the in terminal must have a stereotype <<SubscriptionFormat>>.

There must be a directed association to a subscription table (i.e., a class with stereotype
<<SubscriptionTable>>). This should be labeled subscriptionTable.

8.3.16 Publication Operators

Figure 82 shows the general format of the notation used to define a publication operator.

ad/2001-09-17 UML for EAI 106

Y1input

handle(content : Y1)

<<Input>>
Y1output

handle(content : Y1)

<<Output>>

XPub
<<PublicationO perator>>+in +out

Y6
<<SubscriptionTable>>

+subscript ionTable

Figure 82 Class diagram for prototypical publication operator

A publication operator is specified using the stereotype <<PublicationOperator>>. Messages sent to
the input terminal are sent from the output terminal to each subscriber (terminal) if the message passes
the filter specified by the subscription for that subscriber.

A publication operator is accompanied by at least one subscription operator when defined as part of an
architecture. See Section 8.3.18.5 for details.

Constraints

The input terminal must be labeled in, and the output terminal out.

The type of content of both terminals must be the same and have a stereotype <<MessageContent>> or
one of its substereotypes.

There must be a directed association to a subscription table (i.e., a class with stereotype
<<SubscriptionTable>>). This should be labeled subscriptionTable.

8.3.17 Topic Publishers

Figure 83 shows the general format of the notation used to define a topic publisher.

XTopic
<<TopicPublisher>> Y1output

handle (content : Y1)

<<Output>>
+out

Details of
topics.

Figure 83 Class diagram for prototypical topic publisher

A topic publisher is specified using the stereotype <<TopicPublisher>>. It is kind of source, which
sends only sends messages to the output terminal on a set of specified topics. Details about the topics

ad/2001-09-17 UML for EAI 107

may be added as a note. The content type of the output terminal may also be an indicator of the kinds of
topics published on.

Topic publishers are usually connected to the input terminal of a publication operator. See Section
8.3.18 for details.

Constraints

The single output terminal must be labeled out.

The type of content of this terminal must have a stereotype <<MessageContent>> or one of its
substereotypes.

8.3.18 Compound Operators

Compound operators allow more complex message transformation and routing behavior from a
(possibly nested) composition of individual operators to be modeled. Indeed any non-trivial architecture
will be modeled as a compound operator whose components will be primitive or other compound
operators.

Compound operators are defined using a combination of class and collaboration diagrams.

8.3.18.1 Class diagrams

Figure 84 shows the class diagram for an example compound operator, which is specified using the
stereotype <<CompoundOperator>>. The example is taken from Section 10.

AccountOwnership

allow(content : Order) : Boolean

<<Filter>>
OrderType

allow(content : Order) : Boolean

<<Filter>>

allow(content) =
content.account is
from IM or IB

allow(content) =
content.type is
appropriate

transform(content) =
copy of content with account
ownership added

AddOwnership

transform(content : Order) : Order

<<Transformer>>

BackEndBrokerageSystem
<<Com poundOperato r> >

+ownershipFilter +orderTypeFilter
+ownershipAdder

BackEndProcessingSystem
<<PrimitiveOperator>> +orderProcesser

Figure 84 Class diagram for example compound operator

This defines a compound operator called BackEndBrokerageSystem with three components: two filters
and a transformer. The primitive operator, filters and transformers are defined as previously discussed.
Components are shown by means of a composite association targeted on a class representing an operator

ad/2001-09-17 UML for EAI 108

definition. Although the components shown here are all primitive operators, they may be compound
operators, as illustrated by Figure 85.

InternationalBrokerageServer
<<CompoundOperator>>

InvestmentManagerServer
<<CompoundOperator>>

MiddlewareServer
<<Primi tiveOperator>>

BackEndBrokerageSystem
<<CompoundOperator>>

PubSubServer
<<CompoundOperator>>

OnlineBrokerage
<<CompoundOperator>>

+ib

+iv

+middleware

+backEnd

+pubSub

Figure 85 Class diagram for a compound operator with compound components

Note, in this diagram, that one component of an OnlineBrokerage is a BackEndBrokerageSystem, which,
as we have already seen, is a compound operator.

As with primitive operators, class diagrams can also be used to define the terminals of a compound
operator. The terminals of BackEndBrokerageSystem are defined by Figure 86.

OrderW ithOwnershipoutput

handle(content : OrderW ithOwnership)

<<output>>

BackEndBrokerageSystem
<<Compound>>

+out

Orderinput

handle(content : Order)

<<input>>

+in

Figure 86 Terminals for example of compound operator

ad/2001-09-17 UML for EAI 109

Figure 84 does not show the connectivity of the components, that is, how the terminals of the
components are connected together and connected to the terminals of the compound operator. A
collaboration diagram is used to show the connectivity of the components.

8.3.18.2 Collaboration diagrams

The collaboration diagram corresponding to Figure 84 is given in Figure 87.

__in :
Orderinput

out :
Orderoutput

ownershipFi lt er :
AccountOwnership

orderTypeFilter :
OrderType

_in :
Orderinput

_true :
Orderoutput

in :
Orderinput

t rue :
Orderoutput

ownershipAdder :
AddOwnership

fa lse :
Orderoutput

_fa lse :
Orderoutput

orderProcessor :
BackEndProcessingSystem

_inOrders :
Orderinput

inO rders :
Orderinput

outOrders :
Orderoutput

outOrders :
Orderoutput

 : BackEndBrokerageSystem

Figure 87 Collaboration diagram for example compound operator

This shows:

� The components of the compound as objects contained in an object representing the compound

� The terminals of the components (also contained in the compound), and the terminals of the
compound itself (outside the compound).

The names of the objects correspond to the names of the components or terminals, as declared on the
class diagram. The compound object has no name, as it represents an arbitrary operator of the
compound-operator type being defined. We have used gray (or black) to distinguish input (or output)
terminals from operators; this is just a convention. Connection of components is shown by connecting
the terminals in an appropriate way (see Section 8.3.18.6 Constraints for a definition of what is
appropriate). Ownership of terminals by an operator is also shown through links; the convention is to
cluster terminals around their operator.

Sometimes one may wish to be explicit about whether the connection between terminals is synchronous
or asynchronous. This is shown by putting a message on the link, which is marked as asynchronous or
synchronous. Figure 88 shows the standard UML notation for this.

ad/2001-09-17 UML for EAI 110

 : Y1input

 : Y1output : Y1output

 : Y1input

synchronous asynchronous

1: 2 :

Figure 88 Synchronous and asynchronous links

The arrow of the message goes in the direction of the message flow (output to input when terminals of
components of a compound are connected).

8.3.18.3 Components of the same type

A situation that the modeler should be aware of is the case where a compound may include two
components of the same type of operator. This is illustrated by Figure 89 and Figure 90 The point to
note is that there are two components of StandardIBSystem operator type (which is evident from the two
associations to the StandardIBSystem class on the class diagram) and two objects of this class on the
collaboration diagram.

JapanIBSystem
<<PrimitiveOperator>>

StandardIBSystem
<<Prim iti veO perator>>

OnlineBrokerage
<<CompoundOperator>>

2000IMS ystem
<<PrimitiveOperator>>

1990IMSystem
<<Prim itiveOperator>>

BrokerageCompany
<<Com poundOperator>>

+japan

+uk +france +onlineB rokerage

+netbasedClient2

+legacyClient5

Figure 89 Class diagram for example with components of same type

ad/2001-09-17 UML for EAI 111

onlineBrokerage :
Onl ineBrokerage

japanOrders :
JapanOrderinput

standardIOs :
SIOinput

2000IMSOs :
2000IMSOinput

1990IMSOs :
1990IMSOinput

japan :
JapanIBSystem

uk :
StandardIBSystem

france :
StandardIBSystem

orders :
JapanOrderoutput

orders :
SIOoutput

_orders :
SIOoutput

legacyClient5 :
2000IMSystem

netbas edClient2 :
1990IMSystem

orders :
2000IMS Ooutput

orders :
1990IMS Ooutpu t

_notifications :
SINinput

notifications :
SINinput

notifications :
2000IMSNinput

notifications :
1990IMSNinput

netbased2Notifications :
1990IMSNoutput

legacy5Notifications :
2000IMSNoutput

japanNotifciations :
JapanNotificationsoutput

ukNotifications :
SINoutput

franceNotifications :
SINoutput

notifications :
JapanNotificationsinput

 : BrokerageCompany

Figure 90 Collaboration diagram for example with components of same type.

This example happens to illustrate the top-level definition of an EAI architecture, in this case for a
brokerage company.

ad/2001-09-17 UML for EAI 112

8.3.18.4 Call and Request/Reply Adapters

A common configuration of components is the connection of call and request/reply adapters. This is
illustrated by Figure 91.

 : XComp2

a : XCA

b : XCA

c :
XRRA

call :
Y3input

_call :
Y3inpu t

handleReply :
Y1input

_handleReply
: Y1input

request :
Y9output

_request :
Y9output

out :
Y8output

_out :
Y8output

replyOut :
Y1output

requestIn :
Y9input

Figure 91 Configuration of call and request/reply adapters

Here, two call adapters (a and b) are connected to a single request/reply adapter (c). The call adapters
get information from an underlying system through their call terminals. They construct requests that are
then passed on to the requestIn terminal of the request/reply adapter. This processes the request, usually
by making a call to some underlying system, and then constructs a reply, which it puts on its replyOut
terminal. Before sending the reply, the original request is examined to identify the terminal to which the
reply must be sent (which will be the handleReply terminal for a or b, depending on which one sent the
request), and this is added to the target terminals list of replyOut, just for the duration of sending the
reply.

8.3.18.5 Publish and Subscribe

Another common configuration of components is the connection of publication and subscription
operators. This is illustrated by Figure 92.

ad/2001-09-17 UML for EAI 113

 : XComp3

sub : XSub

pub : XPub

topicPub :
XTopicapp1 : X2

app2 : X2

info In :
Y1input

_infoIn :
Y1input

_out :
Y1output

in :
Y1input

out :
Y1output

subTable :
Y6

_subscriptionsOut :
Y7output

subscriptionsOut :
Y7output

in :
Y7input

Figure 92 Configuration of publication and subscription operators

A publication operator pub is fed information to publish by a topic publisher topicPub. The feed is
provided by the connection of the out terminal of topicPub to the in terminal of pub. Now pub has a
subscription table (subTable) which it shares with the subscription operator sub. Two applications, app1
and app2, send subscription requests to sub. The subscription requests will identify their infoIn terminals
as the terminals where published information, matching the criteria of the subscriptions, should be
received.

A more sophisticated (and more common) version of this example would have multiple topic publishers
feeding messages to the publication operator. Then multiple publishers would share the subscription
table of the subscription operator.

8.3.18.6 Constraints

Only operators with stereotype <<Compound>> can have composition associations, and these must be
with other operators (classes with an operator stereotype). The associations have a label but no
indication of cardinality.

The type of content of the terminals must have a stereotype <<MessageContent>> or one of its
substereotypes.

The class and collaboration diagrams used to notate a compound operator must be consistent. This
means:

ad/2001-09-17 UML for EAI 114

� Names of terminal objects must match the labels on terminal associations on the class diagram.
The types of the object must correspond to the terminal classes defined in the class diagram.

� Names of component operator objects must match the labels on the composition associations on
the class diagram. The types of the objects must correspond to the operator classes at the target
of those associations as defined on the class diagram.

On the collaboration diagram, only output terminals may be connected to input terminals of other
components. Input (output) terminals of the compound operator may only be connected to input (output)
terminals of components.

The content type handled by terminals must be the same for any two terminals connected together on the
collaboration diagram.1

8.4 Resources

Resources are things that operators use to do their job, but which are not themselves operators. The
specific resources declared in this profile are databases, queues and subscription tables.

Resources are defined as classes with stereotype <<Resource>> or one of its substereotypes:
<<Database>>, <<Queue>> and <<SubscriptionTable>>.

The use of a resource by an operator is indicated, in the class diagram defining that operator, by a
directed association from the operator to the resource. See Sections 8.3.2 and 8.3.15 for examples.

When operators with resources are used as part of a compound, they may share a resource. This is
shown by adding an object of the resource class and connecting the sharing operators to it with a link.
See Section 8.3.18.5 for an example.

8.5 Message Formats

8.5.1 MessageContent core

The data contained in a message is its MessageContent. Messages are defined using ordinary UML class
modeling mechanisms. However, message content classes are restricted to represent transmittable data
structures.

The model for messages is that they may contain one or more parts, each of which may have its own
header part. The header contains information used by the messaging infrastructure to control how it
deals with the message. Each message part may also have a body section, which contains the application
data. Message parts may be nested.

Both the header and the body may contain nested structures of primitive message elements.

1 It is worth noting that this often means that adapters, which may not have a message content stereotype on one of their terminals, often
can not be connected to other operators through that terminal.

ad/2001-09-17 UML for EAI 115

We formalize these restrictions using the UML stereotypes given in Table 2. A class of the
<<MessageContent>> stereotype represents a serialized message. To reflect the ordering of the parts of
a message, there are additional constraints:

1. All associations are ordered with respect to each other.

2. Associations of multiplicity greater than one are ordered.

For example, a message header usually occurs in a message part before the message content.

Stereotype Parent Tags Constraints Description

Message
Content

N/A domain
format

May only have containment associations
with classes of stereotype <<MessagePart>>
or <<ComposedMessagePart>>

Top level for describing messages
(such as a MIME envelope)

MessagePart N/A NA May only be composed by a class of
stereotype <<MessageContent>>

May contain a ‘header’ association with a
class of stereotype <<MessageElement>>

May contain a ‘body’ association with a
class of stereotype <<MessageElement>>

Used to describe ‘large scale’
message structuring (such as
MIME parts)

Composed
MessagePart

Message
Part

NA May have associations with classes of
stereotype <<MessagePart>> and of
stereotype <<ComposedMessagePart>>

Used to describe nested message
parts

LangElement NA NA Models message headers,
message bodies and their content

Table 2 Stereotype specification for message content description

Figure 93 shows an example of a content class with two data items, an integer and a string. These simple
message parts have been rendered as attributes of the owning SimpleContent class. This is
recommended in order to allow compact representation of simple message types.

SimpleMessage
<<MessageContent>>

SimpleContent
<<LangElement>> a : Integer
<<LangElement>> b : String

<<LangElement>>

DefaultPart
<<MessagePart>>

11

1+body 1

Figure 93 A simple message content class

ad/2001-09-17 UML for EAI 116

More complicated message-content structures can be created using composition, as is shown in Figure
94. This models a message which has a single part. The message has as its header a string, while the
message body is a table of addresses. This table has a single integer, records, that is a count of the
records in the message.

TabularMessage
<<MessageContent>>

TabularMessagePart
<<LangElement>> header : String

<<MessagePart>>
11

Record
<<LangElement>> name : String
<<LangElement>> address : String

<<LangElement>>

AddressTable
<<LangElement>> records : Integer

<<LangElement>>

1+body 1

0..n0..n

Figure 94 A model of a message containing a table

8.5.2 Basic MOM Message Structure

The stereotypes given in the preceding section provide the framework to allow messages to be specified,
but they do not cover commonly occurring concepts supported by message oriented middleware (MOM)
products.

In this section we add the basic concept of an exception message, a message sent by the messaging
infrastructure when a fault occurs in the processing of a message. We also define a MOMHeader, which
can specify an exception target (the location to which a message should be sent in the event of an
exception) and a reply target, and it can identify the kind of message being sent.

Stereotype Parent Tags Constraints Description

MOMHeader Message
Element

NA May have an association ‘replyTo’ with a
<<MessageElement>> class that specifies a
reply target and another ‘exceptionTarget’
with a <<MessageElement>> class that
specifies an exception target

Stereotype to capture common
MOM header information

Exception
Notice

Message
Content

NA May have a message part containing the
header and body of the message that caused

Message sent by the MOM
infrastructure if a fault occurs

ad/2001-09-17 UML for EAI 117

the fault while processing a message

Table 3 Stereotype specification for MOM structure

8.5.2.1 ExceptionNotice

Figure 95 illustrates the usage of the ExceptionNotice stereotype. In this example, we have defined a
class MOMException, which models the message content of an exception message created by a MOM
system after a fault has occurred. MOMException contains two associations to classes that conform to
the MessagePart stereotype:

• originalMessage is an association to a class that models the content of the message that caused
the exception. In this case, the original message had just one message part. If the original
message had contained several parts, it would be possible to model originalMessage as a class
that conforms to the ComposedMessagePart stereotype.

• exceptionInformation is an association to a message part that contains only exception header
information. The exception header holds information that identifies the exception type and a
string that describes the exception.

ExceptionHeader
<<LangElement>> exceptionType : String
<<LangElement>> exceptionInformation : String

<<LangElement>>

ExceptionInformation
<<MessagePart>>

1+header 1

MOMException
<<ExceptionNotice>>

1
+exceptionInformation

1

Header
<<LangElement>> exceptionTarget : String
<<LangElement>> replyTo : String

<<MOMHeader>>

ApplicationBody
<<LangElement>>

ApplicationMessage
<<MessagePart>>

1+originalMessage 1

1+header 1

1

+body

1

Figure 95 Example of the use of the ExceptionNotice and MOMHeader stereotypes

8.5.2.2 MOMHeader

The MOMHeader stereotype demands that a message header must identify the following elements, but
does not dictate how they are represented in the message:

• replyTo: a means of identifying a location to send a reply message to

• exceptionTarget: a means of identifying a location to send an exception notice in the event of a
fault occurring in the processing of a message

ad/2001-09-17 UML for EAI 118

Figure 96 demonstrates an example of the use of the MOMHeader stereotype. In this case, the domain
and format are both identified using strings, and the exceptionTarget and replyTo header content are
specified using the MOMEndpointSpec class. In a particular MOM implementation, this information
should allow an EAI terminal to be identified.

MHeader
<<MOMHeader>>

MOMEndPointSpec
<<LangElement>> endpointName : String
<<LangElement>> endpointManagerName : String

<<LangElement>>
11 11 +exceptionTarget+replyTo

Figure 96 Example of the use of the MOMHeader stereotype

8.6 Mapping with Metamodel

The mapping with the metamodel is summarized by a series of tables, which are organized below into
sections corresponding to the four main parts of the profile: terminals, operators, resources and message
formats.

These tables are based on the approach specified in UML 1.4. for defining stereotypes for use in a
profile. We have extended them to show the mapping to the EAI metamodel. Thus the tables also serve
to summarize the stereotypes used in the profile.

In addition to the tables, we have detailed important mapping constraints which dictate how information
associated with an instance of an EAI metaclass is related to information associated with an instance of
the stereotyped UML base class. These are listed below the relevant tables.

The mapping constraints should be distinghuished from constraints that apply to the use of the profile
itself (e.g., the use of a particular stereotype). Those are defined in the section describing that aspect of
the profile.

8.6.1 Terminals

EAI Metaclass Base class Stereotype Parent Description &
constraints

EAITerminal Core::Association See Section 8.2

ad/2001-09-17 UML for EAI 119

Core::Class Input or Output See Section 8.2

EAIQueuedInputTerminal Core:: Association See Section 8.2

Core::Class QInput Input See Section 8.2

EAIQueuedOutputTerminal Core:: Association See Section 8.2

Core::Class QOutput Output See Section 8.2

Table 4 Mapping of terminals

Mapping Constraints

EAITerminal

1. This mapping is valid only for terminals which belong to operators that define types.

1. The association is sourced on the class corresponding to the operator to which the terminal belongs;
it is targeted on the class identified with the terminal.

2. The handle operation of the class must have a parameter of a type corresponding to the type of the
parameter associated with the terminal.

3. Different terminals may map to the same class (but not the same association).

4. The name of the terminal is the name of the target end of the association.

5. The stereotype of the class corresponds to the value of the terminalKind attribute of the terminal.

EAIQueuedInputTerminal and EAIQueuedOutputTerminal

There are no additional constraints.

8.6.2 Operators

Operators and terminals in the metamodel are used in two roles. Firstly they are used to define types and
parameters; secondly they are used to define the connectivity of a compound operator in its role in
defining a type. The mapping of operators has been split into two parts, reflecting the two different roles.
The first part deals with all operators, except compound operators. The second part deals with
compound operators, which, as suggested above, requires a second mapping of operators and terminals
to be defined.

EAI Metaclass Base class Stereotype Parent Description &
constraints

EAIPrimitiveOperator Core::Class PrimitiveOperator See Section 8.3.1

EAITransformer Core::Class Transformer PrimitiveOperator See Section 8.3.2

ad/2001-09-17 UML for EAI 120

EAIDBTransformer Core::Class DBTransformer Transformer See Section 8.3.2

EAIFilter Core::Class Filter PrimitiveOperator See Section 8.3.3

EAIStream Core::Class Stream PrimitiveOperator See Section 8.3.4

EAIPostDater Core::Class PostDater Stream See Section 8.3.5

EAISourceAdapter Core::Class SourceAdapter PrimitiveOperator See Section 8.3.6

EAITargetAdapter Core::Class TargetAdapter PrimitiveOperator See Section 8.3.7

EAICallAdapter Core::Class CallAdapter PrimitiveOperator See Section 8.3.8

EAIRequestReplyAdapter Core::Class RequestReplyAdapter PrimitiveOperator See Section 8.3.9

EAISource Core::Class Source PrimitiveOperator See Section 8.3.10

EAIQueuedSource Core::Class QSource Source See Section 8.3.10

EAISink Core::Class Sink PrimitiveOperator See Section 8.3.11

EAIQueuedSink Core::Class QSink Sink See Section 8.3.11

EAIAggregator Core::Class Aggregator PrimitiveOperator See Section 8.3.12

EAISubscriptionOperator Core::Class SubscriptionOperator PrimitiveOperator See Section 8.3.15

EAIPublicationOperator Core::Class PublicationOperator PrimitiveOperator See Section 8.3.16

EAITopicPublisher Core::Class TopicPublisher PrimitiveOperator See Section 8.3.17

Table 5 Mapping of operators (except compound)

Mapping Constraints

EAIPrimitiveOperator

6. This mapping is only valid for compound operators defining a type (not ones used to show
connectivity of components).

7. The name of operator (and hence the type which the operator defines) is the name of the class.

8. There must be an association on the class diagram corresponding to each terminal of the primitive
operator.

EAITransformer

9. The transformation mapping of the operator maps to the operation transform, in the class
corresponding to the operator.

ad/2001-09-17 UML for EAI 121

EAIDBTransformer

10. The database resource maps to the database association sourced on the class corresponding to the
operator.

EAIFilter

11. The filterCondition of the operator maps to the allow operation in the corresponding class.

EAIStream

12. The emissionCondition of the operator maps to the emit operation in the corresponding class.

EAIPostDater

13. The timerMapping of the operator corresponds to the setTimingCondition operation in the
corresponding class.

EAISourceAdapter and EAITargetAdapter

14. The internalToMessage (resp. messageToInternal) mapping for the operator corresponds to the
adapt operation in the corresponding class.

EAICallAdapter

15. The callToRequestMapping of the operator corresponds to the mapCallToRequest operation in the
corresponding class.

16. The replyToOutMapping of the operator corresponds to the mapReplyToOut operation in the
corresponding class.

EAIRequestReplyAdapter

17. The requestToCallMapping of the operator corresponds to the mapRequestToCall operation in the
corresponding class.

18. The returnToReplyMapping of the operator corresponds to the mapReturnToReply operation in the
corresponding class.

EAISource, EAIQueuedSource, EAISink, EAIQueuedSink

There are no further constraints.

EAIAggregator

19. The aggregateComplete condition of the operator corresponds to the aggregateComplete operation
in the corresponding class.

ad/2001-09-17 UML for EAI 122

20. The addToAggregate condition of the operator corresponds to the addToAggregate operation in the
corresponding class.

21. The aggregationMapping of the operator corresponds to the aggregate operation in the
corresponding class.

EAISubscriptionOperator and EAIPublicationOperator

22. The subscriptionTable resource maps to the subscriptionTable association sourced on the class
corresponding to the operator.

TopicPublisher

There are no further constraints.

A compound operator utilizes a graph of operators, terminals and resources to define the connectivity of
its components. This is exposed by the mapping defined in Table 6.

EAI Metaclass Base class Stereotype Parent Description &
constraints

EAICompoundOperator Core::Class CompoundOperator See Section 8.3.18

CommonBehavior::Object See Section 8.3.18

EAITimer Core::Class Timer CompoundOperator See Section 8.3.13

EAIRouter Core::Class Router CompoundOperator See Section 8.3.14

EAIPrimitiveOperator
(and subclasses)

Core::Association,
CommonBehavior::Object

See Section 8.3.18

EAICompoundOperator
(and subclasses)

Core::Association,
CommonBehavior::Object

See Section 8.3.18

EAIResource (and
subclasses)

CommonBehavior::Object See Section 8.3.18

EAITerminal (and
subclasses)

CommonBehavior::Object See Section 8.3.18

EAILink CommonBehavior::Link See Section 8.3.18

Table 6 Mapping of compound operator

Mapping Constraints

EAICompoundOperator

23. This mapping is only valid for compound operators defining a type (not ones used to show
connectivity of components).

ad/2001-09-17 UML for EAI 123

24. The name of operator (and hence the type which the operator defines) is the name of the class.

25. There must be an association on the class diagram corresponding to each terminal of the compound
operator.

26. On the class-diagram part of the definition of the compound operator, there must be an association
for each component operator.

27. The object is unnamed on the collaboration diagram defining the connectivity of the compound’s
components, and it contains all objects corresponding to the component operators and their
terminals.

28. On the collaboration diagram, the objects corresponding to the terminals of the operator appear
outside the object corresponding to the operator.

EAITimer and EAIRouter

29. Exceptionally, the components of these operators are not exposed in the profile. Therefore they do
not have collaboration diagrams associated with them, and they do not map to objects.

EAIPrimitiveOperator (and subclasses), EAICompoundOperator (and subclasses).

30. This mapping is only valid for operators which are used in the role of defining the components of a
compound operator. That is, they do not define a type, and they are owned by a compound operator
(one of its nodes).

31. The association must be a composite association. The name of the part end corresponds to the name
of the operator. The association is sourced on the class corresponding to the compound operator of
which the operator in question is a part, and targeted on the class corresponding to the operator
which defines the type of the operator in question.

32. The name of the object corresponds to the name of the operator. The type of the object is the class
that corresponds to the operator which defines the type of the operator in question.

33. There must be an object corresponding to each terminal of the operator, and this must be linked to
the object corresponding to the operator.

34. The object corresponding to the operator in question may be linked to an object corresponding to a
resource, if the operator that defines the type of the operator in question is associated with a
resource. The type of the resource object is the class corresponding to the resource.

EAIResource (and subclasses)

35. This mapping is only valid if the resource is associated with an operator used in the role of defining
a component of a compound.

ad/2001-09-17 UML for EAI 124

EAITerminal

36. The name of the object is the name of the terminal. The type of the object is the class corresponding
to the terminal that defines the parameter associated with the terminal.

EAILink

37. The (UML) link must connect the objects associated with terminals that the (EAI) link connects.

38. The (UML) link has no message if the value of the synchronization attribute of the (EAI) link is
unspecified. It has a synchronous (asynchronous) message if the value of that attribute is
synchronous (asynchronous). The direction of the message is from the object corresponding to the
source of the (EAI) link, to the object corresponding to the target of the (EAI) link.

8.6.3 Resources

EAI Metaclass Base class Stereotype Parent Description &
constraints

EAIResource Core::Association See Section 8.4

Core::Class Resource See Section 8.4

EAIDatabase Core:: Association Resource See Section 8.4

Core::Class Database Resource See Section 8.4

EAIQueue Core:: Association Resource See Section 8.4

Core::Class Queue Resource See Section 8.4

EAISubscriptionTable Core:: Association Resource See Section 8.4

Core:: Class SubscriptionTable Resource See Section 8.4

Table 7 Mapping of resources

Mapping Constraints

39. The name of the resource maps to the name of the target end of the association.

40. The source of the association is the class corresponding to the operator associated with the resource.

41. The target of the association must be a class with a stereotype corresponding to the name of the
(metamodel concrete) class of the resource.

8.6.4 Message Formats

ad/2001-09-17 UML for EAI 125

EAI Metaclass Base Class Stereotype Parent Description &
constraints

EAIMessageContent Core::Class Message

Content

See Section 8.5.1

EAIMessagePart Core::Class MessagePart See Section 8.5.1

EAIComposedMessagePart Core::Class Composed

MessagePart

MessagePart See Section 8.5.1

TDLangElement Core::Class LangElement See Section 8.5.1

EAIHeader Core::Class MOMHeader MessageElement See Section 8.5.2

EAIExceptionNotice Core::Class ExceptionNotice MessageContent See Section 8.5.2

Mapping Constraints

TDLangElement

42. Composed types will map to a TDLangElement with a TDLangComposedType. See Section 7.3.8.2.

ad/2001-09-17 UML for EAI 126

9 Activity Modeling

Messages are produced as a result of business events occurring in enterprise applications. The sequence
of these events and the resulting message flows across system boundaries is defined in the overall
system integration process. This section describes a profile for modeling EAI processes using activity
graphs. These models can subsequently be refined to realize the functionality specified using the
stereotypes defined in Section 8.

9.1 Modeling Integration Processes

Section 8 describes a profile for defining the collaborations necessary for application integration. It may
be characterized as a profile for designing integrations. Many application-integration developers also
adopt a process-oriented approach where the initial artifact is a definition of the business process, end-
to-end, which is to be integrated. Of course such a process definition will encompass many integration
points, each of which will need to be implemented. The value of the process view is to establish the
requirement in a form that is understandable and verifiable by the business users. In this sense it is a
requirements or analysis view and exists at a higher level of abstraction than the collaboration-based
definitions of the previous section.

Whilst for any particular implementation approach it should be possible to map the analysis model onto
the design model, it is beyond the scope this submission to do so. In a sense, it would be pre-empting the
development process. We consider a general formal mapping — with enforcement of a level of detail
capable of formal mapping — to be inappropriate, since different practitioners have different
approaches.

9.2 An Integration Process Scenario

Integration processes contain control flow and message flow aspects. Message flow is fundamental in
EAI processes, as message-based integration is at the core of the problem domain.

This section introduces the profile elements required to define such models by means of an example
scenario. Variants of the secenario are discussed. Some illustrate the capability of the profile to support
high levels of abstration, such as might be preferred for communicating with business users; others
illustrate how the profile can be used to define more detail.

9.2.1 The Exchange Process

The scenario we have chosen is a collaborative business-to-business example, where Buyers and Sellers
negotiate a transaction via an online Exchange. The overall process is represented in the activity graph
in Figure 97. Annotations have been added (as parameters on transitions) to represent additional
information about required operations (such as transformations) and to identify implementation details
(such as queues). This is an example of where different practitioners might choose to capture this
information at this level or may choose to omit it. The intention is that the profile is capable of
representing it if required.

ad/2001-09-17 UML for EAI 127

<<subsystem>>
Seller system

<<subsystem>>
Exchange

<<subsystem>>
Buyer system

place
request

Request

register
request and
broadcast

Request
place quote*

QuoteQuote
{set}

collect
quotes

accept
quote

Quote
{set}

notify sellers

Quote

Quote

quote.status

= rejected

quote.status

= accepted confirm
quote

Quote

close
request

Quote
receive

confirmation

{queue = x,
transform = f}

<<publish>>
{queue = z}

{queue = y}

<<subscribe>>
{queue = s,

transforn = g}

Figure 97 Basic way of modeling message based integration with Activities (Exchange example)

In this example, activities represent the legacy applications that consume and/or raise business events.
The existence of connectors to detect and publish the events and to interpret these events for the legacy
applications is implicit at this level of abstraction.

9.2.2 Modeling message flow explicitly

The message-flow aspects can be emphasized by using an explicit stereotype «messageFlow» for the
transfer of messages between subsystems. This approach, illustrated in Figure 98, contrasts with the
more abstract approach illustrated in Figure 97. Note that the use of a transition between two
ObjectFlowStates is not normal activity-graph usage, but is not prohibited by the UML semantics
definitions.

ad/2001-09-17 UML for EAI 128

a

p1:t1
[state k]

b

a

p1:t1
[state k]

b

p2:t1
[state l]

<<data flow>>

Figure 98 Application of the «messageFlow» stereotype to emphasize data-flow aspects

Figure 99 illustrates the impact of applying this technique to the exchange example.

<<subsystem>>
Seller system

<<subsystem>>
Exchange

<<subsystem>>
Buyer system

place
request

Request

register
request and
broadcast

Request

Quote
{set}

collect
quotes

Quote
{set}

Request

Quote
{set}

<<msg flow>>

<<msg flow>>

Request
place quote*<<subscribe>>

{transform = g}<<msg flow>>

<<msg flow>>

accept
quote

{queue = x} {queue = y}

{queue = z} {queue = s}

<<publish>>

 {transform = f}

Quote
{queue =w}

Quote
{queue =t}

Figure 99 Application integration example with «messageflow» stereotype (partial)

In this activity graph, the partitions represent the enterprise systems that require integration.2 Inside each
partiiton, action states (i.e., activities) represent the invocation of application APIs. A transition between
an activity and an object-flow state represents the production or consumption of a message. Transitions
with the stereotype «messageFlow» represent message transfers across system boundaries. Message
flows may be “point-to-point.” They may also be designated as “multicast” (according to a
publish/subscribe protocol) by adding the stereotypes «publish» and «subscribe» to appropriate
transitions.

2 Partitions are optional on the diagram. They are used in this profile to identify activities to the systems where they are executed. This
profile does not make any assumptions about specific implementation deployment options.

ad/2001-09-17 UML for EAI 129

9.2.3 Modeling control flow

In addition to message flow aspects, control flow aspects can be added to the process definition. In
Figure 100, control flow transitions have been added within each of the component systems in a
fragment of the Exchange example.

<<subsystem>>
Seller system

<<subsystem>>
Exchange

<<subsystem>>
Buyer system

place
request

Request

register
request and
broadcast

Request

Quote
{set}

collect
quotes

Quote
{set}

Request

Quote
{set}

<<msg flow>>

<<msg flow>>

Request
place quote*<<subscribe>>

{transform = g}<<msg flow>>

<<msg flow>>

accept
quote

{queue = x} {queue = y}

{queue = z} {queue = s}

<<publish>>

 {transform = f}

Quote
{queue =w}

Quote
{queue =t}

Figure 100 Optional control flow transitions between activities within a single system

9.2.4 Abstracting detail by decomposition

Activities can be decomposed to show the constituent set of subactivities. An example of the
decomposition of the integration step “Place Quote” is shown in Figure 101. In this step, an incoming
Request message results in an outgoing Quote message. In the decomposition, a «connector» activity is
responsible for handling the incoming message. Once a message is accepted by the system, a
«transformer» activity transforms the message content to a locally acceptable format. Finally, «adapter»
activities take this known input and adapt it into the legacy data store format. A subsequent «adapter» is
responsible for invoking the legacy system. After the legacy application has run, a similar set of steps
produces the outgoing message.

ad/2001-09-17 UML for EAI 130

<<message>>
Request

place quote
<<message>>

Quote

<<subscribe>>
{transform = g}

{queue = s}

<<transform>>
transform from

Xchange format g() Request
[transformed]

<<connector>>
invoke legacy

application

{format = XML}

<<connector>>
transform legacy
data to standard

<<transform>>
transform to
Xchange h()Quote

[stored locally]

{format = Tables}

Request

Quote

{transform = h}

{queue = t}

<<legacy>>
Quotation
Application

queue=s

queue=t

Quote
[created locally]

Figure 101 Decomposition of the integration step “Place Quote” in the context of the Exchange example

It should be noted that the above figure constitutes a prototypical example — many variants of these will
exist using additional operator activities (e.g., involving «router» and «filter» operators) and with
varying process structure.

9.2.5 Further fragmentary examples

Other activity graph constructions that can be used in modeling system-integration processes are
described in the following subsections.

9.2.5.1 Multiple synchronized inputs and outputs

Multiple synchronized inputs and/or outputs can be modeled with join and fork pseudo-states (see
Figure 102).

t1

t2

t2

t3

a

Figure 102 Modeling multiple inputs and outputs with join and fork pseudo-states.

9.2.5.2 Internal dataflows within a subsystem

An internal dataflow between two activities within a single system can be modeled with
ObjectFlowStates (see Figure 103).

ad/2001-09-17 UML for EAI 131

register
request and
broadcast

<<message>>
Quote

collect
quotes

<<message>>
Request

<<message>>
Quote

<<publish>>

<<message>>
Request

<<business object>>
Request
[created]

Figure 103 Modeling internal data flow with object flow states

9.2.5.3 Modeling decisions explicitly

Decisions can be modeled with guards, either implicitly with multiple outgoing or explicitly by using a
decision PseudoState — the latter approach is relevant for modeling content based routing where the
middleware is responsible for rule execution (as opposed to embedded rules executed by applications)
(see Figure 104).

notify sellers

Quote

Quote

quote.status

= rejected

quote.status
= accepted confirm

quote

inspect
rejection

<<router>>

Figure 104 Example of a decision node to model rule-based routing

9.2.5.4 Synchronization

Synchronization is made explicit with Fork and Join PseudoStates – for instance, this can be used to
model multiple parallel invocation of legacy systems in the case that there is more than one system (or
more than one function) needing to be invoked (see Figure 105).

invoke legacy
app B

invoke legacy
app C

invoke legacy
app A

invoke legacy
app D

Figure 105 Synchronization with forks and joins

ad/2001-09-17 UML for EAI 132

9.2.5.5 Multiple concurrent invocations of activities

Dynamic concurrent invocation of activities (where the number of actual activities invoked is
determined at run time depending on the input) is denoted by a “*” symbol in the activity (see Figure
106).

place quote*

Figure 106 Dynamic concurrent invocation of an activity

9.2.5.6 Modeling business events explicitly

Events (as based on the definition of a signal in UML) can be added to transitions or they can be
modeled explicitly as object-flow states. In the latter case, the underlying classifier is a signal, with
attributes representing the event parameters. This can be useful for modeling «adapter» implementations
that respond to events (e.g., a database trigger) and for systems that natively expose a required
integration event on their interface (see Figure 107).

<<adaptor>>
invoke legacy

application

<<adaptor>>
transform legacy
data to standard<<signal>>

QuoteCreated
<<message>>

Quote

Figure 107 Explicit modeling of an event for an adapter implementation

Integration processes will usually not be defined beyond this level of detail in activity graphs. The
design of the interactions between the classes involved is best described using collaboration modeling,
as discussed in Section 8.

9.3 Profile Element Summary

The following is a summary of the activity-graph stereotypes and tagged values for modeling processes
in the context of EAI. These stereotypes are in addition to the ones defined in Section 8 Collaboration
Modeling. Tagged values on the activity stereotypes enable the linking of activities to their realization in
terms of the Operator and Message Classifiers that implement the messaging functionality at the
Collaboration level.

It should noted that some stereotypes apply to more than one UML metaclass. In some cases, the
metaclass name is given in brackets to indicate that this is a secondary modeling option. For instance, a
«transform» stereotype is primarily attached to an activity, indicating that the activity is realized by a
transform operator. A «transform» stereotype can also be attached to a transition as a secondary option
which can be useful for models that are (to be) decomposed.

This profile definition assumes the UML 1.3 extension mechanism, which is string-based. In UML 1.4,
references to metaclasses can be used as an alternative to name based strings. Furthermore, in UML 1.4,
multiple stereotypes can be applied to an element.

9.3.1 Stereotypes

Table 8 defines the basic stereotypes. Tagged values for these stereotypes are defined in Table 9.

ad/2001-09-17 UML for EAI 133

Stereotype UML
metaclass

Comments / constraints

«integration process» ActivityGraph A system integration process in the context of EAI

«message» ObjectFlowState A data element that is interchanged between two systems. The
ObjectFlowState “inherits” the stereotype from the Signal classifier
with stereotype «message» that it points to, if one is defined at this
stage (tagged value defined below). The underlying Classifier of the
ObjectFlowState represents the «content» of the message (to be added
as a Signal parameter during design). The production or consumption
of a message by an activity is modeled with a «flow» Transition

«flow» Transition A flow is an exchange of data between two systems. An abstract
stereotype. A «flow» may optionally have an associated guard
condition

«messageflow» Transition A «messageflow» is a subtype of a «flow» where the Transition is to or
from a «message». Abbreviated to «msg flow». The production or
consumption of a message constitutes an event in EAI context. Note
that general business events are modeled as Signals in UML.

«connector» ActionState,
ActivityGraph
(Transition)

A «connector» is a simple or compound activity that converts a
specific kind of message from some system-specific format into a
specified message-content type, or vice versa

«operator» ActionState,
ActivityGraph
(Transition)

An «operator» is an activity that acts upon messages as they flow
between systems. Note: if the activity has more than one message as
input or output, then the operator must be a Compound Operator.

«transform» ActionState,
ActivityGraph,
(Transition)

A kind of operator that transforms datasets from one format to another.
An instantiable subtype stereotype of «operator»

«filter» ActionState,
ActivityGraph,
(Transition)

A kind of operator that filters messages according to a rule

«router» ActionState,
ActivityGraph
(PseudoState)

A kind of operator that determines a outgoing channel based on a rule

«stream» ActionState,
ActivityGraph
(Transition)

A kind of operator

«adapter» ActionState,
ActivityGraph
(Transition)

A kind of operator, indicating a wrapper activity that that encapsulates
dataflow and / or controlflow to and from a legacy system, e.g. an
operator that performs invocation and associated marshalling.

«publish» Transition
(ActionState)

A kind of operator, indicating that there is a publisher – subscriber
protocol involved in the message transmission (default is point – to –

ad/2001-09-17 UML for EAI 134

point)

«subscribe» Transition
(ActionState)

A kind of operator, indicating that there is a publisher – subscriber
protocol involved in the message transmission (default is point – to –
point)

«legacy» ActionState,
ActivityGraph
(PseudoState)

A «legacy» is any existing application that participates in an
integration

Table 8 Behavior stereotypes for modeling EAI system-integration processes.

9.3.2 Tagged Values

Table 9 defines the extended “meta-properties” (i.e., tagged values) for the stereotypes defined above,
and a number of general supporting tags. Some of these tags are references to classes and signals that are
defined using the modeling framework defined in Section 8. These references define the realization of
the messaging functionality specified in the integration process (e.g., using sequence diagrams).

Tagged value UML
Metaclass /
stereotype

Notes

signalImplementation : String «message»
ObjectFlowState

Indicates that an ObjectFlowState with stereotype «message»
is realized by a Signal (note: in UML 1.4 this becomes a
reference to a Signal Classifier stereotyped «message» instead
of a string). Note the base classifier reference of the
ObjectFlowState points to its content class.

sourceImplementation : String «message»
ObjectFlowState
(ActionState,
ActivityGraph)

Indicates that an ObjectFlowState with stereotype «message»
is realized as a Source Classifier at a detailed level (note: in
UML 1.4 this becomes a reference to a Classifier instead of a
string). Alternatively, when applied to an activity it indicates
that in the detailed realization this activity has an associated
Source Classifier. Optional property.

targetImplementation : String «message»
ObjectFlowState
(ActionState,
ActivityGraph)

Indicates that an ObjectFlowState with stereotype «message»
is realized as a Target Classifier at a detailed level (note: in
UML 1.4 this becomes a reference to a Classifier instead of a
string). Alternatively, when applied to an activity it indicates
that in the detailed realization this activity has an associated
Target Classifier. Optional property.

queueName : String «message»
ObjectFlowState
(Transition)

Indicates the name of the queue to be used (note: in UML 1.4
this becomes a reference to a Queue Classifier instead of a
string)

queueProtocol : String {JMS,
IBM MQ, Oracle AQ, …}

«message»
ObjectFlowState
(Transition)

Indicates the target implementation type for the queue

ad/2001-09-17 UML for EAI 135

format : String {XML, …} «message»
ObjectFlowState
(Transition)

Indicates the target implementation format for the message

isSet : Boolean «message»
ObjectFlowState

Indicates that an ObjectFlowState contains a set of messages.
Shorthand notation for a type expression, e.g., “Set of Quote”.

communicationProtocol : String
{http, iiop, smtp, …}

Transition Indicates the target communication protocol to be used

operatorImplementation : String «operator» Activity
(Transition)

Indicates a reference to the Classifier that realizes the activity.
Note: in the case of a subtype of «operator» such as
«transform», «connector», «publish» or «adapter» this tagged
value indicates the transformationImplementation Classifier,
connectorImplementation Classifier, etc. (note: in UML 1.4
this becomes a reference to a Classifier with stereotype
«operator» instead of a string)

operationImplementation :
String

«adapter» Activity
(Transition)

Indicates a reference to a public operation of a «legacy»
system (note: in UML 1.4 this becomes a reference to an
Operation on a Classifier instead of a string)

directoryNameEntry : String Subsystem Indicates the implementation target name for the subsystem

Table 9 Tagged values with the stereotypes defined in the previous table

9.3.3 Mapping to EAI Metamodel

Although the activity graph elements are largely used at a higher level of abstraction, as illustrated
above, it is possible to decompose some aspects of the model sufficiently to map directly onto the same
metaobjects as the collaboration model. Table 10 lists these mappings and identifies the appropriate
metaclasses to map the other activity graph profile elements.

Stereotype EAI metaclass Comments/Constraints
«integration process» FCMComposition The «integration process» is the overall context for the model. It is

merely the aggregation of all the elements of the activity graph.

«message» EAIMessageContent Direct mapping

«flow» FCMLink Not being constrained to only connecting terminals, a «flow» in
the activity graph profile, which is a stereotype on the UML
metaclass Transition, is more generic than EAILink

«messageflow» FCMDataLink A «messageflow» is an example of a Transition that does not
directly connect Terminals. It represents the propagation of a
message from one system to another, probably implemented as
queue-to-queue propagation, but at this level of abstraction it is
not appropriate to specify that.

ad/2001-09-17 UML for EAI 136

«connector» EAIPrimitiveOperator Direct mapping

«operator» EAIPrimitiveOperator Direct mapping

«transform» EAITransformer Direct mapping

«filter» EAIFilter Direct mapping

«router» EAIRouter Direct mapping

«stream» EAIStream Direct mapping

«adapter» EAISourceAdapter/
EAITargetAdapter

Whether an instance of an activity model «adapter» is an instance
of an EAISourceAdapter or an EAITargetAdapter can be inferred
from the context.

«publish» FCMLink The application of this stereotype is specifying a constraint on the
underlying queue implementation, but the link itself is not the
queue. This is an example of where the analysis model contains a
design hint but is not of itself a design specification.

«subscribe» FCMLink See «publish»

«legacy» FCMNode «legacy» is a necessary component of the activity profile because
it provides a reference point for the business, but in the integration
itself «legacy» has no behavior, so it is mapped to the generic
FCMNode.

Table 10 Mapping from Activity Graph Stereotypes to EAI Metaclasses.

ad/2001-09-17 UML for EAI 137

Part 4 Proof of Concept
This part provides a proof of concept for the proposed profile by giving examples of the use of the
profile for actual EAI modeling. An example is provided that is relevant to both of the scenarios of the
Scope (Section 2) that are covered by this submission and uses collaboration modeling. In the following
section, a variant of part of this example is presented in the CCA of the UML Profile for EDOC.

ad/2001-09-17 UML for EAI 138

10 Example: Connectivity and Information Sharing

This section shows how the UML Profile for EAI can be used to model the integration of applications
for a brokerage firm using collaboration modeling.

The section is structured as follows:

• Section 10.1 provides a brief description of what a brokerage firm does. This provides some
explanation of the domain in which the models are being developed.

• The following sections describe aspects of the brokerage firm’s systems, which are then captured
in models expressed using the collaboration profile of Section 8.

10.1 The Brokerage Business

A brokerage firm accepts orders for stock trades from various parties:

� Direct from customers

� From partner brokerages in other countries

� From investment managers

The job of the brokerage firm is, essentially, to enact the trades requested in those orders and then send
notifications back to the customer.

The focus of the modeling in this chapter is the handling of orders from partner brokerages and from
investment managers. This requires an architecture integrating with the systems used by these
stakeholders, which allows order events from systems external to the enterprise to be transformed into a
common format and then filtered, elaborated and processed. Notifications need to be generated and sent
back to the originating systems.

The overall architecture for this integration is depicted in Figure 108.

ad/2001-09-17 UML for EAI 139

Online Brokerage

Middle-
ware

Server

Back-End
Brokerage

System

International
Brokerage

System

Investment
Manager
System

Pub/Sub
Server

TCP/IPhttp

SNA

International
Brokerage

Server

Investment
Manager
Server

Pub/sub
Pub/sub

MQ

TCP/IP

TCP/IP

Figure 108 As-is architecture for international and investment managers

International customers (i.e., customers outside the U.S.) are served by a brokerage system in their own
country. This system keeps track of portfolios for its customers. If those customers wish to trade U.S.
securities, those trade requests are serviced by the on-line brokerage system.

Investment managers manage portfolios on behalf of customers with large or complex holdings. They
use the brokerage system to place trades and to get information about various securities for their
customers. Different investment-manager firms use different software for portfolio management.

Using the UML profile, we elaborate a model of the architecture of this system.

10.2 Connection of Enterprises to the Online Brokerage System.

The on-line brokerage system is connected to five external systems. This is shown in the collaboration
diagram in Figure 109.

ad/2001-09-17 UML for EAI 140

onlineBrokerage :
Onl ineBrokerage

japanOrders :
JapanOrderinput

standardIOs :
SIOinput

2000IMSOs :
2000IMSOinput

1990IMSOs :
1990IMSOinput

japan :
JapanIBSystem

uk :
StandardIBSystem

france :
StandardIBSystem

orders :
JapanOrderoutput

orders :
SIOoutput

_orders :
SIOoutput

legacyClient5 :
2000IMSystem

netbas edClient2 :
1990IMSystem

orders :
2000IMS Ooutput

orders :
1990IMS Ooutpu t

_notifications :
SINinput

notifications :
SINinput

notifications :
2000IMSNinput

notifications :
1990IMSNinput

netbased2Notifications :
1990IMSNoutput

legacy5Notifications :
2000IMSNoutput

japanNotifciations :
JapanNotificationsoutput

ukNotifications :
SINoutput

franceNotifications :
SINoutput

notifications :
JapanNotificationsinput

 : BrokerageCompany

Figure 109 Brokerage company — component connections

This diagram highlights the two key processes involved:

1. The processing of orders entered into the system

2. The publication of notifications about processed orders

ad/2001-09-17 UML for EAI 141

Thus each system external to the online brokerage has an output terminal for issuing orders to be sent on
to the online brokerage system and an input terminal for receiving notifications back. Interestingly,
although input streams of orders in the same format may be merged (e.g., the output terminals of uk and
france both connect to the same input terminal of the on-line brokerage), the output streams of
notifications will not. There are good business reasons (such as confidentiality) to ensure, for example,
that only notifications for France go to France and not to also to the UK.

It has been left unspecified as to whether the connections between external systems and the on-line
brokerage are synchronous or asynchronous, although they are likely to be asynchronous.

Figure 110 is the corresponding class diagram, which declares the components of the brokerage-
company operator, where primitive operators are used to model the systems external to the online
brokerage. Notice that two of the external systems (uk and france) are of the same type. The
components of the compound operator representing the on-line brokerage system will be explored in the
subsequent sections.

JapanIBSystem
<<PrimitiveOperator>>

StandardIBSystem
<<Prim iti veO perator>>

OnlineBrokerage
<<CompoundOperator>>

2000IMS ystem
<<PrimitiveOperator>>

1990IMSystem
<<Prim itiveOperator>>

BrokerageCompany
<<Com poundOperator>>

+japan

+uk +france +onlineB rokerage

+netbasedClient2

+legacyClient5

Figure 110 Brokerage company — components

Figure 111 to Figure 113 define the terminals of all these operators and of the on-line brokerage. The
on-line brokerage must handle four different formats of orders and notifications. Two of the systems
(france and uk) use the same formats.

ad/2001-09-17 UML for EAI 142

SINinput

handle(cont ent : StandardInternationalNotificat ion)

<<Input>>

SIOoutput

handle(content : StandardIn ternationalOrder)

<<Output>>

StandardIBSyst em
<<Prim it iveOperat or>>

+noti fi cations

+orders

JapanO rderout put

handle(content : JapanOrder)

<<Output>>

JapanIBSystem
<<PrimitiveOperator>>

+orders

JapanNotificationsinput

handle(content : JapanNotification)

<<Input>>

+notifications

Figure 111 International brokerage systems — terminals

2000IMSOoutput

handle(cont ent : 2000 IM System Order)

<<Output>>

2000IMSystem
<<PrimitiveOperator>>

+orders

2000IMSNinput

handle(conten t : 2000IMSystemNotification)

<<Input>>

+notifications

1990IMS Ooutpu t

handle(content : 1990IMSystemOrder)

<<Output>>

1990IMS yst em
<<PrimitiveOperator>>

+orders

1990IMSNinput

handle(content : 1990IMSystemNotification)

<<Input>>

+noti ficat ions

Figure 112 Investment-manager systems — terminals

ad/2001-09-17 UML for EAI 143

JapanOrderinput

handle(content : JapanOrder)

<<Input>>

2000IMS Oinput

handle(content : 2000IMSystemOrder)

<<Input>>

1990IMS Oinput

handle(cont ent : 1990IM SystemO rder)

<<Input>>

JapanNotificationsoutput

handle(content : JapanNotification)

<<Output>> 1990IMSNoutput

hand le(cont ent : 1990IMSystemNotificat ion)

<<Output>>

2000IMSNoutput

handle(content : 2000IMSystemNotification)

<<Output>>

SINoutput

handle(con tent : S tandard Int erna tionalNotifi cat ion)

<<Output>>

OnlineBrokerage
<<CompoundOperator>>

+japanOrders

+2000IMS Os

+1990IMSOs

+japanNotificat ions

+legacy5Notifications

+netbased2Noti ficat ions

+franceNotifications

+ukNotifications

SIOinput

handle(content : StandardInternationalOrder)

<<Input>>

+standardIOs

Figure 113 On-line brokerage system — terminals

10.3 The On-line Brokerage System

The on-line brokerage system is a compound of an international brokerage server, an investment
manager server, a middleware server, a back-end brokerage system and a Pub/Sub server. The
components are declared in Figure 114, and the way in which they are connected together is specified in
Figure 115.

ad/2001-09-17 UML for EAI 144

InternationalBrokerageServer
<<CompoundOperator>>

InvestmentManagerServer
<<CompoundOperator>>

MiddlewareServer
<<Primi tiveOperator>>

BackEndBrokerageSystem
<<CompoundOperator>>

PubSubServer
<<CompoundOperator>>

OnlineBrokerage
<<CompoundOperator>>

+ib

+iv

+middleware

+backEnd

+pubSub

Figure 114 On-line brokerage system — components

im : Investm entM anagerServer m iddleware : M iddlewareServer

backEnd :
BackEndBrokerageSystem

1990IM SOs :
1990 IM SOinput

2000IM SOs :
2000 IM SOinput

standardIOs :
SIOinput

japanOrders :
J apanO rderi np ut

pubSub : PubSubServer

_standardIOs
: SIOinput

_japa nOrders :
JapanOrderinput

_o u tOrders :
Orderou tput

_2000IM SOs :
2000IM SOinput

_1 99 0I MSO s :
1990IM SOinpu t

out Orde rs :
Orderou tput

fixm lOrders :
FIXM LOrderinput

im ServerF IXM LO rders :
FXIM LOrderoutput

inOrders :
Orderinput

__ou tOrders :
Orderoutput

_inOrders :
Orderinput

ordersIn :
Orderinpu t

ibServerFIXM LOrders :
FXIM LOrderoutput

_fi xm lO rd ers :
FIXM LOrderinput

ib : Interna tionalBrokerageServer

___outOrders :
Orderoutput

_ne tb ased2No ti fi ca tio ns :
2000I M SNoutput

_l egacy5No ti fi cati ons :
1990I M SNoutput

legacy5Noti fi cations :
1990IM SNoutput

ne tbase d2N ot i fic at ions :
2000I M SNoutput

_japanNoti fications :
JapanNoti fica tionsoutput

jap anNot i fi c at ions :
JapanNoti ficationsou tput

_ukNoti fi cations :
SI No ut put

_franceNoti fica tions :
SINoutput

ukNoti fi cations :
SINoutp ut

franceNoti fi cations :
SINoutput

 : Onl ineBrokerage

Figure 115 On-line brokerage — component connections

Orders from international brokers are handled by the international-brokerage server, and orders from the
investment managers are handled by the investment-manager server. These systems convert the orders
into a common format and pass them on to the middleware server, which forwards them to the back-end
brokerage server. There the orders are processed, and ownership information is added. On exit from
this system they are passed to the Pub/Sub server, which routes the processed orders back to the IB or

ad/2001-09-17 UML for EAI 145

IM system, depending on which one generated the order. The IB and IM systems generate notifications
from the processed orders, which are passed on to the external systems as appropriate.

The terminals for each of these systems are defined by Figure 116 through to Figure 120. As usual,
these diagrams give details about the formats of message handled by the terminals of each system.

Orderoutput

handle(content : Order)

<<output>>

SIOinput

handle(content : St andardInt ernationalOrder)

<<Input >>

JapanO rderinput

handle(content : JapanOrder)

<<Input>>

FIXMLOrderinput

handle(content : FIXMLOrder)

<<Input>>

JapanNotificationsoutput

handle(content : JapanNotification)

<<Output>>

Int ernationalBrokerageServer
<<CompoundOperator>>

+standardIOs

+japanOrders

+outOrders

+fixmlO rders

SINoutput

handle(content : StandardInternationalNotification)

<<Out put>>
+ukNotifications

+franceNotifications

+japanNotifications

Figure 116 International brokerage server — terminals

Orderoutpu t

handle(c onten t : Order)

<<outpu t>>

2000IMSOinput

handle(c ontent : 2000IMSyst emOrder)

<<Input>>

1990IMSOinput

handle(content : 1990IMSystemOrder)

<<Input>>

FIXMLOrderinput

handle(content : FIXMLOrder)

<<Input>>

2000IMSNoutput

handle(content : 2000IMSystemNotification)

<<Output >>

InvestmentManagerServer
<<CompoundOperator>>

+outO rders

+fixmlOrders
+2000IMSOs

+1990IMSOs

1990IMSNoutput

handle(content : 1990IMSystemNotification)

<<Output>>

+netbased2Notifications +legacy5Notifications

Figure 117 Investment-manager server — terminals

ad/2001-09-17 UML for EAI 146

MiddlewareServer
<<PrimitiveOperator>>

Orderinput

handle(content : Order)

<<Input>>

Orderoutput

handle(content : Order)

<<output>>

+inOrders

+outOrders

Figure 118 Middleware server — terminals

BackEndBrokerageSystem
<<CompoundOperat or>>Orderinput

handle(content : Order)

<<Input>>
+inOrders Orderoutput

handle(content : Order)

<<output>>
+outO rders

Figure 119 Back-end brokerage system — terminals

FXIMLOrderoutput

handle(content : FIXMLOrder)

<<Output>>
PubSubServer

<<Comp oundOperator>> +ibServerFIXMLOrders

+im ServerFIXMLOrders

Orderinput

handle(c onte nt : Ord er)

<<Input>>
+orders In

Figure 120 Pub/sub server — terminals

We are now ready to examine the workings of each of the components of the on-ine brokerage server.

10.4 International Brokerage Server

10.4.1 Orders

For international customers, order flow is as follows:

� When a customer of an international broker places an order for execution of a trade involving
securities traded on a U.S. exchange, the order is forwarded to the on-line brokerage for
execution, which then passes on the order to its international brokerage server.

� The international brokerage server transforms the order into the standard format understood by
the back-end systems.

10.4.2 Notifications

The International server will send notifications to the international broker in near real time. These are
generated from the order events received from the Pub/Sub server.

ad/2001-09-17 UML for EAI 147

The diagrams defining the components of the international-brokerage server (IBS) are given by Figure
121 and Figure 122.

SIOHandler

transform(content : StandardInternationalOrder) : Order

<<Transformer>>
JapanIOHandler

transform(content : JapanOrder) : Order

<<Transformer>>

JapanINPublisher
<<Publicat ionOperator>>

JapanINGenerator

transform (content : Order) : JapanNotification

<<Transformer>>

SINPublisher
<<PublicationOperator>>

StandardINGenerator

transform(content : Order) : StandardInternationalNotification

<<Transformer>>

NPubSubOp
<<Subscript ionOperator>>

InternationalBrokerageServer
<<CompoundOperator>>

+sioHandler +japanIOHandler

+japanPublisher

+japanGenerator

+standardPublisher

+standardGenerator

+japanSubs criber

+standardSubscriber

NPubSubGenerator
<<Source>>

+japanPubSubGen

+standardPubSubGen

Figure 121 IBS — components

ad/2001-09-17 UML for EAI 148

outOrders :
Orderoutput

japanIOHandler :
JapanIOHandler

s ioHandler :
SIOHan dler

s tandardIOs :
SIO input

japanOrders :
JapanOrderinput

out :
Orderoutput

_out :
Orderoutput

i n :
SIO input

in :
JapanOrderinput

fixm lOrders :
FIXMLOrder input

japanNotifications :
JapanNotificationsoutput

franceNotifications :
SIN output

ukNotificatio ns :
SIN output

s tandardGenerator :
StandardINGenerator

japanGenerator :
J apanINGenerator

s tandardPublis her :
SINPublisher

japanPublisher :
JapanINPubli sher

out :
JapanNotificationsoutput

in :
FIXMLOrderinput

_out :
SINoutput

_in :
FIXMLOrderinput

japanSubsc riber :
NPubSubOp

in :
JapanNotifications input

_out :
JapanNotificationsoutput

out :
SINoutput

in :
SINinput

subscriptionTable :
Notific ationPubST

subscriptionTable :
Notific ationPubST

s tandardSubs criber :
NPubSubOp

japanPubSubGen :
NPubSubGenerator

s tandardPubSubGen :
NPubSubGenerator

in :
NPubSubinput

out :
NPubSuboutput

_out :
NPubSuboutput

_in : NPubSubinput

 : InternationalBrokerageServer

Figure 122 IBS — component connections

For orders, there needs to be one transformer per input format, which converts that input format to the
standard format.

For notifications, there needs to be one transformer per notification format. As there may be many
external systems which handle the same format (in this case uk and france work with the same format),
and these are likely to come and go, it makes sense to use a dynamically configurable publication
operator on the output of each transformer. This avoids having a separate transformer for each system; a
transformer is only needed for to each format. This means, in turn, that connection of a new system to
Pub/Sub will only require a notification output terminal to be set up for connection to the notification
input terminal of that system. New internal components will not be required.

The publication operator will dynamically connect to the appropriate notification output terminals on a
message-by-message basis, as dictated by its subscription table. This explains why the notification
output terminals of the IBS are not connected to any of its components. For each publisher, a
combination of a subscription operator and source is used to generate subscriptions from some
underlying system.

ad/2001-09-17 UML for EAI 149

The definitions of the terminals of the components have been omitted, as they are relatively
straightforward.

10.5 Investment Manager Server

10.5.1 Orders

Things are a little bit different for order placement from the Investment Manager systems:

� First of all, these systems utilize different tools for placing orders. So the Investment Manager
server has to convert these different formats into a common format that can be handled by the
middleware server and the back-end systems.

� Secondly, the investment managers commonly perform complex operations like balancing
portfolios for a number of their customers at one time. This means sending a single message that
can include multiple buy and sell orders for a single account and can include transactions on
behalf of multiple accounts at the same time. It makes sense to think of all the transactions
related to a single account as a unit of work in this context. The Investment Manager Server
decomposes these complex messages and turns them into single order requests that are placed
with the back-end systems.

Thus the handling of orders by the investment manager server is similar to that of the international
brokerage server. The only difference is that the transformers generate batch orders in a standard
format, and these then feed into a transformer, which takes a single batch order as input and generates
multiple output messages in the standard order format.

10.5.2 Notifications

As with orders, the investment management server may batch up any number of notifications for
transmission to its partners.

The modeling of the investment manager server, with respect to notifications, is similar to that of the
international brokerage server. The only difference is that there must be an aggregator which generates
batch orders from the order stream. They can then be fed on to the transformers and publishers.

10.6 Middleware Server and Back-End Brokerage System

Orders for international and investment customers go through the standard path for the brokerage
system. They are routed to the middleware server, which forwards them to the back-end systems for
execution. No additional modeling for the middleware server is required at this level.

The back-end brokerage system is responsible for processing the orders. As orders are processed and
the order database is updated, this triggers events that mark changes in the state of the order to be
published. At this point, the following things happen:

� The order is checked for “account ownership.” Accounts belong to different organizations
within the enterprise. I n particular, the order events are examined at this point to determine

ad/2001-09-17 UML for EAI 150

whether or not the account belongs to the international or to the investment manager system. To
make the determination requires extracting information from the customer databases.

� A further filter is then checked based on the type of order event. Not all order events are
published from this back-end system.

� If the filter is passed, then a transformation is made of a database record into a COBOL
copybook format. The information about account ownership is added to the order event.

The processing of orders is modeled by a primitive operator, which here has been called orderProcessor
and is of type BackEndProcessingSystem. The other three stages of order manipulation are modeled by
two filters and a transformer. These are declared in Figure 123, and the way in which they are
connected together is specified by Figure 124.

AccountOwnership

allow(content : Order) : Boolean

<<Filter>>
OrderType

allow(content : Order) : Boolean

<<Filter>>

allow(content) =
content.account is
from IM or IB

allow(content) =
content.type is
appropriate

transform(content) =
copy of content with account
ownership added

AddOwnership

transform(content : Order) : Order

<<DBTransform er>>

BackEndBrokerageSystem
<<Com poundOperato r> >

+ownershipFilter +orderTypeFilter
+ownershipAdder

BackEndProcessingSystem
<<PrimitiveOperator>> +orderProcesser

Figure 123 Back-end brokerage system — components

ad/2001-09-17 UML for EAI 151

__in :
Orderinput

out :
Orderoutput

ownershipFi lt er :
AccountOwnership

orderTypeFilter :
OrderType

_in :
Orderinput

_true :
Orderoutput

in :
Orderinput

t rue :
Orderoutput

ownershipAdder :
AddOwnership

fa lse :
Orderoutput

_fa lse :
Orderoutput

orderProcessor :
BackEndProcessingSystem

_inOrders :
Orderinput

inO rders :
Orderinput

outOrders :
Orderoutput

outOrders :
Orderoutput

 : BackEndBrokerageSystem

Figure 124 Back-end brokerage system — component connections

The message-content format handled by the terminals of the filter and transformer can be deduced from
the definition of the allow and transform operations, so we have omitted them here. The terminals for
BackEndProcessingSystem are defined by Figure 125.

Orderinput

handle(content : O rder)

<<Input>>

BackEndProcessingSystem
<<PrimitiveO perator>> Orderoutput

handle(content : Order)

<<output >>
+inOrders +outO rders

Calls underly ing
systems to
process orders.

Figure 125 Back-end processing system — terminals

10.7 Publication

The order event is then pushed to a Pub/Sub server. It accomplishes the following tasks:

� It transforms the order event into FIXML (a set of XML DTDs for the Financial Industry
eXchange — FIX — protocol format).

� It publishes the event with a subject that includes the notion of ownership. The international and
institutional customer servers subscribe to different order events: the international server
subscribes to events that pertain to its customers, and the institutional server does likewise.

The Pub/Sub server can be modeled quite simply. The first point requires a transformer. Although the
second point mentions publish and subscribe, dynamic subscription (a key part of the publication and

ad/2001-09-17 UML for EAI 152

subscription operators) is not required in this case. Rather, subscriptions are set up statically to filter
messages based on their topic, and so this can be shown as a filter instead.

The definition of the components is given in Figure 126, and their configuration is given in Figure 127.

OrderToFIXML

transform(content : Order) : FIXMLOrder

<<Transformer>>

PubSubServer
<<CompoundOperator>>

IBorIMFilter

allow(order : Order) : Boolean

<<Filter>>

+transform er+filter

allow(order) =
true if order from an
international broker else false

t ransform(order):
converts o rder to FIXML
format, preserving as much
information as possible

Figure 126 Pub/sub server — components

 : OrderToFIXML

 : IBorIMFilter

ibServerFIXMLO rders :
FXIMLOrderoutput

imServerFIXMLOrders :
FXIMLOrderoutput

false :
FXIMLOrderoutput

true :
FXIMLOrderoutput

in :
FIXMLOrderinput

out :
FXIMLOrderoutput

in : OrderinputinOrders :
Orderinput

 : PubSubServer

Figure 127 Pub/sub server — component connections
The terminal specifications for the filter and the transformer have been omitted, as they can be deduced
from the declaration of the allow and transform operations.

ad/2001-09-17 UML for EAI 153

11 Example using the EDOC CCA

The example in this section is based on a variant of that in Section 10. It illustrates the use of the
Component Collaboration Architecture (CCA) of the UML Profile for EDOC. The high-level view in
Figure 128 is a variant of that in Figure 109.

CommunityProcess BrokerageCompany

newYork 2000IMSystem

2000IMSystemOrdering

sanFrancisco 1990IMSystem

1990IMSystemOrdering

japan JapanIBSystem

JapanOrdering

uk StandardIBSystem

StandardInternationalOrdering

onlineBrokerage OnlineBrokerage

StandardInternationalOrdering

JapanOrdering

1990IMSystemOrdering

2000IMSystemOrdering

france StandardIBSystem

StandardInternationalOrdering

Figure 128 BrokerageCompany component connections

The next two figures show the components.

ad/2001-09-17 UML for EAI 154

Component 2000IMSystem

2000IMSystemOrdering

Component 1990IMSystem

1990IMSystemOrdering

Component JapanIBSystem

JapanOrdering

Component StandardIBSystem

StandardInternationalOrdering

Figure 129 Ordering Components

Component OnlineBrokerage

StandardInternationalOrdering

JapanOrdering

1990IMSystemOrdering

2000IMSystemOrdering

Figure 130 OnlineBrokerage Component

The Protocols are in Figure 131 to Figure 134.

Protocol 2000IMSystemOrdering

2000IMSystemOrder 2000IMSystemNotification

2000IMSystemOrder in

2000IMSystemNotification out

Figure 131 2000IMSystemOrdering Protocol

ad/2001-09-17 UML for EAI 155

1990IMSystemOrder in

1990IMSystemNotification out

Protocol 1990IMSystemOrdering

1990IMSystemOrder 1990IMSystemNotification

Figure 132 1999IMSystemOrdering Protocol

Protocol JapanOrdering

JapanOrder JapanNotification

JapanOrder in

JapanNotification out

Figure 133 JapanOrdering Protocol

StandardInternationalOrder in

StandardInternationalNotification out

Protocol StandardInternationalOrdering

StandardInternationalOrder StandardInternationalNotification

Figure 134 StandardInternationalOrdering Protocol

The remaing figures in this section show component details.

ad/2001-09-17 UML for EAI 156

Component OnlineBrokerage

StandardInternationalOrdering

JapanOrdering

1990IMSystemOrdering

2000IMSystemOrdering

Component
InternationalBrokerageServer

StandardInternationalOrdering

JapanOrdering
Ordering

Component
InvestmentManagerServer

Ordering
2000IMSystemOrdering

1990IMSystemOrdering
Component
BackEndBrokerageSystem

Ordering

Figure 135 Detail of OnlineBrokerage Component

Component
InvestmentManagerServer

1990IMSystemOrdering

2000IMSystemOrdering

Ordering

Component
2000IMSystemIBSHandler

2000IMSystemOrdering Ordering

Component
1990IMSystemIBSHandler

1990IMSystemOrdering Ordering

Figure 136 Detail of InvestmentManagerServer Component

ad/2001-09-17 UML for EAI 157

Component 2000IMIBSHandler

Ordering

Order

Notification

2000IMOrdering

2000IMOrder

2000IMNotification

2000IMOrder_
EAITransformer

2000IMOrder Order

2000IMNotification_
EAITransformer

Notification 2000IMNotification

Component 2000IMIBSHandler

2000IMOrdering

2000IMOrder

2000IMNotification

Ordering

Order

Notification

2000IMOrder in Order out

Notification in2000IMNotification out

Figure 137 Detail of 2000IMIBSHandler Component

ad/2001-09-17 UML for EAI 158

Component 1990IMIBSHandler

1990IMOrdering

1990IMOrder

1990IMNotification

Ordering

Order

Notification

1990IMOrder in Order out

Notification in1990IMNotification out

Component 1990IMIBSHandler

Ordering

Order

Notification

1990IMOrdering

1990IMOrder

1990IMNotification

1990IMOrder_
EAITransformer

1990IMOrder Order

1990IMNotification_
EAITransformer

Notification 1990IMNotification

Figure 138 Detail of 1990IMIBSHandler Component

Component
InternationalBrokerageServer

StandardInternationalOrdering

JapanOrdering

Ordering

Component JapanIBSHandler

JapanOrdering Ordering

Component
StandardInternationalIBSHandler

StandardInternationalOrdering Ordering

Figure 139 Detail of InternationaBrokerageServer Component

ad/2001-09-17 UML for EAI 159

Component JapanIBSHandler

JapanOrdering

JapanOrder

JapanNotification

Ordering

Order

Notification

JapanOrder in Order out

Notification inJapanNotification out

Component JapanIBSHandler

Ordering

Order

Notification

JapanOrdering

JapanOrder

JapanNotification

JapanOrder_
EAITransformer

JapanOrder Order

JapanNotification_
EAITransformer

Notification JapanNotification

Figure 140 Detail of JapanIMIBSHandler Component

ad/2001-09-17 UML for EAI 160

Component
StandardIntlIBSHandler

StandardIntlOrdering

StandardIntlOrder

StandardIntlNotification

Ordering

Order

Notification

StandardIntlOrder in Order out

Notification inStandardIntlNotification out

Component
StandardIntlIBSHandler

Ordering

Order

Notification

StandardIntlOrdering

StandardIntlOrder

StandardIntlNotification

StandardIntlOrder_
EAITransformer

StandardIntlOrder Order

StandardIntlNotification_
EAITransformer

Notification StandardIntlNotification

Figure 141 Detail of StandardInternationalIMIBSHandler Component

ad/2001-09-17 UML for EAI 161

Part 5 Implementation Mappings
The profile presented in this submission is intended to provide the basis for modeling EAI architectures,
largely at a logical level. However, the implementation of such an architecture requires, of course, the
use of various technologies and tools appropriate to integration, such as message brokers. This part
presents a selection of mappings of the modeling approaches of the profile into such implementation
technologies. The set of technologies discussed here is by no means an exhaustive set of those
applicable to EAI, but is simply intended to demonstration how the proposed profile is usable with such
technologies.

ad/2001-09-17 UML for EAI 162

12 Mapping to WebSphere MQ Integrator
WebSphere MQ Integrator (WMQI — formerly known as MQSeries Integrator) is IBM’s message
broker product, addressing the needs of business and application integration through management of
information flow. It provides services that allow you to:

• Route a message to several destinations, using rules that act on the contents of one or more of the
fields in the message or message header.

• Transform a message, so that applications using different formats can exchange messages in their
own formats.

• Store and retrieve a message, or part of a message, in a database.

• Modify the contents of a message (for example, by adding data extracted from a database).

• Publish a message to make it available to other applications. Other applications can specify
subscriptions that govern receipt of publications related to topics or topic ranges, optionally qualified
by SQL-style filters based on message content.

These services exploit the message-oriented middleware (MOM) capability provided by the MQSeries
and WebSphere MQ products.

This section presents a mapping from the EAI modeling elements to implementation elements; this is
intended to show how an architectural model can be mapped to a more detailed implementation level.

12.1 WebSphere MQ Messaging

WebSphere MQ is IBM’s new name for MQSeries.

12.1.1 WebSphere MQ Messages

WebSphere MQ messages are modeled as classes that conform to the ContentFormat stereotype. The
most abstract version of this models the message as consisting of a header, which is content class
MQMD (MQSeries Message Descriptor), and a body which is unconstrained. The MQMD contains the
fundamental information required to allow efficient manipulation of a message by the WebSphere MQ
messaging system, such as message expiry information and message identifier. The application-data
portion of the message is effectively unconstrained, although a message type indicator within the
MQMD can be used to indicate what format the message application data conforms to so that it can be
checked at runtime.

Where more information is required for the middleware that is responsible for processing a message,
extended header information has been defined. A few examples of these extended message formats are
shown in Table 11; they include the message format expected by the WebSphereMQ CICS and IMS
bridges, which enable intercommunication with applications running in CICS and IMS respectively, and
the message format used by WMQI for Publish/Subscribe intercommunication.

ad/2001-09-17 UML for EAI 163

One point to note about WebSphere MQ messages, which is correctly modeled by the structure shown,
is that all of the more complex message types can, if desired, be treated as though they were simple
WebSphere MQ messages. In this case, the extended header information is treated as part of the
application data of the message.

The MQRFH2 message header is extensible, in that it allows arbitrary name/value data to be held in the
header. In addition to mandatory fields contained within the header, it may also contain any number of
‘NameValue’ sections, which in turn may contain ‘Folders.’ Each folder may only contain data of the
form name=value. Since messages are flattened structures, each of the associations between header,
folder, and namevalue data is ordered, in that a sequence of values and structures can be reproducibly
built from a message, though this ordering is not normally relied on to convey additional information.

Class
name

Parent
class

Stereotype Description

WMQ
Message

NA ContentFormat The WMQMessage is a specialization of the
ContentFormat stereotype. It is the base format
used by all WebSphere MQ applications. The
message body is unconstrained.
The message header, known as MQMD is fully
documented in the WebSphere MQ
“Programming Reference Manual.”

WMQCICS
Bridge
Message

WMQMessage ContentFormat Used in communication with the WebSphere
MQ CICS Bridge.

WMQIMS
Bridge
Message

WMQMessage ContentFormat Used in communication with the WebSphere
MQ IMS Bridge.

WMQI
Message

WMQMessage ContentFormat Many WMQI message processing nodes can
take advantage of information contained in an
extended header, known as the MQRFH2.
Full details of the MQRFH2 header are given
in the WebSphere MQ Integrator
“Programming Reference Manual.”

WMQI
Control
Message

WMQIMessage ContentFormat The WMQIControlMessage class is a subclass
of WMQIMessage. It allows control messages
(such as add, cancel, and change a
subscription).
Full details of command messages are given in
the WebSphere MQ Integrator “Programming
Reference Manual”

Table 11 WebSphere MQ message classes

12.1.2 WebSphere MQ Message Queuing

WebSphere MQ queues are modeled as classes with the Queue stereotype. They can only hold messages
that are in the WMQMessage format. The attributes of each class are not listed here, but are specified in
the WebSphere MQ “Application Programming Guide.”

ad/2001-09-17 UML for EAI 164

Class Parent class Stereotype Constraint Description
WMQQueue NA Queue WebSphere MQ message queue. Parent for all WebSphere

MQ queue classes
WMQLocal
Queue

WMQQueue Queue Holds
messages of
class
WMQMessage
(or subclasses)

A physical queue owned by a particular queue manager.

WMQRemote
Queue

WMQQueue Queue Must refer to a
queue that is
owned by a
different queue
manager

A remote queue definition. Specifies the name and location
of a queue owned by another queue manager

WMQAlias
Queue

WMQQueue Queue Must refer to a
queue that is
owned by the
same queue
manager

An alias for another queue (a local queue) owned by the
same queue manager

Table 12 WebSphere MQ queue sterotypes

WebSphere MQ provides for two different indirection mechanisms, the queue Alias, which simply
allows a queue to be referred to by a different name, and a Remote Queue definition, which identifies a
queue managed by a different queue manager.

The class diagram for alias queue and remote queue is given in Figure 142.

WMQRemoteQueueDef
<<Queue>>

WMQAliasQueue
<<Queue>>

WMQLocalQueue
<<Queue>>

1

+remoteQueue

1<<derived>>

1

+localQueue

1

<<derived>>

Figure 142 WMQRemoteQueue and WMQAliasQueue

At runtime, the WebSphere MQ messaging infrastructure always resolves alias and remote queue
definitions to a single local queue by following their ‘remoteQueue’ or ‘localQueue’ associations.
Consequently, when specifying an EAI design that uses WebSphere MQ queues, the queue names used
by the sender and receiver of a message need not match, but they must resolve to the same local queue.

12.2 WebSphere MQ Integrator Message Flows

12.2.1 Summary

Message routing and transformation is achieved within WMQI by constructing a message flow. This is
done using a graphical tool, which allows operators to be joined together as nodes in a directed graph. A

ad/2001-09-17 UML for EAI 165

set of subclasses of WMQIPrimitiveNode is provided to perform tasks such as a message format
conversion, a computation or a database operation; these are modeled as classes with the
PrimitiveOperator stereotype. Message flows are modeled in the profile as classes with the
CompoundOperator stereotype.

Top-level message flows are initiated via the receipt of a message on a message queue. They may
invoke primitive nodes and nested message flows, which appear as CompoundNodes in the tool.

WMQIPrimitiveNode
<<PrimitiveOperator>>

WMQIMessageFlow
<<CompoundOperator>>

WMQICompoundNode
<<CompoundOperator>>

Figure 143 Summary of the main usage of operator stereotypes

12.2.2 WMQIMessageFlow

12.2.2.1 Description

WMQIMessageFlow models the outermost level of composition. At this outermost level, processing is
initiated by the receipt of a message on a queue, as represented by WMQIInputNode. Consequently, an
instance of WMQIMessageFlow must have at least one WMQIInputNode. This (see Figure 144) has the
QueuedSource stereotype. Output may be produced by one of three different node classes:
WMQIOutputNode, WMQIPublish or WMQIReply. All of these nodes communicate externally using
message queues. Consequently, the terminals (the view from the outside) of a message flow are required
to be have the QueuedTerminal stereotype.

WMQIInputNode
<<QueuedSource>>

WMQIMessageFlow
<<CompoundOperator>>

1..n

WMQIOutputNode
<<QueuedSink>>

0..n1..n 0..n

Figure 144 WMQIMessageFlow

12.2.2.2 Constraints

All links between the nodes that are contained in the message flow are synchronous.

WMQIMessageFlow must have at least one WMQIInputNode.

ad/2001-09-17 UML for EAI 166

The external terminals of a WMQIMessageFlow have stereotype QueuedTerminal.

The external terminal that represents publication has, in addition, the stereotype PublicationTerminal.

WMQIMessageFlow can contain only WMQICompoundNode, WMQIPrimitiveNode or its subtypes.

WMQIMessageFlow may not contain other WMQIMessageFlows (though a WMQIMessageFlow may
invoke another WMQIMessageFlow by sending a message to the appropriate queue).

12.2.3 WMQICompoundNode

WMQICompoundNode models all levels of composition inside WMQIMessageFlow, exploiting the
composition mechanism inherited from the FCM in the EAI Integration metamodel. Processing is
initiated by sending a message to one of its terminals. Inside the compound node, this results in the
emission of a message by a WMQIInputTerminalNode. Consequently, a WMQICompoundNode must
have at least one WMQIInputTerminalNode. The results of message processing are propagated via
WMQIOutputTerminals.

WMQIInputTerminalNode
<<Source>>

WMQICompoundNode
<<CompoundOperator>>

1..n

WMQIOutputTerminalNode
<<Sink>>

0..n1..n 0..n

Figure 145 Compound and primitive nodes in WMQI

12.2.3.1 Constraints

A WMQICompoundNode can contain WMQIPrimitiveNodes (and subclasses) and
WMQICompoundNodes.

WMQICompoundNode may not contain a WMQIMessageFlow.

WMQICompoundNode does not have queued terminals.

All links between the nodes contained in a WMQICompoundNode have synchronization=synchronous.

ad/2001-09-17 UML for EAI 167

12.2.4 WMQIPrimitiveNode

12.2.4.1 Description

WMQIPrimitiveNode is the (abstract) parent class for all WebSphere MQ Integrator message processing
nodes.

12.2.4.2 Constraints

Primitive nodes all expect to receive and process messages that are of the WMQMessage class.

12.2.5 Supplied WMQIPrimitiveNodes

The WMQIPrimitiveNodes are modeled as classes and are listed in the table below with the appropriate
stereotype from the UML Profile for EAI.

The table does not specify the attributes of these classes; the properties of these nodes are specified in
the IBM WebSphere MQ “Using the Control Center” manual (IBM document number SC34-5602).
Each of these properties may be represented as an attribute of the appropriate type for each class.

The interface required to allow further message processing nodes to be constructed is published by
IBM.3

Class
name

Parent
Class

Stereotype Constraint Description

WMQI
Publication

WMQI
PSService

Pubication
Operator

Output terminal is a
QueuedPublication
Terminal. Input terminal
is expect message type
WMQIMessage.

The Publication node filters and transmits the output from
a message flow to subscribers who have registered an
interest in a particular set of topics. The Publication node
must always be an output node of a message flow and has
no output terminals of its own.

WMQI
PSService

WMQI
PrimitiveNode

Primitive
Operator

NA The PS Service node allows for the interception of publications after they
have passed the subscription filters.

WMQICheck WMQI
PrimitiveNode

Filter NA A Check node compares the format of a message arriving on its input
terminal with its message-type specification.

WMQI
Compute

WMQI
PrimitiveNode

Transformer NA The Compute node constructs an output message. The elements of the
output message can be defined using an SQL expression, and can be based
on elements of both the input message and data from an external database.

WMQI
Database

WMQI
PrimitiveNode

Primitive
Operator

NA The Database node applies an SQL expression to an external database table.
Data from the message input to this node can be used in the SQL
expression.

WMQI
DataDelete

WMQI
DatabaseNode

Primitive
Operator

NA A DataDelete node deletes one or more rows from a table in a specified
database. Data from the input message can be used as part of the expression
that determines which rows are deleted.

WMQI
DataInsert

WMQI
Database

Primitive
Operator

NA A DataInsert node inserts a new row into a database table. Data from the
input message can be included in the database insert expression.

WQMIData
Update

WMQI
Database

Primitive
Operator

NA A DataUpdate node updates one or more rows of data in a specified
database. Data from the input message can be used as part of the expression

3 WebSphere MQ Programming Guide SC34-5603

ad/2001-09-17 UML for EAI 168

Class
name

Parent
Class

Stereotype Constraint Description

that determines which rows are updated.
WQMIWare
house

WMQI
Database

Primitive
Operator

NA A Warehouse node saves a copy of the input message in a database table by
inserting it in a new row.

WQMI
Extract

WMQI
Compute

Transformer NA The Extract node derives an output message from an input message. The
output message comprises only those elements of the input message that
are specified for inclusion when configuring the Extract node.

WQMIFilter WMQI
PrimitiveNode

Filter NA A Filter node routes a message according to message content using a filter
expression specified in SQL. The filter expression can include elements of
the input message or message properties. It can also use data held in an
external database. The output terminal to which the message is routed
depends on whether the expression is evaluated to true, false, or unknown.

WMQIInput WMQI
PrimitiveNode

QueuedSource NA Receives a WebSphere MQ message from a specified queue

WQMI
Output

WMQI
PrimitiveNode

QueuedSink NA Sends a WebSphere MQ message to the specified target queues

WMQIReply WMQIOutput QueuedSource NA Sends a reply message to the WebSphere MQ queue specified in the
message header.

WQMIFlow
Order

WMQI
PrimitiveNode

Primitive
Operator

NA The FlowOrder node enables you to specify the order in which each
message is propagated to each (of two) output terminals. The message is
only propagated to the second output terminal if propagation to the first
output terminal is successful.

WQMIReset
Content
Descriptor

WMQI
PrimitiveNode

Transformer NA The ResetContentDescriptor node takes the bit stream of the input message
and reparses it using a different message template from the same or a
different message dictionary. The node can reset any combination of
message domain, set, type, and format.

WMQITry
Catch

WMQI
PrimitiveNode

Primitive
Operator

NA The TryCatch node provides a special handler for exception processing. The
input message is initially routed on the try terminal of this node. If an
exception is subsequently thrown by a downstream node, it is caught by this
node, which then routes the original message to its catch terminal.

WMQI
Throw

WMQI
PrimitiveNode

Primitive
Operator

NA The Throw node provides a mechanism for throwing an exception within a
message flow. The exception might be caught and processed by a preceding
TryCatch node within the message flow, or handled by the MQInput node.

WMQI
Aggregate
Reply

WMQI
PrimitiveNode

Aggregator NA The AggregateReply node holds related messages until either a complete set
has arrived (according to a specified condition) or a time limit has elapsed.

Table 13 Mapping of WMQI primitive nodes to classes with stereotypes from the UML profile for EAI

12.2.6 The Role of the WMQI message-broker topology

A set of WMQI message brokers is interconnected and governed by the WMQI Configuration Manager,
which we represent by the class WMQIntegrator. WMQIntegrator owns all executing
WMQIMessageFlows, as shown in Figure 146. The Configuration Manager deploys these to selected
message brokers. The set of WMQI message brokers also acts as a SubscriptionOperator, allowing
subscriptions to be added to, and removed from, the subscription table (see Table 14). The topology is
governed by the Configuration Manager. All WMQIPublication nodes that are owned by message flows
in the same broker topology share the same subscription table. (The implementation optimizes the
distribution of the subscription table.)

ad/2001-09-17 UML for EAI 169

Class Stereotype Constraint Description
WMQIntegrator Subscription

Operator
Input terminal is a
QueuedInputTermi
nal. Expects to
receive messages in
WMQICommandM
essage format.

The WMQI message broker topology when acting as a
subscription operator.

Subscriptions are added, removed and updated on
WMQIntegrator by sending a message that conforms to
the WMQICommandMessage format to the WMQI
command queue.

Table 14 WMQIntegrator class definition table

WMQIntegrator
<<SubscriptionOperator>>

WMQIMessageFlow
<<CompoundOperator>>

0..n +messageFlows0..n

Figure 146 WMQIntegrator class diagram

ad/2001-09-17 UML for EAI 170

13 Java Message Service (JMS)
The Java Message Service (JMS)4 is part of the 1.3 release of the J2EE™ platform specification.5 It
specifies a point-to-point (PTP) domain and a publish-subscribe (Pub/Sub) domain. The JMS entities of
interest in modeling are destinations, message producers and message consumers. These are
summarized in the table:

JMS Parent PTP Domain Pub/Sub Domain
Destination Queue Topic
MessageProducer QueueSender TopicPublisher
MessageConsumer QueueReceiver, QueueBrowser TopicSubscriber

These entities are all defined in the EAI Integration metamodel, except that the distinction between
receivers and browsers is not made. A JMS QueueReceiver receives a message destructively from a
queue, whereas a JMS QueueBrowser leaves it on the queue so that it may be read again.

13.1 PTP Domain
A JMS client acting as a sender creates one or more JMS QueueSender objects and sends messages on
them. These are modeled as a class JMSQueueSender with stereotype QSource.

JMS QueueSender
<<QSource>>

Figure 147 JMS QueueSender

A JMS client acting as a receiver creates one or more JMS QueueReceiver or QueueBrowser objects and
listens on them. A JMS QueueReceiver or QueueBrowser object may include a JMS message selector,
which has the effect of a local EAI filter.

In order to model this optional filtering behavior, QueueReceiver and QueueBrowser are both modeled
as <<CompoundOperator>> classes, each with a single queued input terminal. The composition that
defines them contains a class QDataIn of stereotype <<QSource>>. The class QDataIn makes messages
received at the input terminal available to the JMS Message Selector (if there is one) but does not
remove them from the queue. The emit operation of the JMSMessageSelector (a <<Stream>>) emits the
message from the stream, provided it passes the chosen filter condition, and passes it on to the sink. The
<<QSource>> QDataIn and the stream both share the same queue resource. This means that messages
remain on the input queue unless they are explicitly sent to the sink.

The difference between QueueReceiver and QueueBrowser lies in the behavior of the stream. For
QueueBrowser, the stream does not remove messages; it proceeds forward through them, but they
remain available for other receivers and browsers. For QueueReceiver, the stream removes those

4For the JMS 1.2 specification see http://java.sun.com/products/jms/
5At the time of writing, J2EE 1.3 is still in draft. See http://java.sun.com/j2ee/

ad/2001-09-17 UML for EAI 171

messages that pass the filter condition of the JMSMessageSelector; the remaining messages are
available for access by other receivers and browsers.

0..1

Sink
<<Sink>>

JMS Message Selector
<<Stream>>

QDataIn
<<QSource>>

JMS QueueReceiver
<<CompoundOperator>>

1
1

In
handle(content : JMSMessage)

<<Qin>>

1
1

0..1

Figure 148 JMS QueueReceiver

JMS Message Selector
<<Stream>>

QDataIn
<<QSource>>

Sink
<<Sink>>

JMS QueueBrowser
<<CompoundOperator>>

0..10..111 11

In
handle(content : JMSMessage)

<<Qin>>
+in

Figure 149 JMS QueueBrowser

13.2 Pub/Sub Domain
A JMS client acting as a subscriber registers its interest in topics by creating one or more JMS
TopicSubscriber objects and listening on them. To model this in the EAI profile, we separate the
creation of a JMS TopicSubscriber from the activity of listening to the topic.

ad/2001-09-17 UML for EAI 172

We model the ‘listener’ aspect as a class JMSSubscriberListener of stereotype Sink that expects a
JMSMessage as its input.

JMSSubscriberListener
<<Sink>>

JMSInput

handle(content : JMSMessage)

<<in>>

11

+in

Figure 150 A JMSSubscriberListener expects incoming messages

A JMS TopicSubscriber object refers to a JMS Topic object, and it may include a JMS message selector.
A JMS Topic may refer to several EAI topics.

JMSInternalSubscriptionTable
<<SubscriptionTable>>

JMSInput
<<in>>

JMS Topic

JMS Topic Subscriber

0..n0..n

11

JMS Message Selector
<<Stream>>

Figure 151 Model for the content of the JMS subscription table

Creating a JMS subscriber object causes a subscription to be registered with the JMS infrastructure. We
model the element that registers the subscription as a JMSTopicSubscriberCreator of stereotype
<<source>> that sends a subscription to the JMS subscription infrastructure.

JMSTopicSubscriberCreator
<<Source>>

JMSSubscriptionOut

handle(content : JMSInternalSubscriptionFormat)

<<out>>

1

+out

1

Figure 152 JMSTopicSubscriberCreator

We model the subscription infrastructure via a class JMSSubscriptionInfrastructure of stereotype
<<SubscriptionOperator>>. This expects a message of the arbitrary ‘JMSInternalSubscriptionData’
format.

ad/2001-09-17 UML for EAI 173

JMSInternalSubscriptionData
<<SubscriptionFormat>>

JMSSubscriptionIn

handle(content : JMSInternalSubscriptionData)

<<in>>

JMSSubscriptionInfrastructure
<<SubscriptionOperator>>

11

+in

JMSInternalSubscriptionTable
<<SubscriptionTable>>

11+subscriptionTable

Figure 153 JMSSubscriptionInfrastructure

A JMS client acting as a publisher creates one or more JMS TopicPublisher objects that identify topics
via JMS Topic objects. The publisher produces messages and sends them on one or more topics, using
the associated JMS TopicPublisher object.

This has the effect of sending them to a PublicationOperator (Figure 155), which forwards them to the
appropriate EAI destinations; these can include JMS subscribers.

(list of topics)

JMS TopicPublisher
<<TopicPublisher>> JMSOutput

handle(content : JMSMessage)

<<out>>
+out

Figure 154 A JMS TopicPublisher

We model the existence of a publication mechanism via the class JMSPublicationInfrastructure of
stereotype <<PublicationOperator>>. This is not a separable element of JMS, but is part of the JMS
infrastructure. All JMSTopicPublishers for a given JMS environment should be connected to the same
JMSPublicationInfrastructure.

ad/2001-09-17 UML for EAI 174

JMSInput

handle(content : JMSMessage)

<<in>>
JMSOutput

handle(content : JMSMessage)

<<out>>
JMSPublicationInfrastructure

<<PublicationOperator>>

11

JMSSubscriptionTable
<<SubscriptionTable>>

11+subscriptionTable

Figure 155 JMSPublicationInfrastructure

ad/2001-09-17 UML for EAI 175

14 Language Metamodels

14.1 COBOL Metamodel

The COBOL metamodel is used by enterprise application programs to define data structures (semantics),
which represent connector interfaces.

The goal of this COBOL model is to capture the information that would be found in the Data Division.
This model is intended to be used only as read-only to convert COBOL data division into its XML
equivalent. This model is not intended to be used as a converter from XML code into a COBOL data
division equivalent. The following figures illustrate the classes that constitute the COBOL metamodel
and show how the classes relate to each other. Following the diagrams is a brief explanation of what
each class represents.

COBOLSimpleType

usage : COBOLUsageValues

pictureString : String

synchronized : Boolean = false

getCanonicalPictureString()

COBOLAlphaNumericType

justifyRight : Boolean = false

COBOLNumericEditedType
blankWhenZero : Boolean

currencySign : String

decimal : Boolean

COBOLNumericType

signed : Boolean

signLeading : Boolean

signSeparate : Boolean

currencySymbol : char

trunc : String

numproc : String

decimal : Boolean

COBOLDBCSType

COBOLAlphaNumericEditedType

COBOLAlphabeticType

justifyRight : Boolean = false

COBOLUnicodeType

COBOLObjectReferenceType
className : String

COBOLInternalFloatType

COBOLExternalFloatType

COBOLAddressingType

COBOL88ElementValue

lowerLimit : String

upperLimit : String

range : Boolean

COBOL88Element

name : String

1..1

1..*

+belongsTo

1..1

+has

1..*

COBOL66Element
name : String

COBOLFixedLengthArray
maxUpper : Integer

COBOLComposedType

COBOLSourceText

source : String

fileName : String

COBOLClassifier

typedef : Boolean

/ name : String

COBOLVariableLengthArray
minUpper : Integer

COBOLElementInitialValue
initVal : String

valueKind : COBOLInitialValueKind = string_value

COBOLElement
level : String

redefined : Boolean = false

/ name : String1..1

0..*

+containedBy

1..1

+contains
0..*

1..1

0..1

+start
1..1

+startOf
0..1

0..1

0..1
+endOf

0..1
+end

0..1

0..1

1..1

+array

0..1

+arrayOf

1..1

0..*

0..1

+element

0..*

+group

0..1

1..1

+source

1..1

0..*

1..1

+typedElement

0..*

+sharedType

1..1

1..1 0..*

+dependingOn

1..1

+dependedUpon

0..*

0..*

1..1

+initial

0..*

+element
1..1

COBOLRedefiningElement

1..1

+redefines

1..1

Figure 156 COBOL Metamodel

ad/2001-09-17 UML for EAI 176

COBOLClassifier

typedef : Boolean
/ name : String

(from cobol)

COBOLComposedType
(from cobol)

TDLangClassifier
(from TDLang)

TDLangElement

(from TDLang)

TDLangComposedType
(from TDLang)

COBOLElementInitialValue

initVal : String
valueKind : COBOLInitialValueKind = string_value

(from cobol)

COBOLElement

level : String
redefined : Boolean = false
/ name : String

(from cobol)

Figure 157 TDLang to COBOL

C O B O L U s a g e V a l u e s

b i n a r y
d b c s
d o u b l e
d i s p l a y
f l o a t
i n d e x
o b j e c t R e f e r e n c e
p a c k e d D e c i m a l
p o i n t e r
p r o c e d u r e P o i n t e r

< < e n u m e r a t i o n > >
C O B O L I n i t i a l V a l u e K i n d

s t r i n g _ v a l u e
l o w _ v a l u e
h i g h _ v a l u e
z e r o _ v a l u e
q u o t e s
n u l l
a l l _ l i t e r a l

< < e n u m e r a t i o n > >

Figure 158 COBOL Stereotypes

14.1.1 COBOL Metamodel Descriptions

14.1.1.1 COBOL66Element
COBOL66Element represents the COBOL 66 data level.

ad/2001-09-17 UML for EAI 177

For example:
01 DATA-GROUP PIC 9.
 03 DATA1 VALUE 1.
 03 DATA2 VALUE 2.
 03 DATA3 VALUE 3.
66 SUB-DATA RENAMES DATA1 THROUGH DATA2.
66 AKA-DATA3 RENAMES DATA3.

In this example SUB-DATA refers to contents in DATA1 and DATA2.

14.1.1.2 COBOL88Element
COBOL88Element represents the COBOL 88 data level.
For example:
1 TESTX PIC .
 88 TRUEX VALUE 'T' 't'. *(TRUEX has 2 values)
 88 FALSEX VALUE 'F' 'f'. *(FALSEX has 2 values)

Where TRUEX and FALSEX are condition names for the TESTX variable if value equals ('T' or 't') or
('F' or 'f'), respectively. So if TESTX = 'T' or 't' then TRUEX = TRUE and FALSEX = FALSE; If
TESTX = 'F' or 'f' then FALSEX = TRUE and TRUEX = FALSE.

14.1.1.3 COBOL88ElementValue
COBOL88ElementValue represents the values specified by COBOL88Element.

14.1.1.4 COBOLAddressingType
COBOLAddressingType is used for index values, pointer values, and procedure pointer values.

14.1.1.5 COBOLAlphabeticType
COBOLAlphabeticType represents a picture string consisting of alphabetic characters.

14.1.1.6 COBOLAlphaNumericEditedType
COBOLAlphaNumericEditedType represents a picture string consisting of either alphabetic or
alphanumeric type and at least one blank (B), zero (0), or slash (/).

14.1.1.7 COBOLAlphaNumericType
COBOLAlphaNumericType represents a picture string consisting of alphabetic and numeric characters.

ad/2001-09-17 UML for EAI 178

14.1.1.8 COBOLClassifier
COBOLClassifier represents all data types of the COBOL metamodel. COBOLClassifier is the parent
class of COBOLComposedType and COBOLSimpleType.

14.1.1.9 COBOLComposedType
COBOLComposedType represents a nested declaration that contains additional elements.
COBOLComposedType has a single aggregation to include all the elements that are part of this
composition.

14.1.1.10 COBOLDBCSType
COBOLDBCSType represents double byte character strings whose code is represented by 16 bits
instead of 8 bits.

14.1.1.11 COBOLElement
COBOLElement represents data elements in the COBOL metamodel.

14.1.1.12 COBOLElementInitialValue
COBOLElementInitialValue stores the value assigned to a COBOLElement at the time storage is
allocated for it.

14.1.1.13 COBOLExternalFloatType
COBOLExternalFloatType represents how COBOL floating points are displayed to the user.

14.1.1.14 COBOLFixedLengthArray
COBOLFixedLengthArray represents an array declared as OCCURS N TIMES.

14.1.1.15 COBOLInitalValueKind
COBOLInitalValueKind is an enumeration of types supported in an initialized element.

14.1.1.16 COBOLInternalFloatType
COBOLInternalFloatType represents COBOL’s internal float data type.

14.1.1.17 COBOLNumericEditedType
COBOLNumericEditedType represents formatted numeric values. COBOLNumericEditedType values
can be decorated with characters such as decimal point (.), dollar sign ($), and arithmetic signs (+,-,*,/)

ad/2001-09-17 UML for EAI 179

14.1.1.18 COBOLNumericType
COBOLNumericType represents a numeric data number, including the implied decimal point and
operational sign. COBOLNumericType can represent binary, packed decimal, and zoned decimal types.

14.1.1.19 COBOLObjectReferenceType
COBOLObjectReferenceType represents an object declared in COBOL as USAGE OBJECT
REFERENCE.

14.1.1.20 COBOLRedefiningElement
COBOLRedefiningElement represents an element declared with the REDEFINES clause.
COBOLRedefiningElement allows different data description entries to describe the same computer
storage area.

14.1.1.21 COBOLSimpleType
COBOLSimpleType is an abstract class that contains attributes shared by all simple types in the
COBOL metamodel.

14.1.1.22 COBOLSourceText
This class contains the entire source code (including comments) and its associated line number.

14.1.1.23 COBOLUnicodeType
COBOLUnicodeType represents COBOL data declared in Unicode format.

14.1.1.24 COBOLUsageValues
COBOLUsageValues is an enumeration of values supported in the USAGE clause.

14.1.1.25 COBOLVariableLengthArray
COBOLVariableLengthArray represents an array declared as OCCURS DEPENDING ON.

14.2 PL/I Metamodel
The PL/I language metamodel is used by enterprise application programs to define data structures
(semantics), which represent connector interfaces,

This language model for PL/I attempts to describe PL/I declares that have the storage class of either
PARAMETER, STATIC or BASED. CONTROLLED, AUTOMATIC and DEFINED are not
supported.

ad/2001-09-17 UML for EAI 180

In the PL/I languages, extents(that is string lengths, area sizes and array bounds) may, in general, be
declared as constants, as expressions to be evaluated at run-time, as asterisks, or as defined via the
REFER option; however, none of these choices are valid for all storage classes.

Based variables whose extents are not constant and not defined via the REFER option are excluded from
this model, as are parameters whose extents are specified via asterisks.

The INITIAL attribute (which is not valid for parameters in any case) will be ignored by the model. The
following figures illustrate the classes that constitute the PL/I metamodel and show how the classes
relate to each other. Following the diagrams is a brief explanation of what each class represents.

PLIComputationalType

PLIArithmeticType
mode : ModeValues

PLIStringType

PLIIntegerType
precision : Integer
scale : Integer

signed : Boolean
bigEndian : Boolean = true

PLIFloatType
base : BaseValues

precision : Integer
ieee : Boolean = false

bigEndian : Boolean = true

PLIPackedType

precision : Integer

scale : Integer

PLIPictureType
pictureString : String

PLIPictureStringType
pictureString : String

PLINonComputationalType

PLILabelType

PLIFormatType

PLIEntryType
limited : Boolean

PLIAreaType

PLIPointerType

PLIFileType

PLINamedType

PLICodedStringType
type : StringTypeValues

varying : LengthType

PLIFixedLengthString
length : Integer

PLIFixedLengthArea
length : Integer

PLIFixedBoundArray

lBound : Integer
uBound : Integer

PLIOrdinalType
precision : Integer
isSigned : Boolean

PLIOrdinalValue
name : String

value : Integer

1..*
+contains
1..*

PLIAttribute
attribute : String

PLIAlias

1..*+contains 1..*

PLISimpleType

1..1

+alias
+type

1..1

PLINamedStructureType
union : Boolean

PLIHandleType
structure : PLINamedStructureType

1..1

+struct

1..1

PLIClassifier

/ name : String

PLIComposedType
union : Boolean

PLISourceText

source : String
fileName : String

PLIArray

PLIVariableLengthString

lengthToAllocate : String

PLIVariableLengthArea

lengthToAllocate : String

PLIFixedLboundArray
lBound : Integer
uBoundtoAllocate : String

PLIVariableBoundArray
LboundToAllocate : String

HboundToAllocate : String

PLIOffsetType
bigEndian : Boolean = true

PLIHboundArray
lBoundtoAllocate : String

uBound : Integer

PLIElementInitialValue
initialValue : String

valueType : PLIInitialValueType

PLIElement

level : String

/ name : String

0..*0..1

+typedElement

0..*

+sharedType

0..1

0..*0..1

+elements

0..*

+group

0..1 1..1

+source

1..1

0..1

0..1+arrayOf

0..1 +array

0..1

1..1

0..*

+referredTo

1..1

+referredIn

0..*

1..1

0..*

+referredTo

1..1

+referredIn

0..*

1..1

0..*

+referredTo

1..1

+referredIn

0..*

0..*

1..1

+referredIn

0..*

+referredTo

1..1

1..*

0..1

+referredTo

1..*+referredIn

0..1

1..1

0..*

+referredIn

1..1

+referredTo

0..*

0..*

1..1

+initial
0..*

+element
1..1

Figure 159 PL/I Metamodel

ad/2001-09-17 UML for EAI 181

TDLangComposedType
(from TDLang)

PLIClassifier

/ name : String
(from PLI)

PLIComposedType

union : Boolean

(from PLI)

TDLangElement
(from TDLang)

TDLangClassifier
(from TDLang)

PLIElementInitialValue

initialValue : String
valueType : PLIInitialValueType

(from PLI)

PLIElement

level : String
/ name : String

(from PLI)

Figure 160 TDLang to PL/I

StringTypeValues

bit
character
widechar
graphic

<<enumeration>>
LengthType

nonVarying
varyingZ
varyingBigEndian
varyingLittleEndian

<<enumeration>>
BaseValues

binary
decimal

<<enumeration>>
ModeValues

real
complex

<<enumeration>>

PLIInitialValueType

initial
initialCall
initialTo

<<enumeration>>

Figure 161 PL/I Stereotypes

14.2.1 PL/I Metamodel Descriptions

14.2.1.1 PLIAlias
PLIAlias represents an alias defined for a collection of data attributes.

14.2.1.2 PLIAreaType
PLIAreaType represents an area variable that describes an area of storage reserved for the allocation of a
based variable.

14.2.1.3 PLIArithmeticType
PLIArithmeticType represents data types that can be represented as rational numbers.

14.2.1.4 PLIArray
PLIArray represents an n-dimensional collection of elements that have identical attributes.

ad/2001-09-17 UML for EAI 182

14.2.1.5 PLIBaseValues
Base Values is an enumeration of base values used by PLIFloatType.

14.2.1.6 PLIClassifier
PLIClassifier represents all data types of the PL/I metamodel.

14.2.1.7 PLICodedStringType
PLICodedStringType represents a character string data item that can contain any of the available set of
characters.

14.2.1.8 PLIComposedType
PLIComposedType is a collection of member elements that can be structure, unions, or elementary
variables and arrays. PLIComposedType has a single aggregation to include all the elements that are a
part of this composition.

14.2.1.9 PLIComputationalType
PLIComputationalType represents types used in computations to produce a desired result. Arithmetic
and string data types constitute computational data type.

14.2.1.10 PLIElement
PLIElement represents data elements in the PL/I metamodel.

14.2.1.11 PLIElementInitialValue
PLIElementInitialValue stores the value assigned to a PLIElement at the time storage is allocated for it.

14.2.1.12 PLIEntryType
PLIEntryType represents an entry constant or the value of an entry variable.

14.2.1.13 PLIFileType
PLIFileType represents the FILE attribute that specifies the associated file name or file variable.

14.2.1.14 PLIFixedBoundArray
PLIFixedBoundArray represents a fixed size array.

ad/2001-09-17 UML for EAI 183

14.2.1.15 PLIFixedLboundArray
PLIFixedLboundArray represents an array whose lower bound is fixed.

14.2.1.16 PLIFixedLengthArea
PLIFixedLengthArea represents a PLIAreaType whose area size is fixed.

14.2.1.17 PLIFixedLengthString
PLIFixedLengthString represents a PLICodedStringType whose string length is fixed.

14.2.1.18 PLIFloatType
PLIFloatType represents numbers stored in floating-point format.

14.2.1.19 PLIFormatType
PLIFormatType represents a format list is to be used in a FORMAT statement.

14.2.1.20 PLIHandleType
PLIHandleType represents a variable as a pointer to a structure type.

14.2.1.21 PLIHboundArray
PLIHboundArray represents an array whose upper bound is fixed.

14.2.1.22 PLIInitialValueType
PLIInitialValueType is an enumeration of initial value types used by PLIElementInitialValue.

14.2.1.23 PLIIntegerType
PLIIntegerType represents numbers stored in binary fixed-point format.

14.2.1.24 PLILabelType
PLILabelType represents a label constant or the value of a label variable.

14.2.1.25 PLILengthType
PLILengthType is an enumeration of length types supported by PLICodedStringType.

ad/2001-09-17 UML for EAI 184

14.2.1.26 PLIModeValues
PLIModeValues is an enumeration specifying the mode used by PLIArithmeticType.

14.2.1.27 PLINamedStructureType
PLINamedStructureType represents a named structure. A structure is a collection of member elements
that can be structure, unions, or elementary variables and arrays.

14.2.1.28 PLINamedType
PLINamedType represents user-defined name types.

14.2.1.29 PLINonComputationalType
PLINonComputationalType represents values used to control execution of a PL/I program.

14.2.1.30 PLIOffsetType
PLIOffsetType represents an offset value relative to the locations of a base variable.

14.2.1.31 PLIOrdinalType
PLIOrdinalType represents a named set of ordered values. The values of PLIOrdinalType are stored in
PLIOrdinalValue.

14.2.1.32 PLIOrdinalValue
PLIOrdinalValue stores the values specified by PLIOrdinalType.

14.2.1.33 PLIPackedType
PLIPackedType represents numbers stored in packed-decimal format.

14.2.1.34 PLIPictureStringType
PLIPictureStringType represents a fixed-length character data item, with the additional restriction that
the data item can only contain characters from certain subsets of the complete set of available characters.

14.2.1.35 PLIPictureType
PLIPictureType represents numeric data held in character form.

14.2.1.36 PLIPointerType
PLIPointerType represents a pointer.

ad/2001-09-17 UML for EAI 185

14.2.1.37 PLISimpleType
PLISimpleType is an abstract class that contains attributes shared by all simple types in the PL/I
metamodel.

14.2.1.38 PLISourceText
This class contains the entire source code (including comments) and its associated line number.

14.2.1.39 PLIStringType
PLIStringType represents a sequence of contiguous characters, bit, widechars, or graphics that are
treated as a single data item.

14.2.1.40 PLIStringTypeValues
PLIStringTypeValues is an enumeration of types supported by PLICodedStringType.

14.2.1.41 PLIVariableBoundArray
PLIVariableBoundArray represents an array whose upper and lower bound are both variable.

14.2.1.42 PLIVariableLengthArea
PLIVariableLengthArea represents a PLIAreaType whose area size is variable.

14.2.1.43 PLIVariableLengthString
PLIVariableLengthString represents a PLICodedStringType whose string length is variable.

ad/2001-09-17 UML for EAI 186

14.3 C Metamodel
The C metamodel including C Main and User Types (i.e. user defined types) is a MOF Class instance at
the M2 level.

The C metamodel is used by enterprise application programs to define data structures, that represent
connector interfaces. The following figures illustrate the classes that constitute the C metamodel and
show how the classes relate to each other. Following the diagrams is a brief explanation of what each
class represents.

CDatatype

CStruct CUnion

CStructuralFeatureCDerived

CParameter

CBehavioralFeature

0..*

0..1

parameter0..*

behavioralFeature0..1

CStructureContents

CStructured

0..*

0..1

contains

0..*

container

0..1

CField CFunction

isVarArg : Boolean

CClassifier

CSourceText
source : String
fileName : String

CTypedElement

0..*1..1

typedElement

0..*

type

1..1 1..1

+source

1..1

Figure 162 C Metamodel

ad/2001-09-17 UML for EAI 187

CStructured
(from C)

CTypedElement
(from C)

CClassifier
(from C)

TDLangComposedType
(from TDLang)

TDLangElement
(from TDLang)

TDLangClassifier
(from TDLang)

Figure 163 TDLang to C

CTypedefCArray

dimension : Integer

CPointer

CStructured CFunction

CDerivableType

CTypedElement

CDerived

1..1

derives

1..1

0..1

0..1

derives

0..1

derived

0..1 CDatatype

Figure 164 C Derivation

ad/2001-09-17 UML for EAI 188

CNamedElement

name : String

CClassifier CStructuralFeature CBehavioralFeature CParameter

Figure 165 C Names

Boolean

true
false

<<enumeration>>

String
<<datatype>>

Integer
<<datatype>>

Figure 166 C Datatype – Model Types

CUnsignedLongLong

CDatatype

(from C)

CShortCLong

CChar

CUnsignedCharCLongLong

CUnsignedShortCUnsignedLong

CIntegral CFloating

CDouble CFloat CLongDouble

CVoid

CWchar

CInt

CUnsignedInt

CBitField

CSignedChar

CEnumeration

Figure 167 C User Types

ad/2001-09-17 UML for EAI 189

14.3.1 C Metamodel Descriptions

14.3.1.1 CArray
CArray represents an ordered group of data objects. CArray refers to each object as an element. All
elements within an array have the same data type.

14.3.1.2 CBehavioralFeature
CBehavioralFeature represents dynamic characteristics of the ModelElement that contains it.
CBehavioralFeature is both a Feature and a Namespace. CBehavioralFeature serves as the parent of
CFunction.

14.3.1.3 CClassifier
CClassifier represents all data types of the C metamodel. CClassifier is the parent class of C Derived
types.

14.3.1.4 CDatatype
CDatatype represents data types and native types.

14.3.1.5 CDerivableType
CDerivableType represents datatypes which can be derived from CDatatype.

14.3.1.6 CDerived
CDerived represents datatypes derived from CDatatypes.

14.3.1.7 CField
CField represents attributes defined in an instance of the C metamodel.

14.3.1.8 CFunction
CFunction represents functions defined in an instance of the C metamodel.

14.3.1.9 CParameter
CParameter provides a means of communication with operations and CBehavioralFeature. A
CParameter passes or communicates values of its defined type.

14.3.1.10 CPointer
CPointer represents a derived datatype declared as a pointer.

ad/2001-09-17 UML for EAI 190

14.3.1.11 CSourceText
This class contains the entire source code (including comments) and its associated line number.

14.3.1.12 CStruct
CStruct represents a structure declared as type struct.

14.3.1.13 CStructuralFeature
CStructuralFeature represents static characteristics of the ModelElement that contains it.
CStructuralFeature serves as the parent of CField.

14.3.1.14 CStructureContents
CStructureContents represent structured data types and structural features.

14.3.1.15 CStructured
CStructured is an abstract class that represents all structured data types of the C metamodel.

14.3.1.16 CTypedef
CTypedef represents a derived datatype declared as type typedef.

14.3.1.17 CTypedElement
CTypedElement represents data elements in the C metamodel.

14.3.1.18 CUnion
CUnion represents a structure declared as type union.

14.4 C++ Metamodel
The C++ metamodel, based on the ANNOTATED C++ REFERENCE MANUAL book (authors:
Margaret A. Ellis, Bjarne Stoustrup), 1990, is a MOF Class instance at the M2 level. The C++
metamodel consists of C++ Main, and Model Types. This metamodel inherits from the C Main
metamodel. The following figures illustrate the classes that constitute the C++ metamodel and show
how the classes relate to each other. Following the diagrams is a brief explanation of what each class
represents.

ad/2001-09-17 UML for EAI 191

CPPClass
isAbstract : Boolean
isVolatile : Boolean
visibility : VisibilityKind

CPPReference

CPPOperator
isInline : Boolean
visibility : VisibilityKind

CPPExtern
linkage : String

CPPMember
isStatic : Boolean
isVolatile : Boolean
isRegister : Boolean
visibi lity : VisibilityKind

CBehavioralFeature
(from C)

CFunction

isVarArg : Boolean
(from C)

CPPConst CPPGeneralization
visibility : VisibilityKind
isVirtual : Boolean

CPPTemplate

0..*

1..1

generalization
0..*

subtype
1..1

1..1

0..*

supertype

1..1

specialization

0..*

0..*

0..*

class 0..*

template
0..*

CPPOperation
isStatic : Boolean
isExtern : Boolean
isInline : Boolean
isVirtual : Boolean
isPure : Boolean
visibility : VisibilityKind
isCtor : Boolean
isDtor : Boolean

0..*

0..*

throws
0..*

thrownBy
0..*

CField
(from C)

CStructured
(fro m C)

CStructureContents
(from C)

CDerivableType
(from C)

CDerived
(from C)

Figure 168 CPP Metamodel

VisibilityKind
public
private
protected

<<enumeration>>

Figure 169 CPP Model Types

14.4.1 C++ Metamodel Descriptions

14.4.1.1 CPPClass
CPPClass represents the C++ class. The only difference between a C structure and a class is that
structure members have public access by default and class members have private access by default.
Consequently, you can use the keywords class or struct to define equivalent classes.

14.4.1.2 CPPConst
CPPConst represents data declared as a constant.

14.4.1.3 CPPExtern
CPPExtern represents a function declared in a C program that is called by the current C++ program.
Declaring a function with the keyword ‘extern’ flags the C++ compiler not to generate an internal name
for the function. As a result, functions declared extern may not be overloaded.

ad/2001-09-17 UML for EAI 192

14.4.1.4 CPPGeneralization
CPPGeneralization represents the different types of generalizations available in a C++ class.
Generalizations include associating a class with virtual inheritance.

14.4.1.5 CPPMember
CPPMember represents functions and variables that are prototyped and declared in a class definition.
CPPMember includes members that are declared with any of the fundamental types, as well as other
types, including pointer, reference, array types, and user-defined types.

14.4.1.6 CPPOperation
CPPOperation represents C++ functions. CPPOperation is a specialization of CFunction from the C
Metamodel and provides additional features such as static declaration.

14.4.1.7 CPPOperator
CPPOperator represents basic operators such as add, subtract, and equals. C++ programmers have the
option to override CPPOperators.

14.4.1.8 CPPReference
CPPReference represents a reference to an object. References are denoted by an ampersand (&) sign.

14.4.1.9 CPPTemplate
CPPTemplate represents a template which must define or declare one of the following:

 A class
 A function
 A static member of a template class

ad/2001-09-17 UML for EAI 193

15 Appendix: Non-Normative Enterprise Application Interface
Metamodels

The application-domain interface metamodel describes signatures for input and output parameters and
return types for enterprise application system domains. IBM's IMS Transaction Message, IMS Message
Format Service (MFS), and CICS Basic Mapping Support (BMS) are examples of such metamodels.
The payload of these interface metamodels typically carries application data destined for a program of a
specific language. Therefore, it is important that these interface metamodels connect to the language
metamodels, as shown in Figure 64 in Section 7.3.9. The class in the interface metamodel which
represents the signature of a message, associates to a language-independent interface class,
TDLangElement, in order to be able to connect to any language metamodel. From TDLangElement
navigations can be done between the Type Descriptor meta model and the language metamodel to
perform type conversion, if necessary.

15.1 IMS Transaction Message Metamodel

IMS OTMA (Open Transaction Manager Access) is a transaction-based, connectionless client/server
protocol within an OS/390 sysplex environment. An IMS OTMA transaction message consists of an
OTMA prefix, plus message segments for input and output requests. Both input and output message
segments contain llzz (i.e. length of the segment and reserved field), and application data. Only the very
first input message segment will contain transaction code in front of the application data. IMS
transaction application programs can be written in a variety of languages, e.g. COBOL, PL/ I, C, Java,
etc. Therefore, the application data can be in any one of these languages.

IMS Transaction Message metamodel captures the metadata associated with sending and receiving
messages to and from IMS transaction applications. ApplicationData class represents the payload
message. Note that the payload message data can be both input and output data parameters. The
following figures illustrate the classes that constitute the IMS Transaction Message metamodel and
show how the classes relate to each other. Following the diagrams is a brief explanation of what each
class represents.

ad/2001-09-17 UML for EAI 194

{
Control
Data
appears
in all
prefixes.
}

{ State
Data
appears in
the prefix
preceding
the first
segment of
all
messages.
}

{
Security
Data
optionaly
appears in
the prefix
preceding
the first
segment of
all
messages.
}

{ UserData
optionaly
appears in
the prefix
preceding
the first
segment of
all
messages.
}

OTMAPrefixFormats
one
two

<<enumeration>>

{ The Transaction Code field can be
from 1 to 8 bytes in length. It's
included only in input messages. }

ControlData
StateData

SecurityData UserData

OTMAPrefix

1..1

1..1

+ControlDataContainer

1..1

+ControlDataComponent

1..1

1..1

1..1

+StateDataContainer

1..1

+StateDataComponent

1..1

1..1

0..1

+SecurityDataContainer

1..1

+SecurityDataComponent
0..1

1..1

0..1

+UserDataContainer

1..1

+UserDataComponent

0..1

StandardFields
Length : TwoByteField

ReservedField : TwoByteField

TransactionCode : VariableLengthField

IMSTransactionMessage
OTMAPrefixFormat : OTMAPrefixFormats = one

StandardFieldsFlag : Boolean

1..1

0..1

+OTMAPrefixContainer

1..1

+OTMAPrefixComponent

0..1 0..1

+StandardFieldsContainer

+StandardFieldsComponent
0..1

Field

TDLangElementApplicationData
(from ApplicationData)

1..1

+MessageContainer

+MessageComponent

1..1

1..*

+FieldContainer

+FieldComponent

1..*

1..1

+languageElement

1..1

Figure 170 IMS Transaction Message Metamodel

ad/2001-09-17 UML for EAI 195

ControlData
ArchitectureLevel : OneByteField
MessageType : TMessageType
ResponseFlag : OneByteField
CommitConfirmationFlag : TCommitConfirmationFlag
CommandType : TCommandType
ProcessingFlag : TProcessingFlag
TpipeName : EightByteField
ChainFlag : TChainFlag
PrefixFlag : TPrefixFlag
SendSequenceNumber : FourByteField
SenseCode : TwoByteField
ReasonCode : TwoByteField
RecoverableSequenceNumber : FourByteField
SegmentSequenceNumber : TwoByteField
Reserved : TwoByteField

StateData
Length : TwoByteField
ServerState : TServerState
SynchronizationFlag : TSynchronizationFlag
SynchronizationLevel : TSynchronizationLevel
Reserved : OneByteField
MapName : EightByteField
ServerToken : SixteenByteField
CorrelatorToken : SixteenByteField
ContextID : SixteenByteField
DestinationOverride : EightByteField
ServerUserDataLength : TwoByteField
ServerUserData : VariableLengthField

SecurityData
Length : TwoByteField
SecurityFlag : TSecurityFlag
LengthOfSecurityFields : OneByteField
UtokenLength : OneByteField
UtokenType : OneByteField
Utoken : VariableLengthField
UserIDLength : OneByteField
UserIDType : OneByteField
UserID : VariableLengthField
ProfileLength : OneByteField
ProfileType : OneByteField
Profile : VariableLengthField

OTMAPrefix

1..1

1..1

+ControlData

1..1

+ControlData

1..1

1..1

1..1

+StateData

1..1

+StateData

1..1

1..1

0..1

+SecurityData

1..1

+SecurityData

0..1

UserData
Length : TwoByteField
UserData : VariableLengthField

1..1

0..1

+UserData

1..1

+UserData

0..1

Figure 171 IMS Transaction Message Prefix

TMessageType
Data : String
Transaction : String
Response : String
Command : String
CommitConfirmation : String

<<enumeration>>
TCommitConfirmationFlag
Committed : String
Aborted : String

<<enumeration>>

TCommandType
ClientBid : String
ServerAvailable : String
CBresynch : String
SuspendProcessingForAllTpipes : String
ResumeProcessingForAllTpipes : String
SuspendInputForTpipe : String
ResumeInputForTpipe : String
SRVresynch : String
REQresynch : String
REPresynch : String
TBresynch : String

<<enumeration>>

TProcessingFlag
SynchronizedTpipe : String
AsynchronousOutput : String
ErrorMessageFollows : String

<<enumeration>>
TChainFlag

FirstInChain : String
MiddleInChain : String
LastInChain : String
DiscardChain : String

<<enumeration>>

TPrefixFlag
StateData : String
SecurityData : String
UserData : String
ApplicationData : String

<<enumeration>>

Figure 172 OTMA Prefix - Defined Types

TServerState
ConversationalState : String
ResponseMode : String

<<enumeration>>
TSynchronizationFlag

CommitThenSend : String
SendThenCommit : String

<<enumeration>>

TSynchronizationLevel
None : String
Confirm : String
SYNCPT : String

<<enumeration>>

Figure 173 OTMA Prefix – State Data Defined Types

ad/2001-09-17 UML for EAI 196

TSecurityFlag

NoSecurity : String
Check : String
Full : String

<<enumeration>>

Figure 174 OTMA Prefix – Security Data Defined Types

SixByteField
<<primitive>>

FourByteField
<<primitive>>

VariableLengthField
<<primitive>>

SixteenByteField
<<primitive>>

TwoByteField
<<primitive>>

OneByteField
<<primitive>>

EightByteField
<<primitive>>

Figure 175 IMS Messages Primitive Types

15.1.1 IMS Transaction Message Metamodel Descriptions

15.1.1.1 ApplicationData
The application data class contains all the message data except for LL, ZZ, and the transaction code.
ApplicationData contains the signature of an IMS transaction message, which can include inputs, output,
and return types. ApplicationData associates with TDLangElement, which provides the linkage to the
language specific physical representation of the data that an ApplicationData represents.

Note: this model does not capture the notion of message segments. When using this model you have to
bear in mind whether the system you are using has any limitations such as a maximum segment size.
IMS “gateway” (via OTMA or SNA) must support the capability of breaking the "application data" into
IMS message segments.

For instance, if you are sending this XML message directly to the IMS message queue and if the
message queue has a 32k limit, then you have to take your XML message and break it up into 32k
chunks. The application on IMS will then have to gather up the 32k chunks one by one. IMS new
applications that receive XML documents directly, must be capable of receiving XML documents in
multiple segments.

ad/2001-09-17 UML for EAI 197

For ACK or NAK messages, there is no application data included in the message field.
Each data field, defined in a copybook for the application data, will be associated with type descriptor
for data types.

15.1.1.2 ControlData
ControlData is message-control information. It includes the transaction-pipe name, message type,
sequence numbers, flags and indicators.

ControlData has the following private attributes:

• ArchitectureLevel is an OneByteField.

Specifies the OTMA architecture level. The client specifies an architecture level, and the server
indicates in the response message which architecture level it is using. The architecture levels used by a
client and a server must match.

With IMS Version 6, the only valid value is X'01'. It is mandatory for all messages.

• MessageType is TmessageType.

Specifies the message type. Every OTMA message must specify a value for the message type. The
values are not mutually exclusive. For example, when the server sends an ACK message to a client-
submitted transaction, both the transaction and response flags are set.

• ResponseFlag is OneByteField.

Specifies either that the message is a response message or that a response is requested.
Acknowledgements to transactions include attributes (for that transaction) in the application-data section
of the message prefix only if the transaction specifies Extended Response Requested.

• CommitConfirmationFlag is TcommitConfirmationFlag.

Specifies the success of a commit request. Sent by the server to the client in a commit-confirmation
message. These messages are only applicable for send-then-commit transactions, and are not affected
by the synchronization-level flag in the state-data section of the message prefix.

• CommandType is TcommandType.

Specifies the OTMA protocol command type.
IMS commands are specified in the application-data section of the message.

• ProcessingFlag is TprocessingFlag.

Specifies options by which a client or a server can control message processing.

ad/2001-09-17 UML for EAI 198

• TpipeName is EightByteField.

Specifies the transaction-pipe name. For IMS, this name is used to override the LTERM name on the
I/O PCB. This field is applicable for all transaction, data, and commit-confirmation message types. It is
also applicable for certain response and command message types.

• ChainFlag is TchainFlag.

Specifies how many segments are in the message. This flag is applicable to transaction and data
message types, and it is mandatory for multi-segment messages.

• PrefixFlag is TprefixFlag.

Specifies the sections of the message prefix that are attached to the OTMA message. Every message
must have the message-control information section, but any combination of other sections can be sent
with an OTMA message.

• SendSequenceNumber is FourByteField.

Specifies the sequence number for a transaction pipe. This sequence number is updated by the client
and server when sending message or transactions.
Recommendation: Increment the number separately for each transaction pipe.
This number can also be used to match an ACK or NAK message with the specific message being
acknowledged.

• SenseCode is TwoByteField.

Specifies the sense code that accompanies a NAK message.

• ReasonCode is TwoByteField.

Specifies the reason code that accompanies a NAK message. This code can further qualify a sense code.

• RecoverableSequenceNumber is FourByteField.

Specifies the recoverable sequence number for a transaction pipe. Incremented each time a recoverable
message is sent using a synchronized transaction pipe. Both the client and the server increment their
recoverable send-sequence numbers and maintain them separately from the send-sequence number.

• SegmentSequenceNumber is TwoByteField.

Specifies the sequence number for a segment of a multi-segment message. This number must be
updated for each segment, because messages are not necessarily delivered sequentially by XCF.
This number must have a value of 0 (zero) if the message has only one segment.

• Reserved is a TwoByteField.

ad/2001-09-17 UML for EAI 199

15.1.1.3 IMSTransactionMessage
IMSTransactionMessage is the base class of the IMS transaction message metamodel which includes the
following IMS messages scenarios:

• IMS OTMA messages with the OTMA prefix
• IMS OTMA messages without the OTMA prefix
• IMS basic messages to be sent to the application program directly

15.1.1.4 OTMAPrefix
An IMS OTMA prefix can appear either before all message segments, or only before the first segment of
the message.

However, the OTMA prefix is optional. If it is not specified, the IMS gateway will build a default one
for the request.

15.1.1.5 OTMAPrefixFormats
OTMAPrefixFormats has the following two types:

• Format “one”: a prefix appears before all message segments.
• Format “two”: a prefix appears only before the first message segment.

15.1.1.6 SecurityData
SecurityData includes the user ID, user token, and security flags.
The security-data section is mandatory for every transaction, and can be present for OTMA command
messages.

SecurityData has the following private attributes:

• Length is TwoByteField.

Specifies the length of the security data section of the message prefix, including the length field.

• SecurityFlag is TsecurityFlag.

Specifies the type of security checking to be performed. It is assumed that the user ID and password are
already verified.

• LengthOfSecurityFields is OneByteField.

Specifies the length of the security data fields: User ID, Profile, and Utoken. These three fields can
appear in any order, or they can be omitted. Each has the following structure: Length field, then Field

ad/2001-09-17 UML for EAI 200

type, then Data field. The actual length of the User ID or Profile should not be less than the value
specified for the length of each field.

Length can be 0.

• UtokenLength is OneByteField.

Specifies the length of the user token. Length does not include length field itself.

• UtokenType is OneByteField.

Specifies that this field contains a user token. (Value X'00').

• Utoken is VariableLengthField.

Specifies the user token. The user ID and profile are used to create the user token. The user token is
passed along to the IMS dependent region.

If the client has already called FACF, it should pass the Utoken with field type X'00' so that RACF is not
called again. Utoken is a variable length, from 1 to 80 bytes.

• UserIDLength is OneByteField.

Specifies the length of the user ID. Length does not include length field itself.

• UserIDType is OneByteField.

Specifies that this field contains a user ID. (Value X'02').

• UserID is VariableLengthField.

Specifies the actual user ID. UserID is a variable length, from 1 to 10 bytes.

• ProfileLength is OneByteField.

Specifies the length of the profile. Length does not include length field itself.

• ProfileType is OneByteField.

Specifies that this field contains a profile. (Value X'03').

• Profile is VariableLengthField.

Specifies the system authorization facility (SAF) profile. For RACF, this is the group name. Profile is a
variable length, from 1 to 10 bytes.

ad/2001-09-17 UML for EAI 201

15.1.1.7 StandardFields
StandardFields consist of LL, ZZ and transaction code. Transaction code appears with first segment of
input messages only, and it comes after LL (length) and ZZ (reserved field). The transaction code field
can be from 1 to 8 bytes in length.

 StandardFields are not included in the following scenarios:

• Sending XML documents directly to the IMS transaction application programs
• ACK or NAK messages to IMS applications

15.1.1.8 StateData
StateData includes a destination override, map name, synchronization level, commit mode, tokens and
server state.

StateData has the following private attributes:

• Length is a of type TwoByteField.
• ServerState is of type ServerState. It specifies the mode in which the transaction is running.
• SynchronizationFlag is of type TsynchronizationFlag. It specifies the commit mode of the
transaction. This flag controls and synchronizes the flow of data between the client and server.
• SynchronizationLevel is of type TsynchronizationLevel. It specifies the transaction synchronization
level, the way in which the client and server transaction program (for example, IMS application
program) interacts with program output messages.

The default is Confirm. IMS always requests a response when sending commit-then-send output to a
client.

• Reserved is OneByteField.
• MapName is EightByteField.

Specifies the formatting map used by the server to map output data streams (for example, 3270 data
streams). Although OTMA does not provide MFS support, you can use the map name to define the
output data stream. The name is an 8-byte MOD name that is placed in the I/O PCB. IMS replaces this
field in the prefix with the map name in the I/O PCB when the message is inserted. The map name is
optional.

• ServerToken is SixteenByteField.

Specifies the server name. The Server Token must be returned by the client to the server on response
messages (ACKs or NAKs). For conversational transactions, the Server Token must also be returned by
the client on subsequent conversational input.

• CorrelatorToken is SixteenByteField.

ad/2001-09-17 UML for EAI 202

Specifies a client token to correlate input with output. This token is optional and is not used by the
server.
Recommendation: Clients should use this token to help manage their transactions.

• ContextID is SixteenByteField.

Specifies the RRS/MVS token that is used with SYNCLVL=02 and protected conversations.

• DestinationOverride is EightByteField.

Specifies an LTERM name used to override the LTERM name in the IMS application program's I/O
PCB. This override is used if the client does not want to override the LTERM name in the I/O PCB with
the transaction-pipe name.
This optional override is not used if it begins with a blank.

• ServerUserDataLength is TwoByteField.

Specifies the length of the server user data, if any. The maximum length of the server use data is 256
bytes.

• ServerUserData is VariableLengthField.
Specifies any data needed by the server. If included in a transaction message by the client, it is returned
by the server in the output data messages.

15.1.1.9 TChainFlag
TchainFlag has the following private attributes:

• FirstInChain (value X'80') specifies the first segment in a chain of segments, which comprise a
multi-segment message. Subsequent segments of the message only need the message-control
information section of the message prefix. Other applicable prefix segments (for example, those
specified by the client on the transaction message) are sent only with the first segment (with the first-in-
chain flag set).
If the OTMA message has only one segment, the last-in-chain flag should also be set.
• MiddleInChain (value X'40') specifies a segment that is neither first nor last in a chain of segments
that comprise a multi-segment message. These segments only need the message-control information
section of the message prefix.
Restriction: Because the client and server tokens are in the state-data section of the message prefix, they
cannot be used to correlate and combine segmented messages. The transaction-pipe name and send-
sequence numbers can be used for this purpose; they are in the message-control information section of
the message prefix for each segment.
• LastInChain (value X'20') specifies the last segment of a multi-segment message.
• DiscardChain (value X'10') specifies that the entire chain of a multi-segment message is to be
discarded. The last-in-chain flag must also be set.

ad/2001-09-17 UML for EAI 203

15.1.1.10 TCommandType
TcommandType has the following private attributes:

• ClientBid (value X'04') specifies the first message a client sends to the OTMA server. This
command must also set the response-requested flag and the security flag in the message-control
information section of the message prefix. The appropriate stat-data fields (for example, Member
Name) must also be set.
• The security-data prefix must specify a Utoken field so the OTMA server can validate the client's
authority to act as an OTMA client.
Because the server can respond to the client-bid request, this message should not be sent until the client
is ready to start accepting data messages.
• ServerAvailable (value X'08') specifies the first message the server sends to a client. It is sent when
the server has connected to the XCF group before the client has connected. The client replies to the
server Available message with a client-bid request. The appropriate state data fields (for example,
Member Name) must also be set.
If the client connects first, it is notified by XCF when the server connects, and begins processing with a
client-bid request.
• CBresynch (value X'0C') specifies a client-bid message with a request by the client for
resynchronization. This command is optional and causes the server to send an SRVresynch message to
the client. The CBresynch command is the first message that a client sends to the OTMA server when it
attempts to resynchronize with IMS and existing synchronized Tpipes exist for the client. Other than the
CBresynch message indicator in the message prefix, the information required for the message prefix
should be identical to the client-bid command.
If IMS receives a client-bid request for them client and IMS is aware of existing synchronized Tpipes,
IMS issues informational message DFS2394I to the MTO. IMS resets the recoverable send- or receive-
sequence numbers to 0 (zero) for all the synchronized Tpipes.
• SuspendProcessingForAllTpipes (value X'14') specifies that the server is suspending all message
activity with the client. All subsequent data input receives a NAK message from the server. Similarly,
the client should send a NAK message for any subsequent server messages. If a client wishes to suspend
processing for a particular transaction pipe, it must submit a /STOP TPIPE command as an OTMA
message.
• ResumeProcessingForAllTpipes (value X'18') specifies that the server is resuming message activity
with the client. If a client wishes to resume processing for a particular transaction pipe that has been
stopped, it must submit a /START TPIPE command as an OTMA message.
• SuspendInputForTpipe (value X'1C') specifies that the server is overloaded and is temporarily
suspending input for the transaction pipe. All subsequent client input receive NAK messages for the
transaction pipe specified in the message-control information section of the message prefix. A response
is not requested for this command.
• This architected command is also sent by IMS when the master terminal operator enters a /STOP
TPIPE command.
• ResumeInputForTpipe (value X'20') specifies that the server is ready to resume client input
following an earlier Suspend Input for Tpipe command. A response is not requested for this command.
This command is also sent by IMS when the IMS master terminal operator issues a /START TPIPE
command.

ad/2001-09-17 UML for EAI 204

• SRVresynch (value X'2C') specifies the server's response to a client's CBresynch command. This
command specifies the states of synchronized transaction pipes within the server (the send- and receive-
sequence numbers).
This command is sent as a single message (with single or multiple segments), and an ACK is requested.
• REQresynch (value X'30') specifies the send-sequence number and the receive sequence for a
particular Tpipe. REQresynch is send from IMS to a client.
• REPresynch (value X'34') specifies the client's desired state information for a Tpipe. A client sends
the REPresynch command to IMS in response to the REQresynch command received from IMS.
• TBresynch (value X'38') specifies that the client is ready to receive the REQresynch command from
IMS.

15.1.1.11 TCommitConfirmationFlag
TcommitConfirmationFlag has the following private attributes:

• Committed (value X'80') specifies that the server committed successfully.
• Aborted (value X'40') specifies that the server aborted the commit.

15.1.1.12 TMessageType
TmessageType has the following private attributes:

• Data (value X'80') specifies server output data sent to the client. If the client specifies
synchronization level Confirm in the state-data section of the message prefix, the server also sets
Response Requested for the response flag. If the client does not specify a synchronization level, the
server uses the default, Confirm.
• Transaction (value X'40') specifies client input data to the server.
• Response (value X'20') specifies that the message is a response message, and is only set if the
message for which this message is the response specified Response Requested for the response flag. If
this flag is set, the response flag specifies either ACK or NAK.
• The send-sequence numbers must match for the original data message and the response message.
Chained transaction input messages to the server must always request a response before the next
transaction (for a particular transaction pipe) is sent.
• Command (value X'10') specifies an OTMA protocol command. OTMA commands must always
specify Response Requested for the Response flag.
• CommitConfirmation (value X'08') specifies that commit is complete. This is sent by the server
when a sync point has completed, and is only applicable for send-then-commit transactions. The
commit-confirmation flag is also set.

15.1.1.13 TPrefixFlag
TPrefixFlag has the following attributes:

• StateData (value X'80') specifies that the message includes the state-data section of the message
prefix.

ad/2001-09-17 UML for EAI 205

• SecurityData (value X'40') specifies that the message includes the security-data section of the
message prefix.
• UserData (value X'20') specifies that the message includes the user-data section of the message
prefix.
• ApplicationData (value X'10') specifies that the message includes the application-data section of the
message prefix.

15.1.1.14 TProcessingFlag
TprocessingFlag has the following private attributes:

• SynchronizedTpipe (value X'40') specifies that the transaction pipe is to be synchronized. Allows
the client to resynchronize a transaction pipe if there is a failure. Only valid for commit-then-send
transactions.
This flag causes input and output sequence numbers to be maintained for the transaction pipe. All
transactions routed through the transaction pipe must specify this flag consistently (either on or off).
• AsynchronousOutput (value X'20') specifies that the server is sending unsolicited queued output to
the client. This can occur when IMS inserts a message to an alternate PCB. Certain IMS commands,
when submitted as commit-then-send, can cause IMS to send the output to a client with this flag set. In
this case, the OTMA prefixes contain no identifying information that the client can use to correlate the
output to the originating command message. These command output data messages simply identify the
transaction-pipe name. IMS can also send some unsolicited error messages with only the transaction-
pipe name.
• ErrorMessageFollows (value X'10') specifies that an error message follows this message. This flag
is set for NAK messages from the server. An additional error message is then sent to the client.
The asynchronous-output flag is not set in the error data message, because the output is not generated by
an IMS application.

15.1.1.15 TResponseFlag
TResponseFlag has the following private attributes:

• ACK (value X'80') specifies a positive acknowledgement.
• NAK (value X'40') specifies a negative acknowledgement.
• ResponseRequested (value X'20') specifies that a response is requested for this message. This can be
set for message types of Data, Transaction, or Command.
• When sending send-then-commit IMS command output, IMS does not request an ACK regardless of
the synchronization level.
• ExtendedResponseRequested (value X'10') specifies that an extended response is requested for this
message. Can be set by a client only for transactions (or for transactions that specify an IMS command
instead of a transaction code).
• If this flag is set for a transaction, IMS returns the architected attributes for that transaction in the
application-data section of the ACK message.
• If this flag is set for a command, IMS returns the architected attributes in the application-data section
of the ACK message. This flag can be set for the IMS commands /DISPLAY TRANSACTION and

ad/2001-09-17 UML for EAI 206

/DISPLAY TRANSACTION ALL.

15.1.1.16 TSecurityFlag
TSecurityFlag has the following attributes:

• NoSecurity (value X'N') specifies that no security checking is to be done.
• Check (value X'C') specifies that transaction and command security checking is to be performed.
• Full (value X'F') specifies that transaction, command, and MPP region security checking is to be
performed.

15.1.1.17 TServerState
TServerState has the following private attributes:

• ConversationalState (value X'80') specifies a conversational mode transaction. The server sets this
state when processing a conversational-mode transaction. This state is also set by the client when
sending subsequent IMS conversational data messages to IMS.
• ResponseMode (value X'40') specifies a response-mode transaction. Set by the server when
processing a response-mode transaction.
This state has little significance for an OTMA server, because OTMA does not use sessions or terminals.

15.1.1.18 TSynchronizationFlag
TSynchronizationFlag has the following private attributes:

• CommitThenSend (value X'40') specifies a commit-then-send transaction. The server commits
output before sending it; for example, IMS inserts the output to the IMS message queue.
• SendThenCommit (value X'20') specifies a send-then-commit transaction. The server sends output
to the client before committing it.

15.1.1.19 TSynchronizationLevel
TSynchronizationLevel has the following private attributes:

• None (value X'00') specifies that no synchronization is requested. The server application program
does not request an ACK message when it sends output to a client.
• None is only valid for send-then-commit transactions.
• Confirm (value X'01') specifies that synchronization is requested. The server sends transaction
output with the response flag set to Response Requested in the message-control information section of
the message prefix.
Confirm can be used for either commit-then-send or send-then-commit transactions.
• SYNCPT (value X'02') specifies that the programs participate in coordinated commit processing on
resources updated during the conversion under the RRS/MVS recovery platform. A conversation with
this level is also called a protected conversation.

ad/2001-09-17 UML for EAI 207

15.1.1.20 UserData
UserData includes any special information needed by the client. The user-data section is variable length
and follows the security-data section of the message prefix. It can contain any data.

UserData has the following attributes:

• Length is a TwoByteField.

Specifies the length of the user-data section of the message prefix, including the length field. The
maximum length of the user data is 1024 bytes.

• UserData is a VariableLengthField.

Specifies the optional user data. This data is managed by the client, and can be created and updated
using the DFSYDRU0 exit routine. The server returns this section unchanged to the client as the first
segment of any output messages.

ad/2001-09-17 UML for EAI 208

15.2 IMS MFS Metamodel

Today there are many IMS application programs which run crucial business processes. Many of these
IMS programs are based on IMS’s message format service (MFS). MFS is a facility of the IMS
Transaction Manager environment that formats messages to and from terminal devices. As these
business processes are updated to exploit new business-to-business (B2B) technologies, there is a
requirement for an easy and effective method of upgrading MFS applications with e-business
capabilities. What is needed is the ability to send and receive IMS transaction messages, including MFS
messages, as XML documents.

The MFS language utility processes MFS source, generates IMS control blocks, in a proprietary format,
known as Message Input/Output Descriptors (MID/MOD) and Device Input/Output Format (DIF/DOF),
and places them in an IMS Format Library. MFS supports several terminal types, including 3270s and
VTAM LU1s using SCS, it was designed so that the IMS application programs using MFS do not
themselves have to deal with any device-specific characteristics in the input or output messages.
Because MFS provides headers, page numbers, operator instructions, and other literals to the device, the
application’s input and output messages can be built without having to pass these format literals. MFS
identifies all fields in the message response and formats these responses according to the specific device
type that is the target for the response. This allows application programmers to concentrate their efforts
on the business logic of the program.

Because the IMS application program I/O data structures do not fully describe the end user interaction
with these existing MFS applications, a way is needed to deal with the information that is buried within
various MFS statements. Important examples of this kind of information are 3270 screen attribute bytes
and PFKey input data. PFKeys can have significant semantic meaning for an application; it can even be
used to initiate transactions. Many IMS application programs are passed PFKey data in input messages,
but no application logic is required to recognize that a certain PFkey was pressed and therefore must be
inserted into the input message. This is because, at runtime, it is the MFS online processing and not the
application that places the literal that corresponds to the PFKey pressed into the appropriate field in the
input message.

The IMS MFS metamodel, modeled from the MFS source, captures certain services or functions
currently provided by MFS. Examples of such services or functions are PF keys, logical pages,
predefined literals, and attribute bytes.

Note that the MFS metamodel supports the following device types:

• 3270 and 3270-An
• 3270P

The following device types are not supported:

• 2740 or 2741
• 3600 or 4700

ad/2001-09-17 UML for EAI 209

• FIN
• FIDS, FIDS3, FIDS4 or FIDS7
• FIJP, FIPB or FIFP
• SCS1
• SCS2
• DPM-An
• DPM-Bn

The MFS metamodel does not support the following MFS statements:

• EJECT
• PD
• PDB
• PDBEND
• PPAGE (partial support, see DFLD)
• PRINT
• RCD
• SPACE
• TITLE

MFSMessageField identifies the signature of an IMS FMS message, which can include both inputs and
outputs. MFSMessageField associates with TDLangElement, which provides the linkage to the language
and platform specific representations of the data. The following figures illustrate the classes that
constitute the IMS MFS metamodel and show how the classes relate to each other. Following the
diagrams is a brief explanation of what each class represents.

ad/2001-09-17 UML for EAI 210

MFSStatement

MFSMessageDescriptor

MFSSegment

MFSLogicalPage MFSDeviceType

MFSDeviceDivision

MFSMessageField

MFSDevicePage

MFSDeviceField

MFSTable MFSIfCondition

MFSPassword

MFSDeviceDescriptor

Figure 176 MFS Inheritance View

ad/2001-09-17 UML for EAI 211

MFSIfCondit ion

MFSDeviceDivision

MFSTable

1..*+conditions 1..*

MFSCursorType MFSFunctionKeyType

MFSDeviceType
1..1

+division

1..1

MFSDeviceDescriptor

1..*+devices 1..*

MFSDevicePage

1..*+devicePages 1..*

MFSDeviceField

1..*+deviceFields 1..*

0..1

+operatorControl

0..1

0..*
+systemMessage

0..*

0..1+deviceField 0..1

1..1 +deviceField1..1

0..1+card 0..1

0..1 +pen0..1

MFSMessageDescriptor0..1

+nextMessage

0..1 0..1

+deviceDescriptor

0..1

MFSPassword

MFSLogicalPage

1..* +logicalPages1..*

0..*

+devicePages

0..*

0..1+prompt 0..1

0..1 +nextMessage0..1

0..1 +password0..1

MFSSegment
1..*+segments 1..*

TDLangElement
(from TDLang)

MFSMessageField 0..*

+deviceFields

0..*

1..* +passwordFields1..*
1..*+messageFields 1..*

+languageElement 1..11..1

Figure 177 MFS Relationship View

ad/2001-09-17 UML for EAI 212

MFSDescriptorType

input
output
inout

<<enumeration>>

MFSJustifyType

left
right

<<enumeration>>

MFSSegment

exit : MFSExitType
graphic : BooleanMFSDeviceDivision

type : MFSDescriptorType
compression : MFSCompressionType

MFSDeviceType

dsca : String
features : MFSFeatureType
page : MFSPageType
pfk : MFSFunctionKeyType
substitution : String
type : String
width : int

MFSMessageField

attributes : Boolean
exit : MFSExitType
extendedAttributes : int
fill : String
justify : MFSJustifyType
length : MFSLengthType
value : String

MFSDevicePage

cursor : MFSCursorType
fill : String
multiplePages : Boolean

MFSDeviceField

attributes : MFSAttributeType
extendedAttributes : MFSExtendedAttributeType
length : int
pen : String
position : MFSPositionType
value : String

MFSIfCondition

condition : MFSConditionType
action : String

MFSCompressionType

fixed
short
all

<<enumeration>>

MFSCursorType

row : int
column : int

MFSConditionType

leftOperand : String
rightOperand : String
operator : MFSOperatorType

MFSExitType

number : int
vector : int

MFSPositionType

row : int
column : int
physicalPage : int

MFSFunctionKeyType

<<0..*>> functionList : String

MFSOperatorType

equal
notEqual
greaterThan
greaterThanOrEqual
lessThan
lessThanOrEqual

<<enumeration>>

MFSAttributeType

attributeBytes : Boolean
detectable : MFSDetectabilityType
intensity : MFSIntensityType
modified : Boolean
numeric : Boolean
protected : Boolean
strip : Boolean

MFSExtendedAttributeType

color : MFSColorType
extendedGraphicCharacterSet : String
highlighting : MFSHighlightingType
mixed : Boolean
outlining : MFSOutliningType
programmedSymbol : String
validation : MFSValidationType

MFSDetectabilityType

deferred
immediate
nondetectable

<<enumeration>>

MFSIntensityType

normal
high
nondisplayable

<<enumeration>>

MFSHighlightingType

default
blink
reversevideo
underline

<<enumeration>>

MFSColorType

blue
red
green
pink
turquoise
yellow
default
neutral

<<enumeration>>

MFSValidationType

default
fill
field
both

<<enumeration>>

MFSOutliningType

box : Boolean
right : Boolean
left : Boolean
under : Boolean
over : Boolean
value : String

MFSStatement

label : String
comments : String

MFSPageType

number : int
formatting : MFSPageFormattingType

MFSPageFormattingType

defined
space
float

<<enumeration>>

MFSFeatureType

card : Boolean
dataEntryKeyboard : Boolean
functionKeys : Boolean
group : int
ignore : Boolean
pen : Boolean

MFSLengthType

length : int
firstByte : int

MFSMessageDescriptor

fill : String
ignoreSource : Boolean
option : int
paging : Boolean
type : MFSDescriptorType

MFSLogicalPage

condition : MFSConditionType
promptValue : String

Figure 178 MFS Attribute View

15.2.1 IMS MFS Metamodel Descriptions

15.2.1.1 MFSDeviceDescriptor
This class encapsulates the MFS “FMT” statement.

The FMT statement initiates and names a format definition that includes one or more device formats
differing only in the device type and features specified in the DEV statement. Each device format

ad/2001-09-17 UML for EAI 213

included in the format definition specifies the layout for data sent to or received from a device or a
remote program. All attributes are supported

15.2.1.2 MFSDeviceDivision
This class encapsulates the MFS “DIV” statement.

The DIV statement defines device formats within a DIF or DOF. The formats are identified as input,
output, or both input and output, and can consist of multiple physical pages. Only one DIV statement per
DEV is allowed.

The MFS metamodel does not support the following DIV attributes:

• RCDCTL
• HDRCTL
• OPTIONS
• OFTAB
• DPN
• PRN
• RDPN
• RPRN

15.2.1.2.1 type : MFSDescriptorType
TYPE attribute.

Describes an input only format (INPUT), an output only format (OUTPUT), or both (INOUT).

If DIV TYPE=OUTPUT or TYPE=INPUT is specified, certain DEV statement keywords are applicable.

15.2.1.2.2 compression : MFSCompressionType
COMPR attribute.

Requests MFS to remove trailing blanks from short fields, fixed-length fields, or all fields presented by
the application program.

15.2.1.3 MFSDeviceField
This class encapsulates the MFS “DFLD” statement.

The DFLD statement defines a field within a device format, which is read from or written to a terminal
or remote program. Only those areas, which are of interest to the IMS or remote application program
should be defined. Null space in the format does not need to be defined. The SLD attribute is not
supported.

15.2.1.3.1 attributes : MFSAttributeType
ATTR attribute.

ad/2001-09-17 UML for EAI 214

15.2.1.3.2 extendedAttributes : MFSExtendedAttributeType
EATTR attribute.

15.2.1.3.3 length : int
LTH attribute.

Specifies the length of the field. This operand should be omitted if 'literal' is specified in the positional
parameter, in which case the length of literal is used as the field length. Unpredictable formatting output
can occur if this operand is used in conjunction with a 'literal' and the two lengths are different. The
specified LTH= cannot exceed the physical page size of the device.

The maximum allowable length for all devices except 3270, 3604 display, and DPM with
RCDCT=NOSPAN is 8000 characters. For 3270 displays, the maximum length is one less than screen
size. For example, for a 480-character display, the maximum length is 479 characters. A length of 0
must not be specified. If SCA and LTH= are both specified, LTH must be 2.

POS= and LTH= do not include the attribute character position reserved for a 3270 display device or a
DFLD with ATTR=YES specified. The inclusion of this byte in the design of display/printer formats is
necessary because it occupies the screen/printed page position preceding each displayed/printed field
even though it is not accessible by an application program.

When defining DFLDs for 3270 printers, a hardware ATTRIBUTE character is not used. Therefore,
fields must be defined with a juxtaposition that does not allow for the attribute character unless
ATTR=YES is specified. However, for printers defined as 3270P the last column of a print line (based
on FEAT=, WIDTH=, or the device default width) cannot be used. The last column of the line is
reserved for carriage control operations performed by IMS. Thus, if the print line specifies 120
(FEAT=120) and the DFLD specifies POS=(1,1),LTH=120 then 119 characters are printed on line 1 and
one character on line 2.

Detectable fields (DET or IDET) must include four positions in POS and LTH for a 1-byte detection
designator character and 3 pad characters, unless the detectable field is the last field on a display line, in
which case only one position for the detection designator character is required. The detection designator
character must precede field data, and pad characters (if required) follow field data. Detection designator
and required pad characters must be supplied by the application program or MFLD literal with the field
data. Pad characters can also be required in the preceding field on the device.

15.2.1.3.4 pen : String
PEN attribute.

Specifies a literal to be selected or an operator control function to be performed when this field is
detected. If (1) 'literal' is specified, (2) the field is defined as immediately detectable (ATTR= operand),
and (3) contains the null or space designator character, the specified literal is placed in the field referred
to by the PEN operand of the preceding DEV statement when the field is detected (if no other device
fields are modified). If another field on the device is modified, a question mark (?) is provided instead of
the literal. Literal length must not exceed 256 bytes.

ad/2001-09-17 UML for EAI 215

If (1) a control function is specified, (2) the field is defined as immediately detectable (ATTR=
operand), and (3) contains the null or space designator character, the specified control function is
performed when the field is detected and no other device fields are modified. If another field on the
device is modified, a question mark (?) is provided and the function is not performed. Control functions
that can be specified are:

o NEXTPP--PAGE ADVANCE specifies a request for the next physical page in the current output
message. If no output message is in progress, no explicit response is made.

o NEXTMSG--MESSAGE ADVANCE specifies a request to dequeue the output message in
progress (if any) and to send the next output message in the queue (if any).

o NEXTMSGP--MESSAGE ADVANCE PROTECT specifies a request to dequeue the output
message in progress (if any), and send the next output message or return an information message
indicating that no next message exists.

o NEXTLP--NEXT LOGICAL PAGE specifies a request for the next logical page of the current
message.

o ENDMPPI--END MULTIPLE PAGE INPUT specifies the end of a multiple physical page input
message.

o ENDMPPI is valid only if data has been received and will not terminate multiple page input
(MPPI) in the absence of data entry.

15.2.1.3.5 position : MFSPositionType
POS attribute.

Defines the first data position of this field in terms of line (lll), column (ccc), and physical page (pp) of
the display format. If pp is omitted, 1 is assumed.

For DEV TYPE=3270, 3270-An, or 3270P:

o lll,ccc,pp specifies the line, column, and optionally, the physical page number for an output field.
lll, ccc, and pp must be greater than or equal to 1.

o For 3270 displays, POS=(1,1) must not be specified. Fields must not be defined such that they
wrap from the bottom to the top.

Restriction: On some models of 3270s, the display screen cannot be copied when a field starting on line
1, column 2, has both alphabetic and protect attributes.

15.2.1.3.6 value : String
The default value of the device field.

ad/2001-09-17 UML for EAI 216

15.2.1.4 MFSDevicePage
This class encapsulates the MFS “DPAGE” statement.

The DPAGE statement defines a logical page of a device format. This statement can be omitted if none
of the message descriptors referring to this device format (FMT) contains LPAGE statements and if no
specific device option is required. It is implied if not present.

The MFS metamodel does not support the following DPAGE attributes:
• ACTVPID
• COND
• OFTAB
• ORIGIN
• PD
• SELECT

15.2.1.4.1 cursor : MFSCursorType
CURSOR attribute.

Specifies the position of the cursor on a physical page. Multiple cursor positions may be required if a
logical page or message consists of multiple physical pages. The value lll specifies line number, ccc
specifies column; both lll and ccc must be greater than or equal to 1. The cursor position must either be
on a defined field or defaulted. The default lll,ccc value for 3270 displays is 1,2. For Finance display
components, if no cursor position is specified, MFS will not position the cursor--the cursor is normally
placed at the end of the output data on the device. For Finance display components, all cursor
positioning is absolute, regardless of the ORIGIN= parameter specified.

The dfld parameter provides a method for supplying the application program with cursor information on
input and allowing the application program to specify cursor position on output.

Recommendation: Use the cursor attribute facility (specify ATTR=YES in the MFLD statement) for
output cursor positioning.

The dfld parameter specifies the name of a field containing the cursor position. This name may be
referenced by an MFLD statement and must not be used as the label of a DFLD statement in this DEV
definition. The format of this field is two binary halfwords containing line and column number,
respectively. When this field is referred to by a message input descriptor, it will contain the cursor
position at message entry. If referred to by a message output descriptor, the application program places
the desired cursor position into this field as two binary halfwords containing line and column,
respectively. Binary zeros in the named field cause the specified lll,ccc to be used for cursor positioning
during output. During input, binary zeros in this field indicate that the cursor position is not defined. The
input MFLD referring to this dfld should be defined within a segment with GRAPHIC=NO specified or
should use EXIT=(0,2) to convert the binary numbers to decimal.

15.2.1.4.2 fill : String
FILL attribute.

ad/2001-09-17 UML for EAI 217

Specifies a fill character for output device fields. Default value for all device types except the 3270
display is X'40'; default for the 3270 display is PT. For 3270 output when EGCS fields are present, only
FILL=PT or FILL=NULL should be specified. A FILL=PT erases an output field (either a 1- or 2-byte
field) only when data is sent to the field, and thus does not erase the DFLD if the application program
message omits the MFLD.

� NONE must be specified if the fill character from the message output descriptor is
to be used to fill the device fields.

� X'hh' character whose hexadecimal representation is 'hh' will be used to fill the
device fields.

� C'c' character 'c' will be used to fill the device fields.

� NULL specifies that fields are not to be filled. For devices other than the 3270
display, 'compacted lines' are produced when message data does not fill the device
fields.

� PT specifies that output fields that do not fill the device field (DFLD) are
followed by a program tab character to erase data previously in the field;
otherwise, this operation is identical to FILL=NULL.

For 3270 display devices, any specification with a value less than X'3F' is changed to X'00' for control
characters or to X'40' for other non-graphic characters.

15.2.1.4.3 multiplePages : Boolean
MULT attribute.

Specifies that multiple physical page input messages will be allowed for this DPAGE.

15.2.1.5 MFSDeviceType
This class encapsulates the MFS “DEV” statement.

The DEV statement defines device characteristics for a specific device or data formats for a specific
device type. The DFLD statements following this DEV statement are mapped using the characteristics
specified until the next DEV or FMTEND statement is encountered.

The MFS metamodel does not support the following DEV attributes:
• ERASE
• FTAB
• FORMS
• HT
• HTAB
• LDEL
• MODE

ad/2001-09-17 UML for EAI 218

• SLD
• VERSID
• VT
• VTAB

15.2.1.5.1 card : 0..1 MFSDeviceField
CARD attribute.

Defines the input field name to receive operator identification card data when that data is entered. This
name can be referenced by an MFLD statement and must not be used as the label of a DFLD statement
within this DEV definition. This operand is valid only if a 3270 display is specified. If FEAT=NOCD is
specified for a 3270 display, it is changed to CARD. All control characters are removed from magnetic
card input before the data is presented to the input MFLD that refers to this card field name.

For 3270 displays, an unprotected field large enough to contain the magnetic card data and control
characters must be defined through a DFLD statement. Position the cursor to this field and insert the
card in the reader to enter card information. The card data is logically associated with the CARD= field
name, not the name used in the DFLD statement.

15.2.1.5.2 dsca : String
DSCA attribute.

Specifies a default system control area (DSCA) for output messages using this device format. The
DSCA supersedes any SCA specified in a message output descriptor if there are conflicting
specifications. Normally, the functions specified in both SCAs are performed. If the DSCA= operand is
specified for 3270P, it is ignored, except for the bit setting for "sound device alarm." If this bit is
specified on the DSCA/SCA option, it is sent to the device.

The value specified here must be a decimal number not exceeding 65535 or X'hhhh'. If the number is
specified, the number is internally converted to X'hhhh'.

If byte 1 bit 5 is set to B'1' (unprotect screen option) for a 3275 display, and both input and output occur
simultaneously (contention), the device is disconnected. For non-3275 devices, the SCA option is
ignored. If byte 1 bit 5 is set to B'0', the application program can request autopaged output by setting the
SCA value to B'1'. This request is honored only if present in the first segment of the first LPAGE of the
output message.

If a nonzero value is specified for byte 0, or for bit 6 or 7 in byte 1, MFS overrides the specified value
with zero.

15.2.1.5.3 features : MFSFeatureType
FEAT attribute.

Specifies features for this device or program group. Possible features are:

o IGNORE specifies that device features are to be ignored for this device.

ad/2001-09-17 UML for EAI 219

o 120|126|132 specifies line length for 3284, and 3286 device types (TYPE=3270P).

o CARD specifies that the device has a 3270 operator identification card reader. NOCD
specifies the absence of the CARD feature.

o DEKYBD specifies data entry keyboard feature. This feature implies PFK feature;
therefore, PFK is invalid if DEKYBD is specified. NOPFK implies the absence of PFK
and DEKYBD features.

o PFK specifies that the device has program function keys. NOPFK specifies the absence
of the PFK and DEKYBD features.

o PEN specifies the selector light pen detect feature. NOPEN specifies the absence of the
PEN feature.

o 1|2|3|4|5|6|7|8|9|10 specifies customer-defined features for the 3270P device type.

For 3270P devices, FEAT= allows grouping of devices with special device characteristics. For example,
FEAT=1 could group devices with a maximum of 80 print positions and no VFC, and FEAT=2 could
group devices with 132 print positions and the VFC feature. FEAT=IGNORE should be specified to
group together devices with a minimum set of device capabilities. When WIDTH= is specified,
FEAT=(1...10) must also be specified. If FEAT=(1...10) is specified but WIDTH= is not specified,
WIDTH= defaults to 120.

When IGNORE is specified, no other values should be coded in the FEAT= operand. When
FEAT=IGNORE is not specified in the TERMINAL macro during system definition, the MSG
statement must specify IGNORE in the SOR= operand for the device format with the IGNORE
specification. Unless FEAT=IGNORE is used, FEAT= must specify exactly what was specified in the
TERMINAL macro during IMS system definition. If it does not, the DFS057 error message is issued.
When FEAT=IGNORE or 1-10 is specified for 3270 devices, the operands PEN=, CARD=, and PFK=
can still be specified. When TYPE=3270P and FEAT=IGNORE, MFS allows a line width of 120
characters.

CARD, PFK, DEKYBD, and PEN feature values are valid only for 3270 displays. If the FEAT=
operand is omitted, the default features are CARD, PFK, and PEN for
3270 displays; the default line width is 120 for TYPE=3270P.

1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 are valid values only for 3270, 3270P and 3270-An. For 3270 displays, the
FEAT= specifications of 1 to 5 can be used to group devices with specific features or hardware data
stream dependencies.

Restriction: This keyword is optional and cannot be used with any other feature specification for 3270
displays.

ad/2001-09-17 UML for EAI 220

Feature operand values can be specified in any order, and only those values desired need be specified.
The underlined values do not have to be specified because they are defaults. Only one value in each
vertical list can be specified.

15.2.1.5.4 page : MFSPageType
PAGE attribute.

Specifies output parameters as follows:

o number: For printer devices, number defines the number of print lines on a printed page; for card
devices, number defines the number of cards to be punched per DPAGE or physical page (if pp
parameter is used in the DFLD statements). This value is used for validity checking. The number
specified must be greater than or equal to 1 and less than 256. The default is 55.

o DEFN specifies that lines/cards are to be printed/punched as defined by DFLD statements (no
lines/cards are to be removed or added to the output page).

o SPACE specifies that each output page contains the exact number of lines/cards specified in the
number parameter.

o FLOAT specifies that lines/cards with no data (all blank or NULL) after formatting are to be
deleted.

For 3270P devices, some lines having no data (that is, all blank or null) must not be deleted under the
following circumstances:

o The line contains one or more set line density (SLDx=) specifications.

o A field specified as having extended attributes spans more than one line.

15.2.1.5.5 pen : 0..1 MFSDeviceField
PEN attribute.

Defines an input field name to contain literal data when an immediate light pen detection of a field with
a space or null designator character occurs. The literal data is defined on the DFLD statement with the
PEN= operand. (See PEN= operand on the DFLD statement.) This name can be referred to by an MFLD
statement and must not be used as the label of a DFLD statement within this DEV definition. The PEN=
operand is valid only for 3270 displays. If FEAT=NOPEN is specified, it is changed to PEN.

If an immediate detect occurs on a field defined with a space or null designator character, and either
another field has been selected or modified or has the MOD attribute, or the PEN= operand is not
defined for the DFLD, a question mark (?) is inserted in the PEN= field name.

If no immediate detection occurs or the immediate detect occurs on a field defined with an ampersand
(&) designator character, the PEN= operand is padded with the fill specified in the MFLD statement.

ad/2001-09-17 UML for EAI 221

15.2.1.5.6 pfk : MFSFunctionKeyType
PFK attribute.

Defines an input field name to contain program function key literal or control function data (first
subparameter) and, in positional or keyword format, either the literal data to be placed in the specified
field, or the control function to be performed when the corresponding function key is entered (remaining
subparameters).

The name of the first subparameter (the input field name that will contain the program function key
literal or control function data) can be referred to by an MFLD statement and must not be used as the
label of a DFLD statement within this DEV definition. The remaining subparameters can be specified in
positional or keyword format. If the subparameters are in keyword format, the integer specified must be
from 1 to 36, inclusive, and not duplicated. Only one PFK= operand format (positional or keyword) can
be specified on a DEV statement. This operand is valid only for 3270 displays. At the time the actual
format blocks are created, each literal is padded on the right with blanks to the length of the largest
literal in the list. The maximum literal length is 256 bytes.

If the device supports the IMS copy function, then PFK12 invokes the copy function and the definition
of PFK12 in the DEV statement is ignored; otherwise, the definition of PFK12 is honored.

If FEAT=NOPFK is specified, it is changed to PFK. The maximum number of user-defined PFKs is 36.

Control functions that can be specified are:

o NEXTPP--PAGE ADVANCE specifies a request for the next physical page in the current output
message. If no output message is in progress, no explicit response is made.

o NEXTMSG--MESSAGE ADVANCE specifies a request to dequeue the output message in
progress (if any) and to send the next output message in the queue (if any).

o NEXTMSGP--MESSAGE ADVANCE PROTECT specifies a request to dequeue the output
message in progress (if any), and send the next output message or return an information message
indicating that no next message exists.

o NEXTLP--NEXT LOGICAL PAGE specifies a request for the next logical page of the current
message.

o ENDMPPI--END MULTIPLE PAGE INPUT specifies the end of a multiple physical page input
message.

15.2.1.5.7 substitution : String
SUB attribute.

Specifies the character used by MFS to replace any X'3F' characters in the input data stream. No
translation occurs if this parameter is specified as X'3F' or this parameter is not specified, or the input

ad/2001-09-17 UML for EAI 222

received bypasses MFS editing. The specified SUB character should not appear elsewhere in the data
stream; therefore, it should be non-graphic.

o X'hh' character whose hexadecimal representation is 'hh' replaces all X'3F' in the input data
stream.

o C'c' character 'c' replaces all X'3F' in the input data stream.

15.2.1.5.8 systemMessage : 0..* MFSDeviceField
SYSMSG attribute.

Specifies the label of the DFLD statements that define the device field in which IMS system messages
are to be displayed. This operand is valid only if a 3270 display is specified. A DFLD with this label
should be defined for each physical page within each DPAGE defined within this DEV definition.
DFLDs for SYSMSG should be at least LTH=79 to prevent message truncation. The referenced DFLD
can also be referenced by an MFLD statement.

15.2.1.5.9 type : String
TYPE attribute.

Specifies the device type and model number of a device using this format description. The 3284-3
printer attached to a 3275 is supported only as TYPE=3270P. The model number specified when
defining a format for a 3284-3 is the model number of the associated 3275.

TYPE=3270-An specifies a symbolic name for 3270 and SLU 2 displays with the screen size defined
during IMS system definition, feature numbers n=1-15. This specification causes the MFS Language
utility to read the MFS device characteristics table (DFSUDT0x) to extract the screen size.

15.2.1.5.10 width : int
WIDTH attribute.

Specifies the maximum line width for this DEV type as one of:

 - Number of print positions per line of input or output data
 - Number of punch positions per card of input or output data
 - Card width for card reader input data

The default is 120 for 3270P output. Line width is specified relative to column 1, regardless of whether a
left margin value is specified in the HTAB= keyword. The width specified must be greater than or equal
to 1.

For 3270P devices, if WIDTH is specified, then FEAT=(1...10) must also be specified. If FEAT=(1...10)
is specified, and WIDTH= is not specified, WIDTH= defaults to 120.

ad/2001-09-17 UML for EAI 223

15.2.1.6 MFSIfCondition
This class encapsulates the MFS “IF” statement.

The IF statement defines an entry in the table named by the previous TABLE statement. Each IF
statement defines a conditional operation and an associated control or branching function to be
performed if the condition is true. All attributes are supported

15.2.1.6.1 condition : MFSConditionType
COND attribute.

condition has the following format:

IF (DATA | LENGTH) (=,<,>, ¬,°,°)
(literal | data-length) function

o DATA specifies that the conditional operation is to be performed against the data received from
the device for the field.

o LENGTH specifies that the conditional operation is testing the number of characters entered for
the field. The size limit for this field is the same as for DFLDs (see "DFLD Statement" in topic
2.5.1.5.8).

o =,<,>, ¬,°,° specify the conditional relationship that must be true to invoke the specified control
function.

o 'literal' is a literal string to which input data is to be compared. The compare is done before the
input is translated to upper case. If 'literal' is specified, DATA must be specified in the first
operand. If the input data length is not equal to the literal string length, the compare is performed
with the smaller length, unless the conditional relationship is ¬ and the data length is zero, in
which case the control function is performed. If the input is in lowercase, the ALPHA statement
should be used and the literal coded in lowercase.

o data-length specifies an integer value to which the number of characters of input data for the
field is compared.

o NOFUNC specifies that conditional function testing is to be terminated.

o NEXTPP--PAGE ADVANCE specifies a request for the next physical page in the current output
message. If no output message is in progress, no explicit response is made.

o NEXTMSG--MESSAGE ADVANCE specifies a request to dequeue the output message in
progress (if any) and to send the next output message in the queue (if any).

o NEXTMSGP--MESSAGE ADVANCE PROTECT specifies a request to dequeue the output
message in progress (if any), and either send the next output message or return an information
message indicating that no next message exists.

ad/2001-09-17 UML for EAI 224

o NEXTLP--NEXT LOGICAL PAGE specifies a request for the next logical page of the current
message.

o PAGEREQ--LOGICAL PAGE REQUEST specifies that the second through last characters of
input data are to be considered as a logical page request.

o ENDMPPI--END MULTIPLE PAGE INPUT specifies the end of multiple physical page input
(this input is the last for the message being created).

15.2.1.6.2 action : String
COND attribute.

Contains the ‘function’ described above.

15.2.1.7 MFSLogicalPage
This class encapsulates the MFS “LPAGE” statement.

The optional LPAGE statement defines a group of segments comprising a logical page. It is implied if
not present. All attributes are supported.

15.2.1.7.1 condition : MFSConditionType
COND attribute.

Describes a conditional test that, if successful, specifies that the segment and field definitions following
this LPAGE are to be used for output editing of this logical page. The specified portion of the first
segment of a logical page is examined to determine if it is greater than (>), less than (<), greater than or
equal to (°), less than or equal to (°), equal to (=), or not equal to (ne) the specified literal value to
determine if this LPAGE is to be used for editing. COND= is not required for the last LPAGE statement
in the MSG definition.

The area examined can be defined by a field name (mfldname), an offset in a field (mfldname(pp) where
pp is the offset in the named field), or an offset in the segment (segoffset). If the mfldname(pp) form is
used, pp must be greater than or equal to 1. The length of the compare is the length of the specified
literal. If OPT=3 is specified on the previous MSG statement, the area to be examined must be within
one field as defined on an MFLD statement.

If segoffset is used, it is relative to zero, and the specification of that offset must allow for LLZZ of the
segment (that is, the first data byte is at offset 4).

If pp is used, the offset is relative to 1 with respect to the named field (that is, the first byte of data in the
field is at offset 1, not zero).

ad/2001-09-17 UML for EAI 225

If the mfldname specified is defined with ATTR=YES, the pp offset must be used. The minimum offset
specified must be 3. That is, the first byte of data in the field is at offset 3, following the two bytes of
attributes.

If ATTR=nn is specified, the minimum offset must be one plus twice nn. Thus, if ATTR=2 is specified,
pp must be at least 5, and, if ATTR=(YES,2) is specified, pp must be at least 7.

If the conditional tests for all LPAGEs fail, the last LPAGE in this MSG definition is used for editing.

If LPAGE selection is to be specified using the command data field, that is, /FORMAT
modname...(data), the MFLD specified in the LPAGE COND=mfldname parameter should be within the
first 8 bytes of the associated LPAGEs of the MOD.

15.2.1.7.2 prompt : 0..1 MFSDeviceField
PROMPT attribute.

Specifies the name of the DFLD into which MFS should insert the specified literal when formatting the
last logical page of an output message. If FILL=NULL is specified once the prompt literal is displayed,
it can remain on the screen if your response does not cause the screen to be reformatted.

15.2.1.8 MFSMessageDescriptor
This class encapsulates the MFS “MSG” statement.

The MSG statement initiates and names a message input or output definition. All attributes are
supported.

15.2.1.8.1 fill : String
FILL attribute.

Specifies a fill character for output device fields. This operand is valid only if TYPE=OUTPUT. The
default is C' '. The fill specification is ignored unless FILL=NONE is specified on the DPAGE statement
in the FMT definition. For 3270 output when EGCS fields are present, only FILL=PT or FILL=NULL
should be specified. A FILL=PT erases an output field (either a 1- or 2-byte field) only when data is sent
to the field, and thus does not erase the DFLD if the application program message omits the MFLD.

• Character 'c' is used to fill device fields. For 3270 display devices, any specification with a value less
than X'3F' is changed to X'00' for control characters or to X'40' for other non-graphic characters. For all
other devices, any FILL=C'c' specification with a value less than X'3F' is ignored and defaulted to X'3F'
(which is equivalent to a specification of FILL=NULL).

• NULL specifies that fields are not to be filled.

• PT is identical to NULL except for 3270 display. For 3270 display, PT specifies that output fields
that do not fill the device field (DFLD) are followed by a program tab character to erase data previously
in the field.

ad/2001-09-17 UML for EAI 226

15.2.1.8.2 ignoreSource : Boolean
SOR attribute.

Specifies the source name of the FMT statement, which, with the DEV statement, defines the terminal or
remote program data fields processed by this message descriptor. Specifying IGNORE for
TYPE=OUTPUT causes MFS to use data fields specified for the device whose FEAT= operand
specifies IGNORE in the device format definition. For TYPE=INPUT, IGNORE should be specified
only if the corresponding message output descriptor specified IGNORE. If you use SOR=IGNORE, you
must specify IGNORE on both the message input descriptor and the message output descriptor.

15.2.1.8.3 option : int
OPT attribute.

Specifies the message formatting option used by MFS to edit messages. The default is 1.

15.2.1.8.4 paging : Boolean
PAGE attribute.

Specifies whether (YES) or not (NO) operator logical paging (forward and backward paging) is to be
provided for messages edited using this control block. This operand is valid only if TYPE=OUTPUT.
The default is NO, which means that only forward paging of physical pages is provided.

15.2.1.8.5 type : MFSDescriptorType
TYPE attribute.

Defines this definition as a message INPUT or OUTPUT control block. The default is INPUT.

15.2.1.9 MFSMessageField
This class encapsulates the MFS “MFLD” statement.

The MFLD statement defines a message field as it will be presented to an application program as part of
a message output segment. At least one MFLD statement must be specified for each MSG definition. All
attributes are supported.

15.2.1.9.1 attributes : Boolean
ATTR attribute.

Specifies whether (YES) or not (NO) the application program can modify the 3270 attributes and the
extended attributes (nn).

If YES, 2 bytes must be reserved for the 3270 attribute data to be filled in by the application program on
output and to be initialized to blanks on input. These 2 bytes must be included in the LTH=
specification.

ad/2001-09-17 UML for EAI 227

The value supplied for nn is the number of extended attributes that can be dynamically modified. The
value of nn can be a number from 1 to 6. An invalid specification will default to 1. Two additional bytes
per attribute must be reserved for the extended attribute data to be filled in by the application program
on output and to be initialized to blanks on input. These attribute bytes must be included in the MFLD
LTH= specification.

Example: Shown below are valid specifications for ATTR= and the number of bytes that must be
reserved for each different specification:

Specifications Number of Bytes
MFLD ,ATTR=(YES,nn) 2 + (2 × nn)
MFLD ,ATTR=(NO,nn) 2 × nn
MFLD ,ATTR=(nn) 2 × nn
MFLD ,ATTR=YES 2
MFLD ,ATTR=NO 0

ATTR=YES and nn are invalid if a literal value has been specified through the positional parameter in
an output message.

The attributes in a field sent to another IMS ISC subsystem are treated as input data by MFS regardless
of any ATTR= specifications in the format of the receiving subsystem. For example, a message field
(MFLD) defined as ATTR=(YES,1),LTH=5 would contain the following:

 00A0C2F1C8C5D3D3D6

If the MFLD in the receiving subsystem is defined as LTH=9 and without ATTR=, the application
program receives:

 00A0C2F1C8C5D3D3D6

If the MFLD in the receiving subsystem is defined as LTH=13 and ATTR=(YES,1), the application
program receives:

 4040404000A0C2F1C8C5D3D3D6

If the MFLD in the receiving subsystem is defined as LTH=5 and ATTR=(YES,1), the application
program receives:

 4040404000A0C2F1C8

The input SEG statement should be specified as GRAPHIC=NO to prevent translation of the attribute
data to uppercase.

15.2.1.9.2 exit : MFSExitType
EXIT attribute.

ad/2001-09-17 UML for EAI 228

Describes the field edit exit routine interface for this message field. The exit routine number is specified
in exitnum, and exitvect is a value to be passed to the exit routine when it is invoked for this field. The
value of exitnum can range from 0 to 127. The value of exitvect can range from 0 to 255. The address of
the field as it exists after MFS editing, (but before NULL compression for option 1 and 2), is passed to
the edit exit routine, along with the vector defined for the field. (If NOFLDEXIT is specified for a DPM
device, the exit routine will not be invoked.) The exit routine can return a code with a value from 0 to
255. MFS maintains the highest such code returned for each segment for use by the segment edit
routine. EXIT= is invalid if 'literal' is specified on the same MFLD statement.

15.2.1.9.3 extendedAttributes : Boolean
ATTR attribute.

See attributes documentation above.

15.2.1.9.4 fill : String
FILL attribute.

Specifies a character to be used to pad this field when the length of the data received from the device is
less than the length of this field. This character is also used to pad when no data is received for this field
(except when MSG statement specifies option 3.) This operand is only valid if TYPE=INPUT. The
default is X'40'.

o X'hh' - Character whose hexadecimal representation is hh is used to fill fields. FILL=X'3F' is the
same as FILL=NULL.

o C'c' - Character c is used to fill fields.

o NULL causes compression of the message segment to the left by the amount of missing data in
the field.

15.2.1.9.5 justify : MFSJustifyType
JUST attribute.

Specifies that the data field is to be left-justified (L) or right-justified (R) and right- or left- truncated as
required, depending upon the amount of data expected or presented by the device format control block.
The default is L.

15.2.1.9.6 length : MFSLengthType
LTH attribute.

Length can be omitted if a literal is specified in the positional operand (TYPE=INPUT), in which case,
length specified for literal is used. If LTH= is specified for a literal field, the specified literal is either
truncated or padded with blanks to the specified length. If the MFLD statement appears between a DO
and an ENDDO statement, a length value is printed on the generated MFLD statement, regardless of
whether LTH= is specified in the MFLD source statement.

ad/2001-09-17 UML for EAI 229

15.2.1.9.7 value : String
Corresponds to the 'literal' field in the following description.
The device field name is specified via the 'deviceFields' relationship.

Specifies the device field name (defined via the DEV or DFLD statement) from which input data is
extracted or into which output data is placed. If this parameter is omitted when defining a message
output control block, the data supplied by the application program is not displayed on the output device.
If the repetitive generation function of MFS is used (DO and ENDDO statements), dfldname should be
restricted to 6 characters maximum length. When each repetition of the statement is generated, a 2-
character sequence number (01 to 99) is appended to dfldname. If the dfldname specified here is greater
than 6 bytes and repetitive generation is used, dfldname is truncated at 6 characters and a 2-character
sequence number is appended to form an 8-character name. No error message is provided if this occurs.
This parameter can be specified in one of the following formats:

o dfldname identifies the device field name from which input data is extracted or into which output
data is placed.

o 'literal' can be specified if a literal value is to be inserted in an input message.

(dfldname,'literal')
If TYPE=OUTPUT, this describes the literal data to be placed in the named DFLD. When this form is
specified, space for the literal must not be allocated in the output message segment supplied by the
application program.

If TYPE=INPUT, this describes the literal data to be placed in the message field when no data for this
field is received from the device. If this dfldname is used in the PFK parameter of a DEV statement, this
literal is always replaced by the PF key literal or control function. However, when this dfldname is
specified in the PFK parameter, but the PF key is not used, the literal specified in the MFLD statement is
moved into the message field. When physical paging is used, the literal is inserted in the field but is not
processed until after the last physical page of the logical page has been displayed.

In both cases, if the LTH= operand is specified, the length of the literal is truncated or padded as
necessary to the length of the LTH= specification. If the length of the specified literal is less than the
defined field length, the literal is padded with blanks if TYPE=OUTPUT and with the specified fill
character (FILL=) if TYPE=INPUT. If no fill character is specified for input, the literal is padded with
blanks (the default). The length of the literal value cannot exceed 256 bytes.

(dfldname,system-literal) specifies a name from a list of system literals. A system literal functions like a
normal literal except that the literal value is created during formatting prior to transmission to the
device. The LTH=, ATTR=, and JUST= operands cannot be specified. When this form is specified,
space for the literal must not be allocated in the output message segment supplied by the application
program.

(,SCA) defines this output field as the system control area, which is not displayed on the output device.
There can be only one such field in a logical page (LPAGE) and it must be in the first message segment

ad/2001-09-17 UML for EAI 230

of that page. If no logical pages are defined, only one SCA field can be defined and it must be in the first
segment of the output message. This specification is valid only if TYPE=OUTPUT was specified on the
previous MSG statement.

15.2.1.10 MFSPassword
This class encapsulates the MFS “PASSWORD” statement.

The PASSWORD statement identifies one or more fields to be used as an IMS password. When used,
the PASSWORD statement and its associated MFLDs must precede the first SEG statement in an input
LPAGE or MSG definition. Up to 8 MFLD statements can be specified after the PASSWORD statement
but the total password length must not exceed 8 characters. The fill character must be X'40'. For option 1
and 2 messages, the first 8 characters of data after editing are used for the IMS password. For option 3
messages, the data content of the first field after editing is used for the IMS password.

A password for 3270 input can also be defined in a DFLD statement. If both password methods are used,
the password specified in the MSG definition is used. All attributes are supported

15.2.1.11 MFSSegment
This class encapsulates the MFS “SEG” statement.

The SEG statement delineates message segments and is required only if multisegment message
processing is required by the application program. Output message segments cannot exceed your
specified queue buffer length. Only one segment should be defined for TYPE=INPUT MSGs when the
input message destination is defined as a single segment command or transaction. If more than one
segment is defined, and the definition is used to input a single segment command or transaction, care
must be used to ensure that your input produces only one segment after editing. It is implied if not
present. All attributes are supported

15.2.1.11.1 exit : MFSExitType
EXIT attribute.

Describes the segment edit exit routine interface for this message segment. exitnum is the exit routine
number and exitvect is a value to be passed to the exit routine when it is invoked for this segment.
exitnum can range from 0 to 127. exitvect can range from 0 to 255. The SEG exit is invoked when
processing completes for the input segment.

15.2.1.11.2 graphic : Boolean
GRAPHIC attribute.

Specifies for MSG TYPE=INPUT whether (YES) or not (NO) IMS should perform upper case
translation on this segment if the destination definition requests it (see the EDIT= parameter of the
TRANSACT or NAME macro). The default is YES. If input segment data is in non-graphic format
(packed decimal, EGCS, binary, and so forth), GRAPHIC=NO should be specified. When
GRAPHIC=NO is specified, FILL=NULL is invalid for MFLDs within this segment.

ad/2001-09-17 UML for EAI 231

The list below shows the translation that occurs when GRAPHIC=YES is specified and the input
message destination is defined as requesting upper case translation:

Before Translation After Translation
a through z A through Z
X'81' through X'89' X'C1' through X'C9'
X'91' through X'99' X'D1' through X'D9'
X'A2' through X'A9' X'E2' through X'E9'

If FILL=NULL is specified for any MFLD in a segment defined as GRAPHIC=YES, the hexadecimal
character X'3F' is compressed out of the segment. If GRAPHIC=NO and FILL=NULL are specified in
the SEG statement, any X'3F' in the non-graphic data stream is compressed out of the segment and
undesirable results might be produced. Non-graphic data should be sent on output as fixed length output
fields and the use of FILL=NULL is not recommended in this case.

For MSG TYPE=OUTPUT, the GRAPHIC= keyword applies only for DPM. It specifies whether (YES)
or not (NO) non-graphic control characters (X'00' to X'3F') in the data from the IMS application
program are to be replaced by blanks. The default value is YES. If NO is specified, MFS allows any bit
string received from an IMS application program to flow unmodified through MFS to the remote
program.

Restriction: When GRAPHIC=NO is specified, IMS application programs using Options 1 and 2 cannot
omit segments in the middle of an LPAGE, or truncate or omit fields in the segment using the null
character (X'3F').

15.2.1.12 MFSTable
This class encapsulates the MFS “TABLE” statement.

The TABLE statement initiates and names an operator control table that can be referred to by the
OPCTL keyword of the DFLD statement. The TABLE statement, and the IF and TABLEEND
statements that follow, must be outside of a MSG or FMT definition. All attributes are supported.

ad/2001-09-17 UML for EAI 232

15.3 CICS BMS Metamodel
CICS applications are able to use a logical abstraction of a terminal datastream using CICS Basic
Mapping Support (BMS) function. Its highest use is with the IBM3270 family of alphanumeric displays
and associated printers but does support other devices and MQ queues. The programmer creates an input
file containing the variable data from the application to be displayed on output or formatted on input
plus the constant ‘boilerplate’ that should appear on the screen. Each field can have attributes added to
it, for example, color, protection so that it cannot be overwritten by the operator and various productivity
options such as cursor positioning and auto-skipping to the next input field. These field are aggregated
together into a MAP. MAPs may also be aggregated into MAPSETs.

The input file is pre-processed to provide an application structure which will be included with the CICS
application program giving the programmer fields in which to place the variable data, and secondly
produces a file which contains all the constant data and the attributes of each field. A simple view of
this is that the BMS input file has the same attributes as an HTTP data, formatting commands are mixed
with the data, the output of the BMS processor is almost a parallel with XML and XSL, the data
structure holding the data items and the file holding all the style information. Unfortunately there are
two pieces of state data held in the BMS ‘style’ sheet, namely the initial cursor position and an attribute
declaration which will force the terminal to return the data on the screen whether or not the operator has
changed it. When an EXEC CICS SEND MAP is performed, BMS will interpret the map file and merge
in the data from the application structure and any overridden attributes, and build the device dependent
data stream required for the terminal. Conversely on an EXEC CICS RECEIVE MAP the inbound
datastream is mapped into the application structure with whatever filling or conversion that is required.

The CICS BMS metamodel captures the meta data associated with screen formatting for CICS
applications. BMSField identifies the signature of a CICS BMS message, which can include inputs,
outputs, and return types. BMSField associates with TDLangElement, which provides the linkage to the
language specific and physical representations of the data that a BMSField represents. The following
figures illustrate the classes that constitute the CICS BMS metamodel and show how the classes relate to
each other. Following the diagrams is a brief explanation of what each class represents.

ad/2001-09-17 UML for EAI 233

BMSMapset

BMSMap

0..*+maps 0..*

TDLangElement BMSField

0..*+fields 0..*

1..1

+languageElement

1..1

Figure 179 CICS BMS Relationship View

BMSStatement

BMSField BMSMap BMSMapset

Figure 180 CICS BMS Inheritance View

ad/2001-09-17 UML for EAI 234

BMSAttributesType
skip : Boolean
bright : Boolean
detectable : Boolean
dark : Boolean
modified : Boolean
cursor : Boolean
normal : Boolean
numeric : Boolean
protected : Boolean

BMSColorType
default
blue
red
green
pink
turquoise
yellow
neutral

<<enumeration>>

BMSControlType
print
length
freekb
alarm
frset

<<enumeration>>

BMSDataType
field
block

<<enumeration>>

BMSExtendedAttributesType

no
yes
maponly

<<enumeration>>

BMSFoldType
lower
upper

<<enumeration>>

BMSHighlightingType
off
blink
reverse
underline

<<enumeration>>

BMSJustifyType
left : Boolean
right : Boolean
first : Boolean
last : Boolean
bottom : Boolean

BMSLanguageType
assembler
c
cobol
cobol2
pli

<<enumeration>>

BMSMapAttributesType

color : Boolean
highlighting : Boolean
outline : Boolean
programmedSymbol : Boolean
sosi : Boolean
transparent : Boolean
validation : Boolean

BMSStatement
label : String
comments : String

BMSMapsetType
dsect
map
final

<<enumeration>>

BMSModeType
out
in
inout

<<enumeration>>

BMSOutliningType
box : Boolean
left : Boolean
right : Boolean
over : Boolean
under : Boolean

BMSPositionType
line : int
column : int
number : int

BMSSizeType

line : int
column : int

BMSValidationType
mustFill
mustEnter
trigger
userExit

<<enumeration>>

BMSMapset
base : String
color : BMSColorType
control : BMSControlType
cursorLocation : Boolean
data : BMSDataType
descriptionAttributes : BMSMapAttributesType
extendedAttributes : BMSExtendedAttributesType
fieldSeparator : String
fold : BMSFoldType
highlighting : BMSHighlightingType
horizontalTabs : int
language : BMSLanguageType
logicalDeviceCode : int
mapAttributes : BMSMapAttributesType
mode : BMSModeType
outboardFormatting : Boolean
outlining : BMSOutliningType
partition : String
programmedSymbol : String
shiftOutShiftIn : Boolean
storage : Boolean
suffix : String
terminal : String
tioaPrefix : Boolean
transparent : Boolean
trigraph : Boolean
type : BMSMapsetType
validation : BMSValidationType
verticalTabs : int

BMSField
attributes : BMSAttributesType
case : Boolean
color : BMSColorType
group : String
highlighting : BMSHighlightingType
initialValue : String
justify : BMSJustifyType
length : int
occurs : int
outlining : BMSOutliningType
pictureInput : String
pictureOutput : String
position : BMSPositionType
programmedSymbol : String
shiftOutShiftIn : String
transparent : Boolean
validation : BMSValidationType

BMSMap
column : String
color : BMSColorType
control : BMSControlType
cursorLocation : Boolean
data : BMSDataType
descriptionAttributes : BMSMapAttributesType
extendedAttributes : BMSExtendedAttributesType
fieldSeparator : String
header : Boolean
highlighting : BMSHighlightingType
justify : BMSJustifyType
line : String
mapAttributes : BMSMapAttributesType
nofields : Boolean
outboardFormatting : Boolean
outlining : BMSOutliningType
partition : String
programmedSymbol : String
shiftOutShiftIn : Boolean
size : BMSSizeType
terminal : String
tioaPrefix : Boolean
trailer : Boolean
transparent : Boolean
validation : BMSValidationType

Figure 181 CICS BMS Attributes

15.3.1 CICS BMS Metamodel Descriptions

15.3.1.1 BMSAttributesType
BMSAttributesType is the ATTRB statement. This operand applies only to 3270 data stream devices; it
is ignored for other devices, except that ATTRB=DRK is honored for the SCS Printer Logical Unit. It is
also ignored (except for ATTRB=DRK) if the NLEOM option is specified on the SEND MAP command
for transmission to a 3270 printer. In particular, ATTRB=DRK should not be used as a method of
protecting secure data on output on non-3270, non-SCS printer terminals.

If ATTRB is specified within a group of fields, it must be specified in the first field entry. A group of
fields appears as one field to the 3270. Therefore, the ATTRB specification refers to all of the
fields in a group as one field rather than as individual fields. It specifies device-dependent
characteristics and attributes, such as the capability of a field to receive data, or the intensity to be used
when the field is output. It could however, be used for making an input field non-display for secure
entry of a password from a screen.
For input map fields, DET and NUM are the only valid options; all others are ignored.

ASKIP is the default and specifies that data cannot be keyed into the field and causes the cursor to skip
over the field.

ad/2001-09-17 UML for EAI 235

BRT specifies that a high-intensity display of the field is required. Because of the 3270 attribute
character bit assignments, a field specified as BRT is also potentially light pen detectable. However, for
the field to be recognized as detectable by BMS, DET must also be specified.

• DET specifies that the field is potentially detectable. The first character of a 3270 detectable field
must be one of the following:

 ? > & blank

If ? or >, the field is a selection field; if & or blank, the field is an attention field. (See An Introduction
to the IBM 3270 Information Display System for further details about detectable fields.)

A field for which BRT is specified is potentially detectable to the 3270, because of the 3270 attribute
character bit assignments, but is not recognized as such by BMS unless DET is also specified.

DET and DRK are mutually exclusive. If DET is specified for a field on a map with MODE=IN, only
one data byte is reserved for each input field. This byte is set to X'00', and remains unchanged if the
field is not selected. If the field is selected, the byte is set to X'FF'.

No other data is supplied, even if the field is a selection field and the ENTER key has been pressed.

If the data in a detectable field is required, all of the following conditions must be fulfilled:

 1. The field must begin with one of the following
 characters:

 ? > & blank

 and DET must be specified in the output map.

 2. The ENTER key (or some other attention key) must be
 pressed after the field has been selected, although the
 ENTER key is not required for detectable fields
 beginning with & or a blank.

 3. DET must not be specified for the field in the input
 map. DET must, however, be specified in the output map.
 For more information about BMS support of the light pen,
 see the CICS Application Programming Guide.

• DRK specifies that the field is non-print/non-display. DRK cannot be specified if DET is specified.

FSET specifies that the modified data tag (MDT) for this field should be set when the field is sent to a
terminal. Specification of FSET causes the 3270 to treat the field as though it has been modified. On a
subsequent read from the terminal, this field is read, whether or not it has been modified. The MDT

ad/2001-09-17 UML for EAI 236

remains set until the field is rewritten without ATTRB=FSET, or until an output mapping request causes
the MDT to be reset.

Either of two sets of defaults may apply when a field to be displayed on a 3270 is being defined but not
all parameters are specified. If no ATTRB parameters are specified, ASKIP and NORM are assumed.
If any parameter is specified, UNPROT and NORM are assumed for that field unless overridden by a
specified parameter.

• IC specifies that the cursor is to be placed in the first position of the field. The IC attribute for the
last field for which it is specified in a map is the one that takes effect. If not specified for any fields in a
map, the default location is zero. Specifying IC with ASKIP or PROT causes the cursor to be placed in
an un-keyable field.

This option can be overridden by the CURSOR option of the SEND MAP command that causes the
write operation.

• NORM specifies that the field intensity is to be normal.

• NUM ensures that the data entry keyboard is set to numeric shift for this field unless the operator
presses the alpha shift key, and prevents entry of nonnumeric data if the Keyboard Numeric Lock
feature is installed.

• PROT specifies that data cannot be keyed into the field. If data is to be copied from one device to
another attached to the same 3270 control unit, the first position (address 0) in the buffer of the device to
be copied from must not contain an attribute byte for a protected field. Therefore, when preparing maps
for 3270s, ensure that the first map of any page does not contain a protected field starting at position 0.

• UNPROT specifies that data can be keyed into the field.

15.3.1.2 BMSColorType
BMSColorType indicates the individual color, or the default color for the mapset (where applicable).
The valid colors are blue, red, pink, green, turquoise, yellow, and neutral. The COLOR operand is
ignored unless the terminal supports color.

15.3.1.3 BMSControlType
BMSControlType is the CTRL statement. It defines characteristics of IBM 3270 terminals. Use of any
of the control options in the SEND MAP command overrides all control options in the DFHMDI macro,
which in turn overrides all control options in the DFHMSD macro.

If CTRL is used with cumulative BMS paging (that is, the ACCUM option is used on the BMS SEND
MAP commands), it must be specified on the last (or only) map of a page, unless it is overridden by the
ALARM, FREEKB and so on, options on the SEND MAP or accumulated SEND CONTROL
command.

ad/2001-09-17 UML for EAI 237

PRINT must be specified if the printer is to be started; if omitted, the data is sent to the printer buffer but
is not printed. This operand is ignored if the mapset is used with
3270 displays without the Printer Adapter feature.

LENGTH indicates the line length on the printer; length can be specified as L40, L64, L80, or
HONEOM. L40, L64, and L80 force a new line after 40, 64, or 80 characters,
respectively. HONEOM causes the default printer line length to be used. If this option is omitted, BMS
sets the line length from the terminal definition page size.

FREEKB causes the keyboard to be unlocked after the map is written. If FREEKB is not specified, the
keyboard remains locked; data entry from the keyboard is inhibited until this status is changed.

ALARM activates the 3270 audible alarm if available.

FRSETspecifies that the modified data tags (MDTs) of all fields currently in the 3270 buffer are to be
reset to an unmodified condition (that is, field reset) before map data
is written to the buffer. This allows the DFHMDF macro with the ATTRB operand to control the final
status of any fields written or rewritten in response to a BMS command.

Note: CTRL cannot be specified in the DFHMDI and DFHMSD macros in the same mapset.

15.3.1.4 BMSDataType
BMSDataType can be either “field” or “block”.

15.3.1.5 BMSExtendedAttributesType
BMSExtendedAttributesType can be “no”, “yes”, or “maponly”.

15.3.1.6 BMSField
BMSField is implemented by the DFHMDF macro. BMSField has the following attributes:

• GRPNAME is the name used to generate symbolic storage definitions and to combine specific fields
under one group name. The same group name must be specified for each field that is to belong to the
group. The length of the name is up to 30 characters though you should refer to the compiler manual to
make sure that there are no other restrictions on the length. If this operand is specified, the OCCURS
operand cannot be specified.

 The fields in a group must follow on; there can be gaps between them, but not other fields from
outside the group. A field name must be specified for every field that belongs to the group, and the POS
operand must also be specified to ensure that the fields follow each other. All the DFHMDF macros
defining the fields of a group must be placed together, and in the correct order (ascending numeric order
of the POS value).

ad/2001-09-17 UML for EAI 238

 For example, the first 20 columns of the first six lines of a map can be defined as a group of six
fields, as long as the remaining columns on the first five lines are not defined as fields.

• attributes is the ATTRB operand specified on the first field of the group applies to all of the fields
within the group.

• length is the LENGTH operand. It specifies the length (1-256 bytes) of the field or group of fields.
This length should be the maximum length required for application program data to be entered into the
field; it should not include the one-byte attribute indicator appended to the field by CICS for use in
subsequent processing. The length of each individual subfield within a group must not exceed 256
bytes. LENGTH can be omitted if PICIN or PICOUT is specified, but is required otherwise. You can
specify a length of zero only if you omit the label (field name) from the DFHMDF macro. That is, the
field is not part of the application data structure and the application program cannot modify the attributes
of the field. You can use a field with zero length to delimit an input field on a map.

 The map dimensions specified in the SIZE operand of the DFHMDI macro defining a map can be
smaller than the actual page size or screen size defined for the terminal.

 If the LENGTH specification in a DFHMDF macro causes the map-defined boundary on the same
line to be exceeded, the field on the output screen is continued by wrapping.

• occurs is the OCCURS operand. It specifies that the indicated number of entries for the field are to
be generated in a map, and that the map definition is to be generated in such a way that the fields are
addressable as entries in a matrix or an array. This permits several data fields to be addressed by the
same name (subscripted) without generating a unique name for each field.

 OCCURS and GRPNAME are mutually exclusive; that is, OCCURS cannot be used when fields
have been defined under a group name. If this operand is omitted, a value of OCCURS=1 is assumed.

• pictureInput is the PICIN operand (COBOL and PL/I only). It specifies a picture to be applied to an
input field in an IN or INOUT map; this picture serves as an editing specification that is passed to the
application program, thus permitting the user to exploit the editing capabilities of COBOL or PL/I.
BMS checks that the specified characters are valid picture specifications for the language of the map.

However, the validity of the input data is not checked by BMS or the high-level language when the map
is used, so any desired checking must be performed by the application program. The length of the data
associated with "value" should be the same as that specified in the LENGTH operand if LENGTH is
specified. If both PICIN and PICOUT are used, an error message is produced if their calculated lengths
do not agree; the shorter of the two lengths is used. If PICIN or PICOUT is not coded for the field
definition, a character definition of the field is automatically generated regardless of other operands that
are coded, such as ATTRB=NUM.
 Note: The valid picture values for COBOL input maps are:

 A P S V X 9 / and (

 The valid picture values for PL/I input maps are:

ad/2001-09-17 UML for EAI 239

 A B E F G H I K M P R S T V X Y and Z

 1 2 3 6 7 8 9 / + - , . * $ and (

 For PL/I, a currency symbol can be used as a picture character. The symbol can be any sequence of
characters enclosed in < and >, for example <DM>.

 Refer to the appropriate language reference manual for the correct syntax of the PICTURE attribute.

• pictureOutput is the PICOUT operand (COBOL and PL/I only). It is similar to PICIN, except that a
picture to be applied to an output field in the OUT or INOUT map is generated.

 The valid picture values for COBOL output maps are:

 A B E P S V X Z 0 9 , . + - $ CR DB / and (

 The valid picture values for PL/I output maps are:

 A B E F G H I K M P R S T V X Y and Z

 1 2 3 6 7 8 9 / + - , . * $ CR DB and (

 For PL/I, a currency symbol can be used as a picture character. The symbol can be any sequence of
characters enclosed in < and >, for example <DM>.

 Refer to the appropriate language reference manual for the correct syntax of the PICTURE attribute.

 Note: COBOL supports multiple currency signs and multi-character currency signs in PICTURE
specifications.

 The default currency picture symbol is the dollar sign ($),which represents the national currency
symbol; for example the dollar ($), the pound (£), or the yen (¥).

 The default currency picture symbol may be replaced by a different currency picture symbol that is
defined in the SPECIAL NAMES clause. The currency sign represented by the picture symbol is
defined in the same clause. For example:

 SPECIAL NAMES.
 CURRENCY SIGN IS '$' WITH PICTURE SYMBOL '$'.
 CURRENCY SIGN IS '£' WITH PICTURE SYMBOL '£'.
 CURRENCY SIGN IS 'EUR' WITH PICTURE SYMBOL '#'.

 WORKING STORAGE SECTION.
 01 USPRICE PIC $99.99.

ad/2001-09-17 UML for EAI 240

 01 UKPRICE PIC £99.99.
 01 ECPRICE PIC #99.99.

 LENGTH must be specified when PICOUT specifies a COBOL picture containing a currency
symbol that will be replaced by a currency sign of length greater than 1.

• position is the POS operand. It specifies the location of a field. This operand specifies the
individually addressable character location in a map at which the attribute byte that precedes the field is
positioned.

Position is a BMSPositionType which has the following attributes:

o number specifies the displacement (relative to zero) from the beginning of the map being defined.
o (line, column) specify lines and columns (relative to one) within the map being defined.

The location of data on the output medium is also dependent on DFHMDI operands. The first
position of a field is reserved for an attribute byte. When supplying data for input mapping from non-
3270 devices, the input data must allow space for this attribute
byte. Input data must not start in column 1 but may start in column 2.

The POS operand always contains the location of the first position in a field, which is normally the
attribute byte when communicating with the 3270. For the second and
subsequent fields of a group, the POS operand points to an assumed attribute-byte position, ahead of the
start of the data, even though no actual attribute byte is necessary. If the fields follow on immediately
from one another, the POS operand should point to the last character position in the previous field in the
group.

When a position number is specified that represents the last character position in the 3270, two special
rules apply:

o ATTRIB=IC should not be coded. The cursor can be set to location zero by using the CURSOR
option of a SEND MAP, SEND CONTROL, or SEND TEXT command.

o If the field is to be used in an output mapping operation with MAP=DATAONLY on the SEND
MAP command, an attribute byte for that field must be supplied in the symbolic map data structure
by the application program.

• ProgrammedSymbol is the PS operand. It specifies that programmed symbols are to be used. This
overrides any PS operand set by the DFHMDI macro or the DFHMSD macro.

BASE is the default and specifies that the base symbol set is to be used.

psid specifies a single EBCDIC character, or a hexadecimal code of the form X'nn', that identifies the set
of programmed symbols to be used.

The PS operand is ignored unless the terminal supports programmed symbols.

ad/2001-09-17 UML for EAI 241

SOSI indicates that the field may contain a mixture of EBCDIC and DBCS data. The DBCS subfields
within an EBCDIC field are delimited by SO (shift out) and SI (shift in) characters. SO and SI both
occupy a single screen position (normally displayed as a blank). They can be included in any non-
DBCS field on output, if they are correctly paired. The terminal user can transmit them inbound if they
are already present in the field, but can add them to an EBCDIC field only if the field has the SOSI
attribute.

TRANSP determines whether the background of an alphanumeric field is transparent or opaque, that is,
whether an underlying (graphic) presentation space is visible between the characters.

15.3.1.7 BMSFoldType
BMSFoldType specifies whether to generate lowercase or uppercase characters only in C language
programs in the appropriate data structure.

15.3.1.8 BMSHighlightingType
BMSHighlightingType specifies the default highlighting attribute for all fields in all maps in a mapset.
This is overridden by the HILIGHT operand of the DFHMDI, which is in turn overridden by the
HILIGHT operand of the DFHMDF. The HILIGHT operand is ignored unless the terminal supports it.

BMSHighlightingType has the following attributes:

• OFF is the default and indicates that no highlighting is used.

• BLINK specifies that the field must blink.

• REVERSE specifies that the character or field is displayed in reverse video, for example, on a 3278,
black characters on a green background.

• UNDERLINE specifies that a field is underlined.

15.3.1.9 BMSJustifyType
BMSJustifyType can be “left”, “right”, “first”, “last”, or “bottom”.

15.3.1.10 BMSLanguageType
BMSLanguageType specifies language types:

• Assembler
• C
• COBOL
• COBOL2
• PL/I

ad/2001-09-17 UML for EAI 242

15.3.1.11 BMSMap
BMSMap is implemented by DFHMDI macro. BMSMap has the following attributes:

• MAPNAME is the name of the map and consists of 1-7 characters.
• COLUMN specifies the column in a line at which the map is to be placed, that is, it establishes the
left or right map margin.
• JUSTIFY controls whether map and page margin selection and column counting are to be from the
left or right side of the page. The columns between the specified map margin and the page margin are
not available for subsequent use on the page for any lines included in the map.
• NUMBER is the column from the left or right page margin where the left or right map margin is to
be established.
• NEXT indicates that the left or right map margin is to be placed in the next available column from
the left or right on the current line.
• SAME indicates that the left or right map margin is to be established in the same column as the last
non-header or
• nontrailer map used that specified COLUMN=number and the same JUSTIFY operands as this
macro. For input operations, the map is positioned at the extreme left-hand or right-hand side, depending
on whether JUSTIFY=LEFT or JUSTIFY=RIGHT has been specified.
• Line is the LINE operand. It specifies the starting line on a page in which data for a map is to be
formatted.

o NUMBER is a value in the range 1-240, specifying a starting line number. A request to map, on
a line and column, data that has been formatted in response to a preceding BMS command, causes the
current page to be treated as though complete. The new data is formatted at the requested line and
column on a new page.
o NEXT specifies that formatting of data is to begin on the next available completely empty line. If
LINE=NEXT is specified in the DFHMDI macro, it is ignored for input operations and LINE=1 is
assumed.
o SAME specifies that formatting of data is to begin on the same line as that used for a preceding
BMS command. If COLUMN=NEXT is specified, it is ignored for input operations and
COLUMN=1 is assumed. If the data does not fit on the same line, it is placed on the next available
line that is completely empty.

• SIZE(arg1,arg2) specifies the size of a map. arg2 = line is a value in the range 1-240, specifying the
depth of a map as a number of lines. arg1 = column is a value in the range 1-240, specifying the width of
a map as a number of columns. This operand is required in the following cases:

o An associated DFHMDF macro with the POS operand is used.
o The map is to be referred to in a SEND MAP command with the ACCUM option.
o The map is to be used when referring to input data from other than a 3270 terminal in a
RECEIVE MAP command.

• ShiftOutShiftIn is the SOSI operand. It indicates that the field may contain a mixture of EBCDIC
and DBCS data. The DBCS subfields within an EBCDIC field are delimited by SO (shift out) and SI
(shift in) characters. SO and SI both occupy a single screen position (normally displayed as a blank).
They can be included in any non-DBCS field on output, if they are correctly paired. The terminal user
can transmit them inbound if they are already present in the field, but can add them to an EBCDIC field
only if the field has the SOSI attribute.
• TioaPrefix is a Boolean type for the TIOAPFX operand. It specifies whether BMS should include a
filler in the symbolic description maps to allow for the unused TIOA prefix. This operand overrides the

ad/2001-09-17 UML for EAI 243

TIOAPFX operand specified for the DFHMSD macro.

o YES specifies that the filler should be included in the symbolic description maps and
should always be used for command-level application programs. If TIOAPFX=YES is
specified, all maps within the mapset have the filler. TIOAPFX=YES

o NO is the default and specifies that the filler is not to be included.

15.3.1.12 BMSMapAttributesType
BMSMapAttributesType has the following attributes:

• color : Boolean
• highlighting : Boolean
• outline : Boolean
• programmedSymbol : Boolean
• sosi : Boolean
• transparent : Boolean
• validation : Boolean

15.3.1.13 BMSMapset
BMSMapset is implemented by the DFHMSD macro. BMSMapset has the following attributes:

• type=DSECT ¦ MAP ¦ FINAL. Mandatory, this generates the two bits of a BMS entity.

• mode=OUT ¦ IN ¦ INOUT. OUT is default. INOUT says do both IN and OUT processing. With IN, I
is appended to mapname, with OUT, O is appended to mapname.

• lang=ASM¦ COBOL ¦ COBOL2 ¦ PL/l ¦ C. ASM is default.

• fold=LOWER ¦ UPPER. LOWER is default. Only applies to C.

• dsect=ADS ¦ ADSL. ADS is default. ADSL requires lang = C.

• trigraph = YES only applies to lang = C.

• BASE specifies that the same storage base is used for the symbolic description maps from more than
one mapset. The same name is specified for each mapset that is to share the same storage base. Because
all mapsets with the same base describe the same storage, data related to a previously used mapset may
be overwritten when a new mapset is used. Different maps within the same mapset also overlay one
another.

This operand is not valid for assembler-language programs, and cannot be used when
STORAGE=AUTO has been specified.

ad/2001-09-17 UML for EAI 244

• term = type. Each terminal type is represented by a character. 3270 is default and is a blank. Added
to MAPSET name, or,
• suffix = numchar which is also added to mapset name.

• CURSLOC indicates that for all RECEIVE MAP operations using this map on 3270 terminals, BMS
sets a flag in the application data structure element for the field where the cursor is located.

• STORAGE depends upon the language in which application programs are written, as follows:

For a COBOL program, STORAGE=AUTO specifies that the symbolic description maps in the mapset
are to occupy separate (that is, not redefined) areas of storage. This operand is used when the symbolic
description maps are copied into the working-storage section and the storage for the separate maps in the
mapset is to be used concurrently.

For a C program, STORAGE=AUTO specifies that the symbolic description maps are to be defined as
having the automatic storage class. If STORAGE=AUTO is not specified, they are declared as pointers.
You cannot specify both BASE=name and STORAGE=AUTO for the same mapset. If
STORAGE=AUTO is specified and TIOAPFX is not, TIOAPFX=YES is assumed.

For a PL/I program, STORAGE=AUTO specifies that the symbolic description maps are to be declared
as having the AUTOMATIC storage class. If STORAGE=AUTO is not specified, they are declared as
BASED. You cannot specify both BASE=name and STORAGE=AUTO for the same mapset. If
STORAGE=AUTO is specified and TIOAPFX is not, TIOAPFX=YES is assumed.

For an assembler-language program, STORAGE=AUTO specifies that individual maps within a mapset
are to occupy separate areas of storage instead of overlaying one another.
This is derived from BMSStatement.

15.3.1.14 BMSMapsetType
BMSMapsetType specifies the type of map to be generated using the definition. Both types of map must
be generated before the mapset can be used by an application program. If aligned symbolic description
maps are required, you should ensure that you specify SYSPARM=ADSECT and SYSPARM=AMAP
when you assemble the symbolic and physical maps respectively.

BMSMapsetType has the following attributes:

• DSECT specifies that a symbolic description map is to be generated. Symbolic description maps
must be copied into the source program before it is translated and compiled.

• MAP specifies that a physical map is to be generated. Physical maps must be assembled or
compiled, link-edited, and cataloged in the CICS program library before an application program can use
them.

• FINAL denotes the end of a mapset.

ad/2001-09-17 UML for EAI 245

15.3.1.15 BMSModeType
BMSModeType specifies whether the mapset is to be used for input, output, or both (i.e., input and
output).

15.3.1.16 BMSOutliningType
BMSOutliningType is the OUTLINE statement. It allows lines to be included above, below, to the left,
or to the right of a field. You can use these lines in any combination to construct boxes around fields or
groups of fields.

15.3.1.17 BMSPositionType
BMSPositionType specifies where on the presentation space the field is to be placed.

15.3.1.18 BMSSizeType
BMSSizeType has the following attributes:

• line is an integer.
• column is an integer.

15.3.1.19 BMSValidationType
BMSValidationType is the VALIDN statement. It specifies that validation is to be used if the terminal
supports it or this field can be processed by the BMS global user exits

 This overrides any VALIDN operand on the DFHMDI macro or the DFHMSD macro.

BMSValidationType has the following attributes:

• MUSTFILL specifies that the field must be filled completely with data. An attempt to move the
cursor from the field before it has been filled, or to transmit data from an incomplete field, raises the
INHIBIT INPUT condition

• MUSTENTER specifies that data must be entered into the field, though need not fill it. An attempt
to move the cursor from an empty field raises the INHIBIT INPUT condition

• TRIGGER specifies that this field is a trigger field. Trigger fields are discussed in the CICS
Application Programming Guide.

• USEREXIT specifies that this field is to be processed by the BMS global user exits, XBMIN and
XBMOUT, if this field is received or transmitted in a 3270 datastream when the respective exit is
enabled. The USEREXIT specification applies to all 3270 devices.

The MUSTFILL, MUSTENTER and TRIGGER specifications are valid only for terminals that support
the field validation extended attribute, otherwise they are ignored.

	Table of Contents
	Introduction and Guide
	Introduction
	Guide to the Document
	Submission Contact Points
	Contributors

	Scope
	Scenario 1: Connectivity
	Scenario 2: Information Sharing
	Scenario 3: Process Collaboration

	M
	Modeling Approach
	Metamodel
	UML Profile
	Four-layered Architecture
	Semantics

	C
	Compliance
	Overview
	Compliance with the UML Collaboration Profile
	General Compliance
	Visualization

	Compliance with the UML Activity Profile
	General Compliance
	Visualization

	Compliance with the MOF-based EAI Metamodel
	Compliance Statement Examples

	Requirements and Areas for Discussion
	Mandatory Requirements
	Event-Based Architecture
	Modeling Elements

	Heterogeneous Environment
	XML
	XMI
	UML Profile for EDOC
	MOF alignment
	Proof of Concept of Profile
	Demonstration that Models are Implementable

	Discussion issues
	Development and Management Aid
	Tool Support

	Relationship to Envisioned OMG Technology
	Real-time

	Relationship to Existing Standards
	UML
	Meta Object Facility (MOF)
	Common Warehouse Metamodel (CWM)

	Other Related Activities

	P
	EAI Integration Metamodel
	EAI Integration specializes FCM
	FCM Derived Associations
	Motivation
	FCM diagrams
	Composite nodes
	Composite nodes and their contents
	Relationship between the interface of a composite node and its contents

	EAI Specializations of the FCM
	Motivation
	EAILink
	EAITerminal
	EAIMessageContent
	EAIMessageOperation
	EAISource and EAISink
	EAIQueue
	EAIQueuedInputTerminal and EAIQueuedOutputTerminal
	EAIQueuedSource and EAIQueuedSink
	Operators
	EAIPrimitiveOperator
	EAICompoundOperator
	EAIMessageFlow
	‘Exposing’ terminals in an EAIMessageFlow

	Adapters
	EAISourceAdapter
	EAITargetAdapter
	EAICallAdapter
	EAIRequestFormat

	EAIRequestReplyAdapter

	Kinds of Operator
	Operators
	EAIFilter
	EAIStream
	EAIPostDater
	EAITransformer
	EAIDBTransformer
	EAIAggregator
	EAIRouter
	EAIRouterUpdate and EAIBroadcaster

	EAISubscriptionOperator
	EAIPublicationOperator
	EAITimer
	EAITimeSetOperator
	EAITimeCheckOperator
	EAITimer

	Topic-based publish/subscribe
	EAITopicPublisher
	Topics ‘allowed’ by an EAITopicRule
	Relationship between topic-based publishers and subscribers

	CCA Component Library for EAI
	Operators
	EAIPrimitiveOperator
	EAITransformer
	EAIFilter
	EAIStream
	EAICompoundOperator

	Adapters
	EAISourceAdapter
	EAITargetAdapter
	EAIQueuedTargetAdapter
	EAICallAdapter
	EAIRequestReplyAdapter

	CCA and EAI Metamodel Mapping Tables

	EAI Common Application Metamodel
	Business Requirements and Value
	Common Application Metamodel for Applications Interfaces
	End-to-End Connector Usage Using EAI Common Application Metamodel

	Common Application Metamodel
	Enterprise Application Interface Metamodels
	Language Metamodels
	Physical Representation Model: Type Descriptor Metamodel
	Type Descriptor Metamodel Descriptions
	AddressTD

	AddressTD represent pointers/addresses. Addresses should be considered to be different from NumberTD class because some languages on certain machines (e.g., IBM 400) represent addresses with additional information, such as permission type (which is not r
	
	
	ArrayTD

	ArrayTD holds information for array types. Data element instances may be defined as repeating groups or arrays. This is modeled as a one-to-many association between InstanceTDBase and the ArrayTD model type. One instance of ArrayTD is created for each d
	
	
	BaseTDType

	BaseTDType is the abstract parent class of all types in the TD Metamodel. BaseTDType holds implementation information common to all data types of the same runtime environment, as specified by PlatformCompilerInfo.
	
	
	Bi-DirectionalStringTD

	Bi-DirectionStringTD is a subclass of StringTD. Bi-DirectionStringTD represents strings with extended properties and formats such as numeral shapes and right-to-left reading direction.
	
	
	BinaryTD

	BinaryTD represents a string of binary bits whose format is not to be modified.
	
	
	DateTD
	FloatTD

	FloatTD represents floating point numbers declared by a language element.
	
	
	InstanceTDBase
	Number TD

	NumberTD represents all integer and packed decimals.
	
	
	PlatformCompilerInfo

	PlatformCompilerInfo captures the static compiler and program runtime environment. Since this static information is shared by all instances of InstanceTDBase, this class only needs to be instantiated once.
	
	
	SimpleInstanceTD and AggregateInstanceTD

	Both SimpleInstanceTD and AggregateInstanceTD are subclasses of InstanceTDBase. InstanceTDBase has two concrete subtypes: SimpleInstanceTD and AggregateInstanceTD. SimpleInstanceTD models data elements without subcomponents, while AggregateInstanceTD m
	
	
	StringTD

	StringTD represents standard left-to-right format character strings. StringTD also supports single characters elements.
	
	
	Type Descriptor Stereotypes

	Type Descriptor Formulas
	Type Descriptor Formula Examples
	COBOL
	PL/I

	Physical Representation Model: TDLang Metamodel
	TDLang Metamodel Descriptions
	TDLangClassifier
	tdLangTypedElement : TDLangElement

	TDLangComposedType
	tdLangElement : TDLangElement

	TDLangElement
	tdLangGroup: TDLangComposedType
	tdLangSharedType : TDLangClassifier

	TDLangModelElement

	Physical Representation Model: Convergent Metamodel
	Convergent Metamodel Descriptions
	Interface Metamodel Parameters

	Interface Metamodel Parameters represent a variety of input and output parameter classes which map to underlying language elements. Information on the language element’s physical representation is captured by the Type Descriptor metamodel. Each instanc
	
	
	TDLangElement and Language Elements

	As stated in Section 7.3.8.3, TDLangElement is the parent class of all CAM language Element classes. Figure 64 shows how any CAM language element can be modeled to support any given Interface Metamodel Parameter.
	
	
	InstanceTDBase

	Sample Serialization of Convergent Metamodel

	01 NAME.
	P
	Collaboration Modeling
	Overview
	Terminals
	Operators
	Primitive operator
	Transformers and Database Transformers
	Filters
	Streams
	Post Daters
	Source Adapters
	Target Adapters
	Call Adapters
	Request/Reply Adapters
	Sources and Queued Sources
	Sinks and Queued Sinks
	Aggregators
	Timers
	Routers
	Subscription Operators
	Publication Operators
	Topic Publishers
	Compound Operators
	Class diagrams
	Collaboration diagrams
	Components of the same type
	Call and Request/Reply Adapters
	Publish and Subscribe
	Constraints

	Resources
	Message Formats
	MessageContent core
	Basic MOM Message Structure
	ExceptionNotice
	MOMHeader

	Mapping with Metamodel
	Terminals
	Operators
	Resources
	Message Formats

	Activity Modeling
	Modeling Integration Processes
	An Integration Process Scenario
	The Exchange Process
	Modeling message flow explicitly
	Modeling control flow
	Abstracting detail by decomposition
	Further fragmentary examples
	Multiple synchronized inputs and outputs
	Internal dataflows within a subsystem
	Modeling decisions explicitly
	Synchronization
	Multiple concurrent invocations of activities
	Modeling business events explicitly

	Profile Element Summary
	Stereotypes
	Tagged Values
	Mapping to EAI Metamodel

	Example: Connectivity and Information Sharing
	The Brokerage Business
	Connection of Enterprises to the Online Brokerage System.
	The On-line Brokerage System
	International Brokerage Server
	Orders
	Notifications

	Investment Manager Server
	Orders
	Notifications

	Middleware Server and Back-End Brokerage System
	Publication

	Example using the EDOC CCA
	Mapping to WebSphere MQ Integrator
	WebSphere MQ Messaging
	WebSphere MQ Messages
	WebSphere MQ Message Queuing

	WebSphere MQ Integrator Message Flows
	Summary
	WMQIMessageFlow
	Description
	Constraints

	WMQICompoundNode
	Constraints

	WMQIPrimitiveNode
	Description
	Constraints

	Supplied WMQIPrimitiveNodes
	The Role of the WMQI message-broker topology

	Java Message Service (JMS)
	PTP Domain
	Pub/Sub Domain

	Language Metamodels
	COBOL Metamodel
	COBOL Metamodel Descriptions
	COBOL66Element
	COBOL88Element
	COBOL88ElementValue
	COBOLAddressingType
	COBOLAlphabeticType
	COBOLAlphaNumericEditedType
	COBOLAlphaNumericType
	COBOLClassifier
	COBOLComposedType
	COBOLDBCSType
	COBOLElement
	COBOLElementInitialValue
	COBOLExternalFloatType
	COBOLFixedLengthArray
	COBOLInitalValueKind
	COBOLInternalFloatType
	COBOLNumericEditedType
	COBOLNumericType
	COBOLObjectReferenceType
	COBOLRedefiningElement
	COBOLSimpleType
	COBOLSourceText
	COBOLUnicodeType
	COBOLUsageValues
	COBOLVariableLengthArray

	PL/I Metamodel
	PL/I Metamodel Descriptions
	PLIAlias
	PLIAreaType
	PLIArithmeticType
	PLIArray
	PLIBaseValues
	PLIClassifier
	PLICodedStringType
	PLIComposedType
	PLIComputationalType
	PLIElement
	PLIElementInitialValue
	PLIEntryType
	PLIFileType
	PLIFixedBoundArray
	PLIFixedLboundArray
	PLIFixedLengthArea
	PLIFixedLengthString
	PLIFloatType
	PLIFormatType
	PLIHandleType
	PLIHboundArray
	PLIInitialValueType
	PLIIntegerType
	PLILabelType
	PLILengthType
	PLIModeValues
	PLINamedStructureType
	PLINamedType
	PLINonComputationalType
	PLIOffsetType
	PLIOrdinalType
	PLIOrdinalValue
	PLIPackedType
	PLIPictureStringType
	PLIPictureType
	PLIPointerType
	PLISimpleType
	PLISourceText
	PLIStringType
	PLIStringTypeValues
	PLIVariableBoundArray
	PLIVariableLengthArea
	PLIVariableLengthString

	C Metamodel
	C Metamodel Descriptions
	CArray
	CBehavioralFeature
	CClassifier
	CDatatype
	CDerivableType
	CDerived
	CField
	CFunction
	CParameter
	CPointer
	CSourceText
	CStruct
	CStructuralFeature
	CStructureContents
	CStructured
	CTypedef
	CTypedElement
	CUnion

	C++ Metamodel
	C++ Metamodel Descriptions
	CPPClass
	CPPConst
	CPPExtern
	CPPGeneralization
	CPPMember
	CPPOperation
	CPPOperator
	CPPReference
	CPPTemplate

	Appendix: Non-Normative Enterprise Application Interface Metamodels
	IMS Transaction Message Metamodel
	IMS Transaction Message Metamodel Descriptions
	ApplicationData
	ControlData
	IMSTransactionMessage
	OTMAPrefix
	OTMAPrefixFormats
	SecurityData
	StandardFields
	StateData
	TChainFlag
	TCommandType
	TCommitConfirmationFlag
	TMessageType
	TPrefixFlag
	TProcessingFlag
	TResponseFlag
	TSecurityFlag
	TServerState
	TSynchronizationFlag
	TSynchronizationLevel
	UserData

	IMS MFS Metamodel

	3270 and 3270-An
	2740 or 2741
	
	IMS MFS Metamodel Descriptions
	MFSDeviceDescriptor
	MFSDeviceDivision
	type : MFSDescriptorType
	compression : MFSCompressionType

	MFSDeviceField
	attributes : MFSAttributeType
	extendedAttributes : MFSExtendedAttributeType
	length : int
	pen : String
	position : MFSPositionType
	value : String

	MFSDevicePage
	cursor : MFSCursorType
	fill : String
	multiplePages : Boolean

	MFSDeviceType
	card : 0..1 MFSDeviceField
	dsca : String
	features : MFSFeatureType
	page : MFSPageType
	pen : 0..1 MFSDeviceField
	pfk : MFSFunctionKeyType
	substitution : String
	systemMessage : 0..* MFSDeviceField
	type : String
	width : int

	MFSIfCondition
	condition : MFSConditionType
	action : String

	MFSLogicalPage
	condition : MFSConditionType
	prompt : 0..1 MFSDeviceField

	MFSMessageDescriptor
	fill : String
	ignoreSource : Boolean
	option : int
	paging : Boolean
	type : MFSDescriptorType

	MFSMessageField
	attributes : Boolean
	exit : MFSExitType
	extendedAttributes : Boolean
	fill : String
	justify : MFSJustifyType
	length : MFSLengthType
	value : String

	MFSPassword
	MFSSegment
	exit : MFSExitType
	graphic : Boolean

	MFSTable

	CICS BMS Metamodel
	CICS BMS Metamodel Descriptions
	BMSAttributesType
	BMSColorType
	BMSControlType
	BMSDataType
	BMSExtendedAttributesType
	BMSField
	BMSFoldType
	BMSHighlightingType
	BMSJustifyType
	BMSLanguageType
	BMSMap
	BMSMapAttributesType
	BMSMapset
	BMSMapsetType
	BMSModeType
	BMSOutliningType
	BMSPositionType
	BMSSizeType
	BMSValidationType

